
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Jianan Zhao,
Shanghai University of Traditional
Chinese Medicine, China

REVIEWED BY

Han Xu,
Shandong University of Traditional
Chinese Medicine, China
Yu Shan,
Shanghai University of Traditional
Chinese Medicine, China
Ping Jiang,
Shanghai Jiao Tong University, China
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Idiopathic inflammatory myopathies (IIMs) encompass a spectrum of autoimmune

diseases characterized by muscle inflammation and systemic involvement. This

review aimed to synthesize current evidence on the clinical significance and

pathogenic mechanisms underlying autoantibodies associated with IIMs.

Autoantibodies targeting aminoacyl-tRNA synthetases (ARS) play a pivotal role in

antisynthetase syndrome (ASS), highlighting associations with interstitial lung

disease (ILD) and distinctive clinical features. Anti-Mi-2 antibodies in

dermatomyositis (DM) are hallmarked by characteristic cutaneous manifestations

and favorable prognostic outcomes. Conversely, anti-TIF1 antibodies are

correlated with DM and a higher risk of malignancies, implicating CD8+ T cells in

its pathogenesis. Anti-MDA5 antibodies signify clinically amyopathic DM (CADM)

with severe ILD, linked to dysregulated neutrophil extracellular trap (NET)

formation. In immune-mediated necrotizing myopathies (IMNMs), anti-SRP and

anti-HMGCR antibodies induce complement-mediated myopathy, typically

following statin exposure. Additionally, anti-TRIM72 antibodies emerge as

potential diagnostic markers in IIMs. Anti-cN1A autoantibodies are linked to

inclusion body myositis (IBM) and play a decisive role in muscle protein

degradation. Meanwhile, anti-FHL1 autoantibodies are associated with severe

disease manifestations and muscle damage, as established in experimental

models. Anti-eIF3 autoantibodies, recently identified in polymyositis (PM)

patients, are rarely detected (<1%) and associated with a favorable prognosis.

Elucidating these autoantibodies is anticipated to not only assist in early diagnosis

and disease stratification but also inform targeted therapeutic interventions,

emphasizing the intricate interplay between autoimmunity, cellular dysfunction,

and clinical outcomes in IIMs.
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Introduction

Idiopathic inflammatory myopathies (IIMs) are heterogeneous

autoimmune diseases, including dermatomyositis (DM),

polymyositis (PM), immune-mediated necrotizing myopathy

(IMNM), inclusion body myositis (IBM), and anti-synthetase

syndrome (ASS), that are characterized by inflammation of the

proximal arm and leg muscles, as well as other organs, such as the

skin, lung, and joint (1–4).

Autoantibodies are detectable in up to 80% of the patients with

IIMs. They can be categorized into two major groups, namely

myositis-specific autoantibodies (MSAs) and myositis-associated

autoantibodies (MAAs), based on their specificity and clinical

correlations. The former is typically characterized by a high level

of specificity and holds significant value for both diagnosis and

prognosis, particularly in categorizing patients into distinct or

uniform subgroups for treatment purposes (2, 5–8). MSAs

identified so far are autoantibodies against aminoacyl transfer

RNA synthetases (ARS) including histidyl (Jo 1), alanyl (PL 12),

threonyl (PL 7), glycyl (EJ) (9), isoleucyl (OJ), asparaginyl (KS), tyrosyl

(Ha) and phenylalanyl (Zo) (10), signal recognition particle (SRP),

melanoma differentiation-associated (MDA) 5/CADM 140,

transcription intermediary factor 1 (TIF1), nuclear matrix protein

(NXP) 2/MJ, Mi 2, 3-hydroxy-3-methylglutaryl-coA reductase

(HMGCR) and small ubiquitin-like-modifier activating enzyme (SAE)

(8, 11–13). MAAs are autoantibodies that are also present in other

conditions that may culminate in myositis, such as systemic sclerosis

(SSc) and systemic lupus erythematosus. MAAs include antibodies to

SSA/Ro52, PM/Scl75, PM/Scl100,U1RNP,U1RNP,Ku and La (1, 6, 12,

14–21). The different types of MSAs and MAAs described in IIM have

varying relevance for disease stratification, prognosis, andmanagement.

The pathophysiology of IIMs is intricate and multifaceted and

remains elusive. Its pathogenesis has been hypothesized to be

influenced by genetic, environmental, and immunological factors.

