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DNA demethylases TET2 and TET3 play a fundamental role in thymic invariant

natural killer T (iNKT) cell differentiation by mediating DNA demethylation of

genes encoding for lineage specifying factors. Paradoxically, differential gene

expression analysis revealed that significant number of genes were upregulated

upon TET2 and TET3 loss in iNKT cells. This unexpected finding could be

potentially explained if loss of TET proteins was reducing the expression of

proteins that suppress gene expression. In this study, we discover that TET2 and

TET3 synergistically regulate Drosha expression, by generating 5hmC across the

gene body and by impacting chromatin accessibility. As DROSHA is involved in

microRNA biogenesis, we proceed to investigate the impact of TET2/3 loss on

microRNAs in iNKT cells. We report that among the downregulated microRNAs

are members of the Let-7 family that downregulate in vivo the expression of the

iNKT cell lineage specifying factor PLZF. Our data link TET proteins with

microRNA expression and reveal an additional layer of TET mediated regulation

of gene expression.
KEYWORDS
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Introduction

Ten Eleven Translocation (TET) proteins are enzymes that regulate the process of DNA

demethylation by oxidizing 5-methylcytosine (5mC) to generate 5-hydroxymethylcytosine

(5hmC) also known as the sixth base of our genome (1). In addition, TET proteins can

oxidize 5hmC to generate additional modified cytosines, namely 5-formylcytosine (5fC)

and 5- carboxylcytosine (5caC) (2, 3). The TET family of proteins consists of three

members: TET1, that is most highly expressed in embryonic stem cells (ESCs), TET2,

which is broadly expressed in various cell types and developmental stages, and TET3 that is
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more highly expressed as cells differentiate (4). All three TET

proteins exert critical roles in shaping the development and

function of a vast array of cells (5, 6). We have previously

demonstrated that 5hmC is dynamically distributed across the

genome of thymic T cell subsets (7). During the process of T cell

lineage specification, 5hmC was shown to be increased in the gene

body of very highly expressed genes and in active enhancers (7).

Similar findings have been reported for murine and human

peripheral T cells (7–10), indicating the critical role of TET

proteins and 5hmC in regulating gene expression in T cells (5).

To dissect the in vivo roles of TET proteins in T cell

development we generated Tet2-/-Tet3flx/flx CD4 cre (Tet2/3

DKO) mice (11). We focused our analysis on concomitant

deletion of TET2 and TET3 since our data indicated redundancy

between TET proteins (11). The phenotype of the Tet2/3 DKOmice

was complex, revealing that TET proteins are critical regulators of

various T cell types. Specifically, TET2 and TET3 are fundamental

for the stability of the transcription factor (TF) FOXP3 and thus the

functionality and stability of regulatory T cells (Tregs) (12). In

addition, Tet2/3 DKOmice exhibit a striking expansion of invariant

natural killer (iNKT) T cells (11).

iNKT cells are an unconventional type of T cells that express an

invariant TCR Va14 chain and recognize lipids instead of peptides

(13). iNKT cells develop in the thymus endowed already with

effector properties and they have the ability to generate significant

amount of cytokines, immediately upon antigen encounter (14).

iNKT cell lineage commitment is orchestrated by the TF

Promyelocytic leukemia zinc finger (PLZF) protein, which

endows iNKT cells with effector properties (15, 16). In the

thymus, we can discern three subsets based on the expression of

TFs and their functional properties: NKT2 express GATA3, NKT17

express RORgt and NKT1 express T-bet (17–20). iNKT cells exert

important roles in recognition of bacterial pathogens and have been

shown to be of clinical value in the context of cancer

immunotherapy (14, 21–24). Thus, deciphering the molecular

mechanisms that shape their differentiation and functionality is of

outmost importance in order to take full advantage of their effector

properties (25, 26).

