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Causal effect of COVID-19 on
optic nerve and visual pathway
disorders: genetic evidence of
lung-brain axis
Chunge Cao 1†, Qiong Li2†, Dajun Cai1, Chaoyan Yue 3*

and Hu Zhao1*

1Department of Obstetrics and Gynecology, Second Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2Department of Obstetrics and Gynecology, First People’s Hospital of Chenzhou,
Chenzhou, China, 3Department of Laboratory Medicine, Obstetrics and Gynecology Hospital of Fudan
University, Shanghai, China
Purpose: To investigate the potential causal association between COVID-19

exposure and optic nerve and visual pathway disorders through a two-sample

bidirectional Mendelian randomization (MR) analysis, and to provide empirical

support for the lung-brain axis.

Methods: This MR analysis utilized publicly accessible summary-level data from

genome-wide association studies on COVID-19 (n=158,783) and optic nerve and

visual pathway diseases (n=412,181), primarily involving individuals of European

descent. The random-effect inverse-variance weighted estimation was applied

as the main analytical approach, complemented by MR-Egger, weighted median,

and weighted mode methods. The heterogeneity and pleiotropy of the

instrumental variables were assessed using Cochran’s Q test, leave-one-out

sensitivity analysis, MR-Egger intercept test, MR-PRESSO, and funnel

plot evaluations.

Results: In the forward analysis, the inverse-variance weighted method identified

a significant causal effect of COVID-19 on optic nerve and visual pathway

disorders (odds ratio = 1.697, 95% confidence interval: 1.086–2.652, p =

0.020). Directionally consistent results were also observed with MR-Egger

regression, weighted median, and weighted mode approaches. Conversely, the

reverse analysis revealed no causal effects of optic nerve and visual pathway

disorders on COVID-19 susceptibility.

Conclusion:Our findings suggest that COVID-19 exposure may increase the risk

of developing optic nerve and visual pathway disorders, supporting the lung-

brain axis hypothesis. These results underscore the importance of vigilant

monitoring of the visual system in patients recovering from COVID-19 and

suggest potential avenues for future therapeutic strategies.
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Introduction

The COVID-19 pandemic has triggered a worldwide health

emergency with far-reaching repercussions, surpassing the initial

respiratory symptoms to include prolonged neurological

complications, often termed ‘long COVID’ (1). Observational

studies have potentially shown that COVID-19 can lead to

disorders of optic nerve and visual pathways, including uveitis,

optic neuritis, macular degeneration, and retinal vascular diseases

(2, 3). These conditions may manifest as a variety of symptoms,

such as vision loss, visual field defects, reduced sensitivity to light

and contrast, as well as alterations in color perception (4).

The burgeoning concept of the lung-brain axis delineates a

sophisticated biological network facilitating communication

between the lungs and brain via neural, inflammatory, immune,

and neuroendocrine signaling pathways (5). The central nervous

system (CNS) plays a critical role in modulating the pulmonary

response to stress and inflammation through neuroendocrine

mechanisms (6). Brain injuries may provoke pulmonary

complications by eliciting the release of necrotic substances (7),

while pulmonary conditions have the potential to instigate

cerebrovascular diseases through the induction of white matter

lesions (8). Additionally, the significant influence of the lung

microbiome on brain autoimmunity has been increasingly

acknowledged (9). This reciprocal communication highlights the

symbiotic interplay between respiratory and neurological health.

Early hypotheses suggested that the SARS-CoV-2 might penetrate

the CNS via the nasal cavity and olfactory pathway or the blood-

brain barrier (BBB) (10, 11). However, cerebrospinal fluid analyses

in patients presenting neuropsychiatric symptoms have revealed

minimal detection of viral RNA, with only 8.6% (3 out of 35)

identified through reverse transcription polymerase chain reaction

(12). This suggests that neurological symptoms do not typically

result from direct SARS-CoV-2 infection of the brain tissue.

Although there has been considerable research, the connection

between COVID-19 and optic nerve or visual pathway disorders is

yet to be conclusively proven, hindered by insufficient large-scale

cohort studies and conclusive evidence. Concurrently, the varied

symptoms experienced by individuals with Long COVID, coupled

with the challenge of distinguishing symptoms caused by COVID-

19 from those that are aggravations of existing or sporadic illnesses,

significantly complicate the understanding of underlying

mechanisms and the development of therapeutic strategies.