Notably, an increasing number of autoantibodies have been

identified in recent years. Several autoantibodies play a clear

pathogenic role in autoimmune disorders such as Grave’s disease,

wherein thyrotropin receptor autoantibodies stimulate the

overproduction of thyroid hormones, ultimately leading to

hyperthyroidism. In myasthenia gravis, autoantibodies bind to

acetylcholine receptors and inhibit the neurotransmitter

acetylcholine from reaching muscle fibers, thereby inducing

muscle weakness and fatigue (22). Nonetheless, the role of

autoantibodies targeting endogenous antigens in disease

pathogenesis or their presence as an epiphenomenon remains

controversial (7, 23–26).

The specific clinical phenotypes associated with each MSA have

raised questions on the role of these autoantibodies in the

pathogenesis of IIM. Thus, this review examined the distinct

clinical features associated with MSAs that potentially play a

pathogenic role in the disease mechanisms. Thereafter, existing

evidence from clinical longitudinal studies and experimental studies

that might validate the pathogenic role of MSAs was outlined.

However, the role of these antibodies in IIM is controversial. Our

discussion focused on MSAs associated with the clinical subgroups
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myositis (Table 1). However, given the paucity of data suggesting

that MAAs play a role in the pathogenesis of IIM, they were not

comprehensively discussed in this review.
Anti-aminoacyl-tRNA
synthetases autoantibodies

As is well documented, aminoacyl-transfer RNA synthetases

(ARSs) are enzymes responsible for the first step of protein

synthesis, attaching amino acids to their corresponding cognate

transfer RNA (tRNA) sequences (17, 21, 27). Autoantibodies

targeting ARSs, the most frequent MSAs detected in patients with

IIMs, are associated with a distinct clinical phenotype termed

“antisynthetase syndrome (ASS)”, characterized by the presence

of one anti-ARS antibody plus one or more of the following

manifestations: interstitial lung disease (ILD), myositis, arthritis,

Raynaud’s phenomenon, fever, or mechanic’s hands (28, 29).

Notably, ARS has been detected in 25%-35% of patients with

ASS. To date, autoantibodies targeting 8 out of 21 ARSs have

been identified and associated with ASS. While other less common

antisynthetase autoantibodies have been reported in the literature,

they are infrequently studied in the clinical setting. Known targets

are histidyl (Jo1), threonyl (PL-7), alanyl (PL12), glycyl (EJ),

isoleucyl (OJ), tyrosyl (Ha/YRS), asparagyl (KS), phenylalanyl

(Zo), lysyl (SC), glutaminyl (JS), and tryptophanyl (WRS) tRNA

synthetases (30–33).
Anti-Jo-1

Anti-Jo1 [anti-histidyl-tRNA synthetase (HisRS)] is the most

common MSA that is present in 20-30% of IIM patients (2, 21, 34).

A meta-analysis involving 27 studies investigating the clinical

characteristics of ASA concluded that anti-Jo1 is linked to a higher

risk of mechanic’s hands, arthritis, and myositis. Patients with anti-Jo-1

positive antibodies may experience Raynaud’s phenomenon before

developing myositis (27). Worldwide epidemiological studies have

documented that up to 90% of patients with anti-Jo1 autoantibodies

develop ILD (4, 9, 26, 31, 34, 35). In the American and European

Network of Antisynthetase Syndrome (AENEAS) cohort study

recruiting anti-Jo1-positive patients, ILD was present in 50% of cases

at disease onset and in 84% of patients after an 80-month follow-up

period (19, 28). Moreover, anti-Jo-1-positive ASA patients have higher

5- and 10-year survival rates compared to non-Jo-1 patients, potentially

ascribed to earlier diagnosis facilitated by the increased availability of

anti-Jo1 testing (33). MHC class II alleles have been reported to be

associated with certain MSAs, such as anti-Jo1 autoantibodies and the

HLA 8.1 ancestral haplotype containing HLA-DRB1*03:01 (36). In

addition, environmental factors can also induce ASS. Indeed, a strong

association was noted between anti-Jo1 antibodies and HLA-

DRB1*03:01 is strongest in patients with a smoking history.