We have previously demonstrated that Tet2/3 DKO iNKT cells

show increased expression of the TF RORgt (11, 27, 28). During our
previous studies, we have generated genome wide datasets to

evaluate gene expression, whole genome methylation, whole

genome hydroxymethylation and chromatin accessibility in

control and Tet2/3 DKO iNKT cells. Integration of these datasets

revealed that TET2 and TET3, by regulating DNA demethylation,

upregulate lineage specifying TFs such as T-bet and Th-POK that

are critical for iNKT cell lineage diversification and for suppression

of RORgt (11), in a TET2 dependent catalytic manner (29).

However, not all the observed differences in the gene expression

program of Tet2/3 DKO iNKT cells can be attributed to gain of

methylation in promoters or enhancers of the differentially

expressed genes (11). That was particular true in the context of

genes that were gaining expression upon loss of TET proteins, such

as Zbtb16 that encodes for the transcription factor PLZF (11). One

possibility is that deletion of TET proteins can result in

downregulation of repressors, allowing the upregulation of the
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targeted genes (30, 31). Repression of genes can occur by small

RNAs that target mRNAs and can mediate their degradation (32).

DROSHA regulates the generation of precursor miRNAs in the

nucleus and then further processing occurs in the cytoplasm by

DICER and the ARGONAUTE complex (33, 34). Notably, miRNAs

are important for iNKT cell development as indicated by Dicer

deficient mice (35, 36). In this study, we report that TET proteins

regulate expression of Drosha in iNKT cells. We demonstrate that

Tet2/3 DKO iNKT cells show altered expression of precursor and

mature miRNAs. Among the identified downregulated miRNAs are

members of the Let-7 family that has been demonstrated in vivo to

target and downregulate the transcription factor PLZF in iNKT

cells (37).
Results and discussion

Analysis of our previously published RNA-seq datasets (Table 1)

(11) revealed that Drosha was downregulated in Tet2/3 DKO iNKT

cells (Figure 1A). To further dissect the molecular mechanisms by

which TET2 and TET3 can impact expression of Drosha we assessed

5hmC distribution across the gene body. 5hmC upon treatment with

bisulfite sequencing is converted to cytosine-5-methylenesulfonate

(CMS) (38). Analysis of CMS immunoprecipitation with sequencing

(CMS-IP seq) (39, 40) datasets (Table 1) (11) revealed that in wild

type iNKT cells 5hmC is distributed across the gene body of Drosha

(Figure 1B). We have previously demonstrated that 5hmC is enriched

in the gene body of highly expressed genes, whereas the promoters of

these genes are devoid of 5hmC, in conventional T cells and

unconventional iNKT cells (7, 11). Similar findings have been

reported for naïve and helper T cell subsets (8–10) as well as for

regulatory T cells (41). In addition, we have previously shown that

5hmC correlates with chromatin accessibility in both conventional

and unconventional T cells (11, 29). We then investigated how loss of

TET proteins may impact chromatin accessibility in theDrosha locus.

Thus, we compared our datasets (11) for assay for transposase

accessible chromatin with sequencing (ATAC-seq) (42) for wild

type and Tet2/3 DKO iNKT cells. We demonstrate that in Tet2/3

DKO iNKT cells there is reduced accessibility in an intragenic

genomic region (mm10: chr15:12,894,551-12,896,829) that has

increased accessibility and enrichment of 5hmC in wild type iNKT

cells (Figure 1B). Due to the low abundance of 5hmC in Tet2/3 DKO

thymic T cell subsets we were not able to perform CMS-IP seq for the

Tet2/3 DKO iNKT cells (11). However, we performed whole genome

bisulfite sequencing (WGBS) (Table 1) in order to assess at single-

nucleotide resolution the modification status of cytosine. Our analysis

revealed a gain of methylation at this intragenic region in the Drosha

locus at the Tet2/3 DKO iNKT cells (Figure 1B).