Mendelian randomization (MR) is an innovative approach in

epidemiology, utilizing genetic variants as proxies for deducing the

causal impact of various exposures on outcomes (13). These genetic

markers are randomly segregated and allocated during the formation of

gametes and at conception, remaining uninfluenced by the

development or progression of the outcome (14). As a result, MR

typically protects against biases and unmeasured confounding factors,

providing amore robust basis for causal deduction than is possible with

traditional observational studies (15). In this study, we aim to

investigate the causal link between COVID-19 and disorders of optic

nerve and visual pathways through theMRmethod, to assess its impact

size, and to furnish evidence supporting the lung-brain axis hypothesis.
Frontiers in Immunology 02
Materials and methods

Study design

Figure 1 depicts a graphical abstract illustrating the

bidirectional MR study. The forward MR assessed the causal

effect of COVID-19 on disorders of optic nerve and visual

pathways. The reverse MR assessed the causal effect of optic

nerve and visual pathway disorders on COVID-19 susceptibility.

This study used datasets from extensive genome-wide association

studies (GWAS). Single-nucleotide polymorphisms (SNPs) from

these GWAS datasets served as instrumental variables (IVs) for the

exposure. The MR analysis is based on three critical assumptions:

firstly, the IVs are strongly associated with the exposure; secondly,

the IVs are related to the outcome solely through the exposure

under investigation; and thirdly, the IVs are independent of any

confounding factors (16). This research employed publicly

accessible, summary-level GWAS data from studies that had

previously received institutional review board approval.

Additional ethical approval or informed consent was not requisite

for this study’s data usage, given its public, anonymized, and de-

identified nature.
Data sources

The GWAS datasets for COVID-19 (GWAS ID: ebi-a-

GCST011071) and optic nerve and visual pathway disorders

(GWAS ID: finn-b-H7_OPTNERVE) came from the IEU Open

GWAS Project. The COVID-19 dataset included 29,071 cases and

1,559,712 controls, with a total of 8,103,014 SNPs. The dataset for

optic nerve and visual pathway disorders comprised 1,301 cases and

217,491 controls, encompassing 16,380,466 SNPs. The majority of

participants in both GWAS datasets were of European descent.
Selection of IVs

We first selected SNPs that were strongly associated with the

exposure, using a genome-wide significance threshold of p < 5e-08.

To ensure a sufficient number of SNPs for the exposure, we allowed

for a relaxed threshold of p < 5e-07 or p < 5e-06. We used the

European ancestry data from the 1000 Genomes Project (RRID:

SCR_008801) and employed stringent clumping parameters with a

distance greater than 10,000 kb and an (r2 < 0.001) to minimize

linkage disequilibrium among the variables. To enhance the

accuracy of our results, we excluded palindromic SNPs with

intermediate allele frequencies. Potential confounders were

identified and removed by querying the PhenoScanner V2

database for SNPs associated with possible confounding factors.

Weak IVs were discarded using the F statistic to ensure a robust

association between the exposure factors and the IVs. The F statistic

was determined by the squared beta coefficient divided by its

variance for the SNP-exposure association, with an F statistic

greater than 10 indicating a strong association (17).
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MR analysis

Assessing the causal link between COVID-19 and disorders of

optic nerve and visual pathways, we employed four MR methods:

the random-effect inverse-variance weighted (IVW) estimation

method, MR-Egger regression method, weighted-median

estimator method, and weighted mode-based method. The IVW

method, when directional pleiotropy is absent, offers a more stable

and precise estimation of causal effects by integrating the Wald ratio

estimates from each instrumental variant (18, 19). Consequently,

IVW served as the primary method for this study, while the other

three methods served as supplementary analyses. Consistent results

across all four methods bolster the credibility of the causality

estimates. In cases of discrepancy, the IVW outcome is given

precedence as the principal finding. However, we consider the

IVW results reliable only if they are directionally concordant with

the findings of the supplementary methods.
Sensitivity analysis

The Cochran’s Q test was applied to assess the heterogeneity

among IVs, with a p-value below 0.05 indicating significant
Frontiers in Immunology 03
heterogeneity. A leave-one-out sensitivity analysis was