Several experiments in human sera and passive transfer to mice

indicate an immune response toward HisRS. In vitro studies have
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TABLE 1 MSAs in idiopathic inflammatory myopathies.
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Antibody Target antigen Positivity rate Clinical features Rat model

Anti-Jo-1 Histidyl-tRNA synthetase (HisRS)

15%–30% muscle weakness, arthritis, Raynaud’s,
mechanic’s hands, Gottron's sign, and/
or interstitial lung disease (ILD),
favorable outcome

Mice receiving IM injections
emulsions containing the TL
agonist R848

Anti-Mi-2

Component of the nucleosome-
remodeling deacetylase complex
consisting of histone deacetylase and
nucleosome remodeling activities in
an ATP-dependent manner

~ 10%

“Classical” form of DM with typical
cutaneous lesions (Gottron's papules
and sign and heliotrope exanthema)
and muscle weakness. Low risk of
ILD, cancer, favorable outcome

-

Anti-TIF1g Transcription intermediary factor 1 5–7%
Malignancy, classical DM skin rash,
and muscle weakness

TIF1g-induced myositis (TIM

Anti-MDA5
Melanoma differentiation-associated
gene 5

8%-20%

Rapidly progressive interstitial lung
disease, arthritis, and severe cutaneous
vasculopathy (skin ulceration, tender
palmar papules, or both)

Murine model of ILD media
autoimmunity against MDA
the severe and rapid progres
of ILD.

Anti-SRP Signal recognition particle ~ 10%

Muscle atrophy, severe weakness
(Anti-SRP myopathy patients are
more likely to experience severe
weakness and extra-muscular features)

Passive transfer of IgG from
positive patients was perform
Bl6 or Rag2-deficient or Com
deficient mice.

Anti-
HMGCR

Hydroxy-3-methylglutaryl-
CoA reductase

~ 10%
Necrotizing myopathy, statin-
induced myopathy

Passive transfer of IgG from
HMGCR positive patients w
performed in C57/ Bl6 or Ra
deficient or Complement 3
deficient mice.

Anti-
TRIM72

Muscle-enriched membrane
repair protein

– - Trim72–/–mice

Anti-cN1A Cytosolic 5'-nucleotidase 1A
33% of IBM and
4.3% of PM/
DM patients

Bulbar involvement, high mortality
rates associated with lung
complications, older age at disease
onset, or no clinical association

Anti-cN1A injected mice

Anti-FHL1 Four and a half LIM domain protein 1 14%-25%
Pronounced muscle fiber damage,
muscle atrophy, vasculitis,
and dysphagia

MHC class I transgenic mice
immunized with FHL-1 prot
and adjuvant

Anti-eIF3 Eukaryotic initiation factor 3 <1%, 0.44% of PM
Highly elevated creatine kinase (CK)
levels, proximal muscle weakness,
favorable outcome

eIF3f gene knockout mice
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demonstrated that the N-terminal domain serves as a chemoattractant

for naïve lymphocytes and immature dendritic cells through

interaction with CCR5 (37). However, it is unknown whether or

how the anti-Jo-1 antibodies regulate the chemokine activity of Jo-1.

Instead, anti-Jo1 can form an immune complex (IC) that stimulates the

synthesis and release of type I interferon by plasmacytoid dendritic cells

(38). Furthermore, T-cell stimulation assays using a peptide from the

HisRS N-terminal domain elicited an inflammatory response in blood

and bronchoalveolar T-cells (29, 39, 40). Additionally, germinal center-

like structures were identified in the lung tissue of anti-Jo1-positive

patients, supporting the hypothesis of the lungs as a potential site for

immune activation and production of anti-Jo1 autoantibodies.

Numerous mice experiments have been performed to explore the

role of HisRS in the pathogenesis of the disease. Initially, mice

immunized with HisRS and adjuvant generated anti-HisRS

antibodies but did not develop myositis, implying a species-specific

antigenic immune response. In contrast, cDNA inoculation of human

HisRS in mice induced inflammatory infiltrates in muscle along with

detectable anti-HisRS antibodies, especially when using a truncated

gene containing the N-terminal domain of the HisRS coding region,

indicating different immune responses upon antigen presentation.

Moreover, in an adjuvant-based model, the administration of murine

N-terminal HisRS was capable of breaking tolerance and promoting T-

cell proliferation and epitope spreading, causing muscle and lung

inflammation similar to the antisynthetase syndrome (39).