We hypothesize that this intragenic region may exert regulatory

function to promote the expression of Drosha. We have previously

shown that 5hmC decorates active enhancers (7). Additional studies

have demonstrated a strong correlation of 5hmC with active

enhancers in various T cell subsets (8, 41). In many cases these

regulatory elements that require 5hmC enrichment in order to be

active are intragenic, such as the CNS2 enhancer in the Foxp3 locus

(12, 43, 44), an intragenic enhancer that regulates stable expression
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of Cd4 gene in CD4 cells (45) as well as the proximal enhancer of

Zbtb7b gene that encodes Th-POK (29). We have also

demonstrated that 5hmC decorates intragenic site A at the

Zbtb7b locus to regulate the accessibility and the binding of the

transcription factor GATA3 (29). It has been previously suggested

that the binding of GATA3 to site A promotes Th-POK

expression (46).

We have previously discovered a shared gene expression

program between Tet2/3 DKO thymic iNKT cells and CD4 single

positive (SP) cells (29). As DROSHA is expressed in both subsets we
Frontiers in Immunology 03
investigated if its expression was also affected in CD4 SP cells. We

report that Drosha is downregulated in Tet2/3 DKO CD4 SP cells

(Supplementary Figure 1). Interestingly, there is 5hmC enrichment

at the same intragenic site of the locus in WT CD4 SP cells

(Figure 1B). In addition, we looked into our data assessing

recruitment of GATA3 (by CUT&RUN) in WT and Tet2/3 DKO

CD4 SP cells (29). We discover that GATA3 binds in this region in

WT CD4 SP cells (Table 1), whereas no binding was detected in

Tet2/3 DKO CD4 SP cells. Moreover, we looked into the binding of

Th-POK by using publicly available ChIP-seq datasets (Table 1)
FIGURE 1

TET2 and TET3 regulate expression of Drosha in thymic iNKT cells. (A) Gene expression of Drosha in WT (in black) and Tet2/3 DKO thymic iNKT cells
(in purple), evaluated by RNA-seq. 3 biological replicates per genotype were assessed. *** (p =0.0004), unpaired t test. Each dot represents an
individual biological replicate. Horizontal lines indicate the mean (s.e.m.). (B) Portraits of epigenetic regulation (determined by 5hmC, 5mC and
chromatin accessibility) in thymic iNKT cells and transcriptional regulation in CD4 SP cells of the Drosha locus. An intragenic region of interest
(mm10: chr15:12,894,551-12,896,829) is indicated using an orange rectangle. Genome browser view of 5hmC distribution (by CMS-IP seq) in the
gene body of Drosha in WT iNKT cells reveals enrichment of this modification indicating TET activity. 2 biological replicates were analyzed.
Evaluation of 5mC by WGBS in WT and Tet2/3 DKO iNKT cells. 2 biological replicates of WGBS per genotype were evaluated. Portraits of chromatin
accessibility (assessed by ATAC-seq) of the Drosha locus in WT and Tet2/3 DKO thymic iNKT cells. Peaks indicate accessibility. 3 biological replicates
per genotype were evaluated. 5hmC distribution (determined by CMS-IP seq) in the gene body of Drosha in WT CD4 SP cells. 2 biological replicates
were evaluated. GATA3 binding determined by CUT&RUN. 3 biological replicates for WT CD4 cells and 2 biological replicates for Tet2/3 DKO were
analyzed. ThPOK binding is assessed by ChIP-seq in WT CD4 SP cells. 3 biological replicates were evaluated. The arrows indicate the direction
of transcription.
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(47) and we demonstrate binding of Th-POK in this potentially

regulatory region in CD4 SP cells. Collectively, our findings suggest

that TET2 and TET3 generate 5hmC and regulate chromatin

accessibility in the Drosha locus to promote the expression of the

gene (Figure 1). Further studies are required to elucidate the precise

regulatory elements that control the expression of Drosha.

However, as TET2 and TET3 deletion results in partial reduction

of Drosha expression and not complete loss it becomes apparent

that additional mechanisms are in place to control the expression of

this gene.