performed to ensure no single SNP disproportionately

influenced the causal estimate. This involved sequentially

discarding each SNP associated with the exposure and repeating

the IVW analysis to verify the stability of the causal effects of each

SNP. The MR-Egger intercept test was employed to detect and

adjust for bias from directional pleiotropy; a non-zero intercept

suggests the presence of such bias (20). Additionally, the MR-

PRESSO method was employed to identify and correct for

horizontal pleiotropy; a global test resulting in a p-value under

0.05 signifies horizontal pleiotropy between IVs and outcomes; the

outlier test pinpoints SNPs that may be outliers, potentially

violating MR assumptions, necessitating their exclusion from

the analysis (21).
Statistical analysis

The MR analysis used TwoSampleMR (version 4.3.1), an R

statistical software package that facilitates the two-sample MR

approach. Causal estimates were presented as odds ratios (ORs)

with 95% confidence intervals (CIs). Statistical significance was

determined by a two-tailed p-value of less than 0.05.
FIGURE 1

Graphical abstract for this MR study between COVID-19 and disorders of optic nerve and visual pathways. GWAS, genome-wide association study;
MR, Mendelian randomization; SNP, single nucleotide polymorphism; IVW, inverse-variance weighted. By FigDraw.
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Results

Genetic instruments and strength

In our bidirectional analysis, we identified nine SNPs

significantly associated with COVID-19, showing a genome-wide

significance threshold of p<5e-07, and fourteen SNPs linked to

disorders of optic nerve and visual pathways, with a threshold of

p<5e-06. These associations were established after linkage

disequilibrium clumping, data harmonization, and mining of the

Phenoscanner V2 database, as detailed in Supplementary Tables 1,

2. The F-statistics for each SNP were above 10, indicating a

negligible risk of weak instrument bias.
The causal effect of COVID-19 on optic
nerve and visual pathway disorders

Figure 2 illustrates the causal relationship between COVID-19

and the incidence of optic nerve and visual pathway disorders. The

IVW method indicates a notable causal influence of COVID-19 on

optic nerve and visual pathway disorders, with an OR of 1.697 and a

95% CI ranging 1.086 to 2.652 (p = 0.020). Complementary

methods, including MR-Egger, Weighted Median, and Weighted

Mode, yielded directionally consistent but not statistically

significant results compared to IVW. The robustness of these

findings is supported by sensitivity analyses presented in Table 1

and Figure 3. Cochran’s Q test indicates uniformity across SNP

effect estimates (p = 0.841), and the MR-Egger intercept negates the

presence of directional pleiotropy (intercept = -0.039, p = 0.495).

The MR-PRESSO test also finds no evidence of horizontal

pleiotropy or outliers (p = 0.866), and the leave-one-out analysis

substantiates the consistency of our results.
The causal effect of optic nerve and visual
pathway disorders on COVID-19

As shown in Figure 2, the IVW analysis suggests that optic

nerve and visual pathway disorders do not causally affect COVID-

19 susceptibility (OR = 0.991, 95% CI: 0.969-1.012; p = 0.429). This

finding is supported by MR-Egger, Weighted Median, and

Weighted Mode methods. Detailed in Table 1 and Figure 4, the
Frontiers in Immunology 04
sensitivity analyses affirm the reliability of our conclusions.

Cochran’s Q test confirms no variability among the SNP effect

estimates (p = 0.967), and the MR-Egger intercept indicates an

absence of directional pleiotropy (Intercept = -0.001, p = 0.835).

Additionally, the MR-PRESSO test reveals no horizontal pleiotropy

or outliers (p = 0.967), and the leave-one-out test reinforces the

dependability of our findings.
Discussion

In this study, we employed a two-sample bidirectional MR

approach to explore the relationship between COVID-19 and

disorders of optic nerve and visual pathways. The forward results

provide compelling genetic evidence that COVID-19 may increase

the risk of disorders of optic nerve and visual pathways. The reverse

results show that disorders of optic nerve and visual pathways have

no causal effect on COVID-19 susceptibility. Sensitivity analyses

have reinforced the robustness of our results.

Our research has unearthed critical insights that could be

transformative for clinical practice and public health policy. These

findings highlight a significant correlation between viral infections

and an increased risk of optic nerve and visual pathway disorders.