Histological studies of muscle tissues revealed diverse infiltration

patterns, with perimysial/epimysial inflammation in a perivascular

distribution, endomysial inflammation, and muscle fiber invasion/

degeneration. High levels of anti-HisRS antibodies in

bronchoalveolar lavage fluid and serum were detected in this mouse

model (39). Furthermore, in an antigen-driven model, several strains of

mice immunized with murine N-terminal HisRS displayed early T-cell

infiltration in muscle and IgG class-switched autoantibody responses

that persisted for at least 7 weeks (39). Further mouse experiments have

explored the role of theMyD88 signaling pathways and highlighted the

contributions of TLR2 and TLR4 (41). C3H/HeJ (TLR4-KO) mice

deficient in anti-HisRS antibodies exhibited muscle inflammation

induced by immunization with HisRS. These findings signal a key

role for innate immune responses, but not HisRS-specific

autoimmunity, in a HisRS-induced model of myositis (16). These

findings collectively suggest that HisRS may induce myositis, but these

models do not fully unravel the link between innate and adaptive

immune responses. Taken together, additional in vitro and in vivo

experiments are warranted to assess the mechanism of anti-Jo-1

antibodies in myositis.
Anti-Mi-2 autoantibody

Anti-Mi-2 is a dermatomyositis-specific autoantibody that targets

antigens such as Mi-2a (240 kDa) and Mi-2b (218 kDa), thereby

forming a protein complex with histone deacetylases, referred to as the

nucleosome remodeling deacetylase (NuRD) complex. This

autoantibody has been detected in patients with hallmark cutaneous

DM lesions, including Gottron’s papules, heliotrope rash, cuticular

overgrowth, and rashes on the neck and upper back or shoulders (V
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neck and shawl sign) (2, 6, 42, 43). The prevalence of anti-Mi-2

autoantibodies in DM patients varies from 5-10% in adults and 4-10%

in juveniles. Furthermore, anti-Mi-2-positive patients typically have

relatively mildmuscle involvement, fewer complications such as ILD or

cardiac disease, and are generally responsive to treatment with a

favorable prognosis (43, 44).

Previous studies have established that anti-Mi-2 DM is

associated with prominent pathological muscle involvement

hallmarked by marked inflammatory cell infiltration. Tanboon

et al. (45) concluded that anti-Mi-2 DM patients had a higher

level of CD3- and CD20+ cell infiltration in the endomysium and

CD68+ cell infiltration in the perimysium compared to non-Mi-2

DM patients. Anti-Mi-2 DM was also more frequently associated

with CD20+ cell aggregation and ACP/CD68 cell infiltration in non-

necrotic fibers. These findings, together with higher CK levels, may

account for the more severe clinical muscle involvement observed

in anti-Mi-2 DM patients (46).

Meanwhile, a higher level of CD68+ cell infiltration in the

perimysium may explain the more frequent perimysial connective

tissue alkaline phosphatase (ALP) activity in anti-Mi-2 DM

patients. Considering that the expression of tissue nonspecific

alkaline phosphatases can be up-regulated by cytokines such as

tumor necrosis factor-alpha (TNF-a) and interleukin-1 beta (IL-

1b), a subset of CD68+ cells in the perimysium has been speculated

to secrete these cytokines, resulting in increased perimysial

connective tissue ALP activity in anti-Mi-2 DM patients. On the

contrary, perimysial connective tissue fragmentation could be

attributed to inflammation and edema, which may account for

the comparable percentages of perimysial connective tissue

fragmentation between the anti-Mi-2 and non-Mi-2 DM groups.

In individuals with myositis autoantibodies, antibodies

accumulate within myofibers in the same subcel lular

compartment as their corresponding autoantigens. Each

autoantibody exerted effects that were in line with the

malfunction of its corresponding autoantigen, such as

internalization of antibodies from anti-Mi2 patients causing the

derepression of Mi2/NURD-regulated genes (47). The study further

evinced that anti-Mi2 autoantibodies exerted pathogenic effects by

infiltrating damaged myofibers and inhibiting the CHD4/NuRD

complex (48).

Besides, several studies have examined the relationship between

exposure to ultraviolet (UV) light and the risk of anti-Mi-2-positive

dermatomyositis. Love et al. determined that UV radiation intensity

was correlated with the incidence of DM and anti-Mi-2-positivity

(30, 49, 50). Burd et al. described that UV light upregulated Mi-2

expression in human keratinocytes (51). Given the relationship

between anti-Mi-2 and HLA-DRB1*07DQA1*02DQB1*02

haplotype, HLA-DRB1*07:01 and HLA-DRB1*03:02, genetic

background, as well as environmental factors, may influence the

development of anti-Mi-2-positive DM.
Anti-TIF1 autoantibody

Anti-TIF1 targets TIF1g of 155 kDa with or without TIF1a,
formerly referred to as anti-p155 (52) and as anti-155/140 (53).
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Anti-TIF1 autoantibodies are specifically present in DM (15-20% of

adult DM and 20% of juvenile DM cases). Anti-TIF1g has a positive
association with malignancy, especially when co-occurring with anti-

TIF1a and a negative association with ILD (7). A meta-analysis

involving 6 studies and 312 adult DM patients reported that the

pooled sensitivity, specificity, and diagnostic OR of anti-p155 for the

diagnosis of cancer-associated DM was 78% (95%, CI 45%–94%), 89%

(95%,CI82%–93%), and27.26%(95%,CI6.59%–112.82%), respectively

(2, 49, 54, 55). Lastly, genetic susceptibility studies established that anti-

TIF1 antibody was associated with HLA-DQA1*03:01 (52).