As DROSHA is involved in regulating the pathway of

microRNAs (miRNAs) we asked whether the reduced expression

of Drosha has an impact on the miRNAs that are expressed in Tet2/

3 DKO iNKT cells. To identify small RNAs that are impacted we

isolated thymic iNKT cells by FACS sorting (Supplementary

Figure 2) from wild type or Tet2/3 DKO mice and we performed

small RNA-seq (Figure 2A). As DROSHA regulates the generation

of precursor miRNAs in the nucleus (33, 34) we first evaluated

precursor miRNAs. However, as the mature miRNAs target genes

for degradation (33, 34), we also assessed mature miRNAs.

Comparison of precursor and mature miRNAs in the WT and

the Tet2/3 DKO iNKT samples confirmed that samples of the same

genotype were similar to each other (Supplementary Figure 3). Our

analysis compared expression of precursor (Supplementary Table 1)

and mature miRNAs (Supplementary Table 2) and we found that

among those that were differentially expressed the majority were

downregulated (Figures 2B, C). This could be due to the

downregulation of Drosha expression, however we cannot

preclude additional mechanisms such as the involvement of

transcription factors that could affect expression of these

miRNAs. We then focused on the affected mature miRNAs

(Figure 2C). The vast majority of the differentially expressed

mature miRNAs were downregulated in the Tet2/3 DKO iNKT

cells (Figure 2C). An additional mechanism could be that in the

absence of TET proteins at least some miRNAs could gain cytosine

methylation, resulting in their downregulated expression. However,

when we looked into our previously generated WGBS data (11) we

did not notice significant changes in methylation for the vast

majority of the miRNAs that were differentially expressed in

thymic iNKT cells. We only detected some gain of methylation in

mir199b and mir7058 (Supplementary Figure 4). Our analysis

demonstrated that among the downregulated miRNAs were

members of the Let-7 family. Specifically, we observed

downregulation of Let-7c, Let-7b and Let-7k (Figure 2C).

Interestingly, Let-7 miRNAs have been previously shown to target

Zbtb16mRNA, which encodes for PLZF, for degradation in murine

iNKT cells in vivo (37). Thus, we hypothesize that the

downregulation of some of the members of the Let-7 family could

result in increased expression of PLZF. We evaluated PLZF levels in

WT and Tet2/3DKO iNKT cells by Flow cytometry (Figures 3A, B).

Our data indicates that Tet2/3DKO iNKT cells exhibit upregulation

of PLZF (Figures 3B, C). Thus, we propose that in Tet2/3 DKO

iNKT cells downregulation of some of the Let-7 miRNAs results in

reduced targeting for degradation of Zbtb16mRNA, contributing in

increased expression of PLZF (Figure 3D). Additional mechanisms
Frontiers in Immunology 04
may contribute in upregulation of PLZF. For instance, transcription