Such knowledge is vital for physicians, enabling them to diagnose

and treat these conditions more proactively, which may lead to

better patient outcomes. Moreover, our study supports the need for

public health authorities to intensify visual health monitoring and

preventive actions during the pandemic, with a particular focus on

vulnerable groups. Educating the public and patients about the

ocular risks linked to COVID-19 is essential, as it encourages early

medical intervention when symptoms are detected. This research

also marks a pivotal step in understanding the lung-brain axis,

potentially reshaping our comprehension of how respiratory

infections influence neurological health. It paves the way for

further investigations into the specific mechanisms by which

COVID-19 impacts the optic nerve and visual pathways, spurring

the creation of novel prophylactic and therapeutic approaches. In

addition, these discoveries could be instrumental in guiding the

development of vaccines and shaping public health strategies aimed

at mitigating the long-term sequelae of COVID-19.

A comprehensive retrospective case-control study involving

2,351 patients revealed a notable increase in immune-mediated

ocular conditions like uveitis and optic neuritis, potentially linked to
FIGURE 2

Causal relationship between COVID-19 and disorders of optic nerve and visual pathways in the MR analyses. SNPs, single-nucleotide
polymorphisms; OR, odds ratio; CI, confidence interval; IVW, inverse-variance weighted; MR, Mendelian randomization.
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COVID-19 (2). Concurrently, an observational cross-sectional

study indicated that patients with neurological symptoms of

COVID-19 exhibited a decrease in the thickness of the retinal

nerve fiber layer and ganglion cell complex, as well as a reduced

vessel density (22). In contrast, other research indicated an

elevation in the thickness of the retinal nerve fiber layer, implying
Frontiers in Immunology 05
potential inflammation of the optic nerve or temporary alterations

during acute COVID-19 infection (23). Additionally, a separate

study observed increased intraocular pressure and specific changes

in the outer retina in severe cases 80 days post-COVID-19 infection,

although no evidence of uveitis was detected (24). The discrepancies

observed across these studies could be attributed to a variety of
B

C D

A

FIGURE 3

The forward MR analyses: Casual effect of COVID-19 on disorders of optic nerve and visual pathways. (A) Scatter plot of the association between
COVID-19 and disorders of optic nerve and visual pathways. (B) Forest plot to show the causal effect size estimate of COVID-19 on disorders of
optic nerve and visual pathways (red line segment) and 95% CI values (gray line segment) for each SNP. (C) Leave-one-out analyses to evaluate the
impact of each SNP on the overall result. (D) Funnel plot to detect obvious heterogeneity and system bias. IVW, inverse variance weighted; SNPs,
single-nucleotide polymorphisms.
TABLE 1 Results of pleiotropy and heterogeneity analyses.

Exposure Outcome

Cochran’s
Q test

MR-Egger test MR-PRESSO test

IVW
Q

p-
value

Intercept
p-

value
Global
test p

Outliers

COVID-19 Disorders of optic nerve and
visual pathways

4.177 0.841 -0.039 0.495 0.866 None

Disorders of optic nerve and
visual pathways

COVID-19 5.336 0.967 -0.001 0.835 0.967 None
fr
IVW, inverse-variance weighted; SNPs, single‐nucleotide polymorphisms.
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factors, including study design, methodological variances, sample

size differences, reporting biases, the timing of assessments, the

expertise of the investigators, the specific definitions of disorders,

and the level of control over confounding variables.

Several host receptors facilitate the entry of SARS-CoV-2 into

human cells, with the angiotensin-converting enzyme 2 (ACE2)

receptor being paramount. The viral spike protein (S protein) binds

to ACE2, triggering the cleavage of the S protein into S1 and S2

subunits. The S1 subunit, containing the receptor binding domain,

attaches to ACE2, and subsequent cleavage of the S2 subunit by host

proteases facilitates membrane fusion and viral entry (25). Multiple

tissues including mucosa of the nose, mouth, and eyes, respiratory

tract, lungs, heart, liver, kidney, brain, gastrointestinal tract,

placenta, and other organs express ACE2 with a high level (10).

Current researches indicate that SARS-CoV-2 could invade the

human brain through multiple pathways (26). Initially, the virus

may progress from the nasal cavity to the olfactory bulb via
Frontiers in Immunology 06
olfactory nerves. Secondly, the virus might access the bloodstream