factors or epigenetic regulators that promote PLZF expression can

be upregulated in the absence of TET2 and TET3 contributing in

the observed phenotype.
Conclusions

In this study, we report that TET2 and TET3 regulate the

expression of Drosha. We also discover various miRNAs that are

differentially expressed. The differential expression of miRNAs may

be due to Drosha downregulation. Importantly, additional

regulatory mechanisms may be involved such as altered DNA

methylation and/or altered expression and recruitment of

transcription factors that regulate miRNA expression. Among the

downregulated miRNAs we identified members of the Let-7

miRNAs. Let-7 miRNAs have been reported to regulate PLZF

expression in iNKT cells (37). However, we must emphasize that

the NKT17 skewing of the Tet2/3 DKO iNKT cells can be fully

rescued by deletion of ThPOK and partially rescued by deletion of

T-bet as we have previously shown (11). Importantly, our unbiased,

integrative analysis of genome wide datasets indicated that both

ThPOK and Tbet are targets of TET proteins based on 5hmC

enrichment and gain of methylation upon concomitant TET2 and

TET3 loss (11). Thus, in support of our previous findings that TET

proteins exert multifaceted roles in regulating gene expression (30,

31, 48), we propose an additional layer of TET-mediated regulation

of lineage specification by affecting expression of miRNAs.
Methods

Mice

Mice were housed in pathogen free conditions in the Genetic

Medicine Building at University of North Carolina (UNC) Chapel

Hill in a facility managed by the Division of Comparative Medicine

at UNC Chapel Hill. All the experiments using mice in this study

were performed according to our approved protocol by the UNC

Institutional Animal Care and Use Committee (protocol no: 22-

252). Age and sex-matched mice were analyzed. Male and female

mice were used for our experiments. Control (C57BL/6 (B6), strain

number: 000664), RRID: IMSR_JAX: 000664) mice were purchased

from Jackson (Jax) laboratories and were bred in our facility at

UNC. Tet2-/- Tet3flx/flx CD4 cre mice have been previously

described (11, 29). Briefly, Tet2-/- mice (49) (Jax strain no;

023359, RRID: IMSR_JAX:023359) were crossed with Tet3flx/flx

(50, 51) (Jax strain no: 031015, RRID: IMSR_JAX:031015) CD4cre

mice (52). To determine the genotype of the mice, tissue was

isolated and genomic DNA was extracted using Phire Animal

Tissue Direct PCR kit (Thermo scientific, cat no F-140WH)

following the manufacturer’s protocol. Then DNA fragments

were amplified by PCR using the Phire DNA polymerase

(Thermo scientific, cat no F-140WH) and specific primers using

Biorad T100 or Biorad C1000 Touch thermocyclers.
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Cell preparation

Thymocytes were isolated from young mice 21-25 days old.

Thymocytes were dissociated to prepare single cell suspensions as

previously described (53, 54).
Frontiers in Immunology 05
Flow cytometry

Thymocytes were stained with PBS-57 loaded tetramer PE

(dilution 1:400, from NIH tetramer core), TCRb-PERCP/Cy5.5
(dilution 1:200, Biolegend, clone: H57-597, RRID: AB_1575173)
FIGURE 2

Differential expression of precursor (hairpin) and mature miRNAs in WT and Tet2/3 DKO thymic iNKT cells. (A) Experimental outline. (B) Heatmap
indicating hairpin miRNAs whose adjusted p-value < 0.05 and absolute log2 fold-change > 2. The z-score normalized expression values are shown.
(C) Heatmap indicating mature miRNAs whose adjusted p-value < 0.05 and absolute log2 fold-change > 2. The z-score normalized expression
values are shown. Both male and female mice were used for each genotype. N=6 WT mice and N=7 Tet2/3 DKO mice were used.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440044
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gioulbasani et al. 10.3389/fimmu.2024.1440044
and dead cells were excluded by using a live/dead dye efluor 780

(dilution 1:1000, eBioscience, cat. #65-0865-18) in FACS buffer (2%

FBS in PBS) as described (54). Intracellular staining for PLZF

AlexaFluor 647(dilution 1:100, BD Pharmingen, clone: R17-809,
Frontiers in Immunology 06
RRID: AB_2738238) was performed using the Foxp3 Transcription

factor staining buffer set (eBioscience, cat. no:00-5523-00) (54).

Samples were analyzed in a Novocyte 3005 Flow Cytometer

(Agilent) using NovoExpress software (Agilent). Subsequently, the
FIGURE 3

Let-7 miRNAs downregulation in Tet2/3 DKO thymic iNKT cells contributes in upregulation of PLZF. (A) Representative flow cytometry plots of
thymocytes isolated from wild type and Tet2/3 DKO mice identify iNKT cells as aGalCer-loaded tetramer+ and TCRb intermediate cells. (B)
Representative histogram for the lineage specifying transcription factor PLZF indicates increased expression, determined by intracellular staining and
Flow cytometry, in the Tet2/3 DKO thymic iNKT samples (in purple) compared to WT (in black) counterparts. (C) Plot comparing the median
fluorescence intensity (MFI) of PLZF expression in WT (in black) and Tet2/3 DKO (in purple) iNKT cells. 4 biological replicates per genotype were
assessed. ** (p =0.0004), unpaired t test. Each dot represents an individual biological replicate. Horizontal lines indicate the mean (s.e.m.). (D) Model
for TET mediated regulation of members of the Let-7 miRNA family to impact PLZF expression in thymic iNKT cells.
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acquired data were analyzed and plots were generated using FlowJo

(Treestar). For generating histograms with FlowJo, the option

“normalize to mode” was selected, to take into account differences

in iNKT cell numbers between control (wild type) and Tet2/3 DKO

iNKT cells.
FACS sorting

Total thymocytes were stained with biotinylated mouse anti-

CD24 (Biolegend, clone:M1/69, RRID: AB_312837). CD24+ cells

were depleted using mouse streptavidin magnetic beads (anti-

mouse Rapidspheres, cat no 19860, STEMCELL Technologies)

following the manufacturer’s guidelines as previously described

(29, 53). Enriched cells were stained with efluor 780 viability dye

(dilution 1:1000, eBioscience, cat. #65-0865-18), aGalactosyl-

Ceramide loaded tetramer (conjugated with PE, obtained from

NIH tetramer core, dilution 1:400), TCRb-PERCP/Cy5.5 (dilution

1:200, Biolegend, clone: H57-597, RRID: AB_1575173). Live

TCRb+, tetramer+ cells were sorted and used to isolate RNA. The

purity of the samples after sorting was >98%. The cells were sorted

using either a FACSAria II or a FACSymphony S6 Sorter

(Becton Dickinson).
Statistical analysis

For the statistical analysis we used Prism software (Graphpad).

We applied unpaired student’s t test. In the relevant figure legends,

we indicated p-values for statistically significant differences (p <

0.05). Data are mean ± s.e.m. In the graphs, each dot represents a

mouse. Unless otherwise indicated the p-value was not statistically

significant. Differences were considered significant when p < 0.001

(∗∗∗); < 0.0001 (∗∗∗∗). Both male and female mice from different

litters were evaluated, with reproducible results.
RNA isolation, library preparation of small
RNAs and sequencing

FACS sorted iNKT cells were lysed in RLT plus lysis buffer

from the miRNeasy plus kit (Qiagen, cat no: 217084). Total RNA

was isolated following the instructions provided by the

manufacturer and was quantified using Qubit RNA High

Sensitivity assay (Invitrogen) in Qubit 4 Fluorometer

(Invitrogen). Total RNA was provided to the UNC High

Throughput Sequencing Facility (HTSF). RNA integrity was
TABLE 1 Datasets used in this study.

Small RNA-seq GSE267135 This
study

CMS-IP-seq in iNKT cells
(5hmC mapping)

Series GSE66833 consists of the
following 4 samples:
GSM1632867: iNKT WT Biological
Replicate (BR)1 CMS-Seq IP
GSM1632868: iNKT WT BR2 CMS-
Seq IP
GSM1632869: iNKT WT BR1 CMS-
Seq Input
GSM1632870: iNKT WT BR2 CMS-
Seq Input

(11)

CMS-IP-seq in CD4 SP cells
(5hmC mapping)

From superseries GSE59213 we used
the following:
GSM1430720 CD4 SP CMS-Seq IP
BR1
GSM1430721 CD4 SP Input BR1
GSM1430722 CD4 SP CMS-Seq IP
BR2
GSM1430723 CD4 SP Input BR2

(7)

Bulk RNA-seq
(gene expression) in
iNKT cells

From Series GSE66832
Thymic WT iNKT cells:
GSM1632848: BR1
GSM1632849: BR2
GSM1632850: BR3
Thymic Tet2/3 DKO iNKT cells:
GSM1632851: BR1
GSM1632852: BR2
GSM1632853:BR3

(11)