via damaged respiratory epithelium and proceed to penetrate the

BBB, utilizing ACE2-mediated transcellular pathways or disrupting

the barrier’s tight-junctions. Lastly, the virus has the potential to

invade ocular tissues and navigate along the optic nerve to the

occipital cortex. However, CSF testing in patients with COVID-19

to find evidence of viral neuroinvasion by SARS-CoV-2 showed that

of 304 patients whose CSF was tested for SARS-CoV-2 viral RNA,

there were 17 (6%) whose test was positive, all of whom had

symptoms that localized to the CNS, of 58 patients whose CSF

was tested for SARS-CoV-2 antibody, 7 (12%) had positive

antibodies with evidence of intrathecal synthesis, all of whom had

symptoms that localized to the CNS, of 132 patients who had

oligoclonal bands evaluated, 3 (2%) had evidence of intrathecal

antibody synthesis (27). The above results indicate that most

neurological complications associated with SARS- CoV-2 are

unlikely to be related to direct viral neuroinvasion.
B

C D

A

FIGURE 4

The reverse MR analyses: Casual effect of disorders of optic nerve and visual pathways on COVID-19. (A) Scatter plot of the association between
disorders of optic nerve and visual pathways and COVID-19. (B) Forest plot to show the causal effect size estimate of disorders of optic nerve and
visual pathways on COVID-19 (red line segment) and 95% CI values (gray line segment) for each SNP. (C) Leave-one-out analyses to evaluate the
impact of each SNP on the overall result. (D) Funnel plot to detect obvious heterogeneity and system bias. IVW, inverse variance weighted; SNPs,
single-nucleotide polymorphisms.
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Recent studies have illuminated the lung-brain axis, which

allows two-way communication between the lungs and CNS. This

axis consists of the following multiple interrelated pathways. As part

of the autonomic nervous system, neuroanatomical pathway

involves neurons and cells for respiratory communication,

involving the phrenic nerve for breathing and the vagus nerve for

involuntary functions. Pulmonary receptors coordinate with the

brain to regulate breathing, with increased sensitivity in diseases like

asthma and COPD causing dyspnea. Quick signaling of this

pathway is essential for cough reflexes and adjusting respiration

to maintain homeostasis and adapt to health changes. In the

endocrine pathway, the hypothalamus-pituitary-adrenal axis

releases glucocorticoids during lung stress or inflammation, while

the sympathetic system secretes adrenaline and noradrenaline for

‘fight or flight’ responses. They work together to maintain balance

and respond to diseases. In immune pathway, CNS conditions can

cause lung damage via cytokines, and lung infections can negatively

affect the CNS. Systemic inflammation is linked to CNS issues like

paraneoplastic syndromes and autoimmune diseases. The lung

serves as a critical site for the reactivation of autoreactive T cells,

which can then migrate to the CNS and trigger autoimmune

disorders. The lung’s microbial balance affects CNS susceptibility

to autoimmune conditions. Metabolites and microorganisms

pathway involves the transfer of biological substances like

exosomes and outer-membrane vesicles, ferrying proteins, lipids,

nucleic acids, and other bioactive molecules between the CNS and

lungs, crossing the BBB. Exosomes can carry cytokines that

intensify lung injury and affect microglial activity in the brain,

impacting conditions like Alzheimer’s disease. Similarly, outer-

membrane vesicles from bacteria can provoke central neuropathy

and neuroinflammatory diseases. The gas pathway is crucial for

how respiratory gases impact the CNS. Air pollutants, like ozone,

can indirectly influence CNS functions by altering neuronal activity

and activating stress response pathways, which may result in

cognitive and behavioral changes. Diseases of the lungs that lead

to hypoxemia and hypercapnia are associated with CNS disorders.

Chronic hypoxemia is known to cause white matter changes that

are associated with Alzheimer’s disease. On the other hand, mild

hypercapnia might offer neuroprotection, while severe hypercapnia

can aggravate brain injury (28).

In a prospective study assessing the prevalence of serum myelin

oligodendrocyte glycoprotein antibody (MOG-Ab) and aquaporin-

4 antibody (AQP4-Ab) among 35 patients with clinical optic

neuritis and confirmed COVID-19, it was found that serum

MOG-Ab and AQP4-Ab were detected in 28.6% (10/35) and

5.7% (2/35) optic neuritis cases after COVID-19 (29). Positivity

for MOG-Ab is generally indicative of MOG antibody-associated

disease, an immune-mediated condition that demyelinates the optic

nerves, brain, and spinal cord (30). AQP4-Ab positivity is a strong

marker for neuromyelitis optica spectrum disorder, a severe

autoimmune inflammatory disorder of the CNS, marked by

intense optic neuritis and myelitis (31). The identification of these

antibodies, coupled with a favorable response to pulse steroid

therapy, suggests that optic neuritis related to COVID-19
Frontiers in Immunology 07
represents a post-infectious, immune-mediated inflammatory

response (29). Furthermore, a comprehensive multicenter study

has shown that recipients of the mRNA vaccines BNT162b2 and

mRNA-1273 have a notably higher risk of retinal vascular occlusion

within two years post-vaccination, suggesting that SARS-CoV-2

may cause neuro-ophthalmic damage via mechanisms beyond

direct viral invasion (32).

Integrating the available evidence, we propose that SARS-

CoV-2 may precipitate conditions affecting the optic nerve and

visual pathways via the lung-brain axis routes. Initially, SARS-

CoV-2 might penetrate the CNS through BBB, directly targeting

neurons within the optic nerve and visual pathways. Furthermore,

lung inflammation from SARS-CoV-2 could amplify the release of

inflammatory mediators like cytokines, enhancing BBB

permeability and leading to optic neuritis and retinal vascular

occlusion. Additionally, lung impairment due to SARS-CoV-2

might disrupt oxygen and carbon dioxide exchange,

compromising the oxygenation of the brain and optic nerve,

with sustained hypoxemia and hypercapnia potentially causing

damage to these structures. Moreover, the infection could disrupt

lung microbial homeostasis and metabolic outputs, which might,

via the bloodstream, impact the optic nerve and visual pathways’

functionality. SARS-CoV-2 could also present antigens mimicking

MOG or AQP4 proteins on astrocytes, eliciting a pathogenic T cell

response and antigen-antibody reaction, leading to inflammation

and demyelination, thereby impairing vision. A less likely but

possible pathway for the generation of MOG-Ab may involve the

incidental unveiling of MOG protein to the immune system’s

antigen-presenting cells during inflammation in the CNS’s white

matter or optic nerve, instigated by COVID-19. The specific

mechanisms by which COVID-19 causes disorders of optic

nerve and visual pathways require further and more in-

depth research.

Our study presents several notable strengths. Primarily, the MR

approach we employed was less prone to confounding factors, such

as inflammation, vascular disease, and tumor compression, which

could also lead to optic nerve and visual pathway disorders. This

robustness stems from our utilization of multiple COVID-19-

associated SNPs, derived from extensive GWAS, as IVs. We

further refine our analysis by excluding SNPS associated with

potential confounders, identified through the PhenoScanner V2

database, to negate the impact of these confounders on our results.

These measures provided substantial statistical power to establish

causal relationships. Moreover, we implemented stringent criteria

for the selection of IVs to uphold the foundational assumptions of

MR, thereby mitigating the risk of weak instrument bias. To

account for any anomalies induced by horizontal or directional

pleiotropy, we utilized advanced methods such as MR-Egger and

MR-PRESSO for detection and correction. Additionally, we

confined the genetic background of our part ic ipants

predominantly to European ancestry, which curtailed potential

confounding effects arising from a more diverse population mix.

Our study has several limitations that warrant consideration.

The datasets analyzed were primarily composed of individuals of
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European descent, potentially limiting the generalizability of our

findings across different ethnic groups. Furthermore, the ongoing

mutation of SARS-CoV-2 could influence factors such as viral

transmissibility, viral load, disease severity, and the virus’s ability

to evade immune responses. These mutations may complicate the

causal inference regarding disorders of optic nerve and visual

pathways. Currently, there is a lack of GWAS data on post-

mutation SARS-CoV-2. Should such data become available for

various SARS-CoV-2 strains in the future, we aim to conduct

further investigations. Additionally, our MR analysis is based on

publicly accessible summary-level data rather than individual-level

data, precluding us from performing subgroup analyses based on

COVID-19 severity. This limitation may result in less precise causal

estimates and could impact the interpretation and generalization of

our results.
Conclusions

In summary, this MR study provides evidence suggesting

that COVID-19 may elevate the risk of developing optic nerve

and visual pathway disorders . Beyond deepening our

comprehension of the interplay between COVID-19 and

diseases of optic nerve and visual pathways, this research also

introduces fresh perspectives and robust data to bolster lung-

brain axis studies. These insights are pivotal for devising

preventive measures and therapeutic interventions for nervous

system diseases associated with infections. Moreover, they are

instrumental in enhancing the quality of clinical care delivered

to patients. Additionally, these discoveries lay the groundwork

for the development of innovative therapeutic approaches for

patients with infections.
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