Bulk RNA-seq in CD4
SP cells

GSE190230
WT CD4 SP:
GSM5718501
GSM5718502
GSM5718503
Tet2/3 DKO CD4 SP:
GSM5718504
GSM5718505

(29)

ATAC-seq in iNKT cells
(chromatin accessibility)

GSE85743
WT thymic iNKT cells:
GSM2283399: BR1
GSM2283400: BR2
GSM2283401: BR3
Tet2/3 DKO thymic iNKT cells:
GSM2283402: BR1
GSM2283403: BR2
GSM2283404: BR3

(11)

WGBS in iNKT cells Series GSE72116
WT thymic iNKT cells
GSM1855585: BR1
GSM1855586: BR2
Tet2/3 DKO thymic iNKT cells
GSM1855587: BR1
GSM1855588: BR2

(11)

GATA3 CUT&RUN in
CD4 SP

GSE190228
WT CD4 SP:
GSM5718477: BR1
GSM5718478: BR2
GSM5718475: BR3
GSM5718476: IgG control
Tet2/3 DKO CD4 SP
GSM5718480: BR1
GSM5718481: BR2
GSM5718482: IgG control

(29)

(Continued)
TABLE 1 Continued

Small RNA-seq GSE267135 This
study

Th-POK ChIP-seq in
CD4 SP

GSM4486880: BR1
GSM4486881: BR2
GSM4486882: BR3
GSM4486883: control

(47)
fron
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evaluated with a Tapestation (Agilent) using High Sensitivity RNA

ScreenTape (Agilent). RNA with RIN value>9 was used for library

preparation. Small RNA libraries were generated using the Revvity

NETFLEX small RNA sequencing kit V4. Libraries were pooled

and sequenced in an Illumina NextSeq2000 P1 Single End 1x50 to

obtain 100 million single end reads. 6 biological replicates for wild

type and 7 biological replicates for DKO samples were analyzed.

Both male and female mice were evaluated.
Small RNA-seq data analysis

The small RNA samples were processed using nf-core/smrnaseq

(2.2.4) using default parameters (55, 56). The differential expression

analysis was done using nf-core/differentialabundance (1.4.0) using

default parameters (57).
CMS-seq data analysis

The CMS-IP and input reads from 2 biological replicates of WT

iNKT and WT CD4 SP cells were mapped against mm10 using

Bismark (0.22.3) (58). The mapping was done using the Bowtie 2

(2.4.1) (59) backend in the paired-end mode with the following

parameter values: -I 0 -X 600 -N 0. The coverage tracks were

generated using HOMER (4.10) (makeBigWig.pl -norm 1e6) (60).
ATAC-seq data analysis

Adapter trimming and quality filtering of the sequencing

libraries (3 biological replicates per genotype, 6 samples in total)

was done using fastp (0.21.0) (61) with the default parameters. The

sequencing libraries were mapped against mm10 using Bowtie 2

(2.4.1) (–very-sensitive -X 2000) (59). Mitochondrial reads were

removed after alignment. Additional filtering was done using

samtools (1.12) (62) using the following parameter values: -q 30

-h -b -F 1804 -f 2. Reads with identical sequences were filtered and

only one was retained for subsequent analysis. The coverage tracks

were generated from the samples obtained by pooling the biological

replicates using HOMER (4.10) (makeBigWig.pl -norm 1e6) (60).

WGBS, CUT&RUN and ChIP-seq data analysis has been

previously described (29).
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: GSE267135 (GEO).
Frontiers in Immunology 08
Ethics statement

The animal study was approved by UNC Institutional Animal

Care and Use Committee. The study was conducted in accordance

with the local legislation and institutional requirements.
Author contributions

MG: Formal analysis, Investigation, Methodology, Validation,

Writing – review & editing. TÄ: Formal analysis, Investigation,

Methodology, Software, Visualization, Writing – original draft,

Writing – review & editing. JV: Investigation, Writing – review &

editing. JB: Investigation, Writing – review & editing. AT:

Conceptualization, Data curation, Formal analysis, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Validation, Visualization,

Writing – original draft, Writing – review & editing.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This study

was supported by NIH grant (R35-GM138289), Supplement 3R35-

GM138289-02S1 from National Institute of General Medicinal

Sciences (NIGMS), and UNC Lineberger Comprehensive Cancer

Center Startup funds (to AT). Research reported in this publication

and related to FACS sorting was supported in part by the North

Carolina Biotech Center Institutional Support Grant 2012-IDG-1006.

UNC Flow Cytometry Core and UNC High Throughput Sequencing

core (HTSF) are affiliated to UNC Lineberger Comprehensive Cancer

Center and are supported in part by P30 CA016086 Cancer Center

Core Support Grant to the UNC Lineberger Comprehensive Cancer

Center. JV was the recipient of North Carolina State University

(NCSU) College of Engineering Dean’s Doctoral Fellowship and is

the recipient of a National Consortium for Graduate Degrees for

Minorities in Engineering and Science (GEM) Fellowship.
Acknowledgments

We acknowledge Ms. Theresa Hegarty (UNC DCM Colony

Management Core) for excellent mouse colony management. We

thank Ms. Janet Dow, Mr. Roman Bandy and Ms. Ayrianna Woody

of the UNC Flow Cytometry Core for FACS sorting. We thank the

UNC HTSF for preparing small RNA-seq libraries and for

performing sequencing. We are grateful to the NIH tetramer core

for generously providing PBS-57 loaded mouse CD1d tetramers.

Some of the images were generated with Biorender.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1440044
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gioulbasani et al. 10.3389/fimmu.2024.1440044
Conflict of interest

Dr. TÄ is a Director of Data Science at Covera Health. No

funding from Covera Health was received for this study.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1440044/

full#supplementary-material

SUPPLEMENTARY FIGURE 1

TET2 and TET3 regulate expression of Drosha in thymic CD4 SP cells. Gene
expression of Drosha in WT (in black) and Tet2/3 DKO thymic iNKT cells (in
Frontiers in Immunology 09
purple), evaluated by RNA-seq. 3 biological replicates for WT and 2 biological
replicates for Tet2/3 DKO CD4 SP cells were assessed. ***(p =0.0003),

unpaired t test. Each dot represents an individual biological replicate.

Horizontal lines indicate the mean (s.e.m.).

SUPPLEMENTARY FIGURE 2

Sorting strategy and purity assessment of FACS sorted iNKT cells. (A)
Representative flow cytometry plots indicating the gating selection to

exclude doublets and isolate live (LD APC/CY7 negative), wild type iNKT
cells (aGalCer loaded tetramer positive, TCRb intermediate cells) by FACS

sorting. (B) FACS plots indicating purity of a representative sample of wild type
iNKT cells after FACS sorting. (C) As in (A) for Tet2/3 DKO iNKT sample. (D)
FACS plots indicating purity of a representative sample of Tet2/3 DKO iNKT
cells after FACS sorting.

SUPPLEMENTARY FIGURE 3

Evaluating similarity of RNA samples. (A) Dendrograms indicating the

clustering of precursor miRNAs and (B) mature miRNAs samples.

SUPPLEMENTARY FIGURE 4

Methylation portraits in mature miRNAs. Assessing cytosine methylation by
WGBS revealed some gain of methylation in Tet2/3 DKO iNKT cells in two of

the mature miRNAs that were downregulated in Tet2/3 DKO iNKT cells. 5mC
distribution in WT and Tet2/3 DKO iNKT cells for A. Mir199b and B. Mir7058.

SUPPLEMENTARY TABLE 1

Results of differential gene expression analysis of hairpin miRNAs in wild type

and Tet2/3 DKO iNKT cells.

SUPPLEMENTARY TABLE 2

Results of differential gene expression analysis of mature miRNAs in wild type
and Tet2/3 DKO iNKT cells.
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