Anti-TIF1g antibody-positive DM is linked to a higher risk of

malignancy, especially in older patients (56). The presence of TIF1g
is significant in both cancerous tissues and during pregnancy,

suggesting that it serves as a potential trigger for autoimmunity

against TIF1g (57). TIF1g is frequently mutated or over-expressed

in tumors and is over-expressed in embryonic and mammary

epithelial cells during pregnancy. Therefore, cancer and

pregnancy have been postulated to trigger autoimmunity against

TIF1g, which, in turn, contributes to the development of myositis.

Konishi et al. established a TIF1g-induced myositis model (TIM) in

B6 mice via weekly subcutaneous injections of recombinant human

TIF1g protein emulsified in CFA four times, along with an

intraperitoneal injection of pertussis toxin (PT) (16). As anticipated,

the immunizedmice developed TIF1g-specific T cells and anti-human

and murine TIF1g antibodies, resulting in myositis in the hamstrings

and quadriceps two weeks after the last immunization. Histological

studies revealed atrophyandnecrosis ofmusclefibers, accompaniedby

infiltrating mononuclear cells in the perifascicular and endomysial

sites of muscle tissues. Immunohistochemistry assays illustrated that

CD8+ T cells predominantly infiltrated and adhered to muscle fibers,

which upregulated the expression of MHC class I and type I IFN-

responsive molecule Mx1. Beta 2 microglobulin-KO mice lacking

MHC class I expression, perforin-KO mice, and anti-CD8 depleting

antibody-treated mice rarely develop TIM (58). Meanwhile, adoptive

transfer experiments demonstrated that CD8+ T cells derived from

TIMmice could inducemyositis in recipientB6mice,whereasCD4+T

cells did not exert this effect.Thesefindings identifyCD8+Tcells as the

primary pathogenic cells in TIM. In contrast, mMT mice, which

completely lack B-cell lineages, developed myositis, whereas the

adoptive transfer of IgGs collected from TIM mice failed to induce

myositis in recipientmice.These results collectively indicate thatBcells

and autoantibodies are not essential for developing TIM. In other

words, anti-TIF1g antibodies detected in patients with DM may be a

diagnostic biomarker but not a direct pathogenic factor. Accordingly,

TIM, which is dependent on autoimmunity against TIF1g, was
mediated by TIF1g-specific CD8+ T cells but not TIF1g-specific CD4
+ T cells, B cells, and autoantibodies.

The study evinced that B cells and autoantibodies are not essential

for the development of TIF1g-induced myositis (TIM), establishing

that CD8+ T cells play a primary pathogenic role. Thus, the presence

of anti-TIF1g antibodies in patients with DM primarily serves as a

diagnostic biomarker rather than a direct cause of the disease. The

involvement of type I interferons in the pathogenesis of TIM and the

effectiveness of tofacitinib treatment highlight potential therapeutic

targets. The TIM model thus provides a robust framework for

studying DM and pioneering targeted treatments.
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Anti-MDA5 autoantibody

Anti-MDA5, reported to be a specific autoantibody for clinically

amyopathic DM (CADM), was first named anti-CADM-140 in 2005

(59, 60). Subsequently, the target autoantigen was identified as

melanoma differentiation-associated gene 5 (MDA5), also known as

interferon-induced with helicase C domain protein 1 (IFIH1). Of note,

MDA5 is a cytoplasmic retinoic acid-inducible gene-I (RIG-I)-like

receptor that, upon the recognition of viral RNA, up-regulates the

expression of type 1 interferon and other inflammatory cytokines (2,

49, 61).

Furthermore, the anti-MDA5 autoantibody is detected in 20-

50% of adult DM patients (including CADM) and is associated with

relatively lower creatine kinase (CK) levels, a high frequency of ILD

(90-95%), especially rapidly progressive ILD (RP-ILD) (50-80%),

and poor prognosis due to respiratory failure (62–65). However,

lower frequencies of the antibody and RP-ILD were noted in

American and European cohorts (49). Such clinical discrepancies

might be explained by differences in ethnicity or environmental

background. Anti-MDA5 antibody is also associated with HLA-

DRB1*01:01/*04:05 (66).

Increased serum IL-6, IL-8, and IL-10 levels were associated with

RP-ILD in PM/DMpatients, whilst high concentrations of IFN-a and

soluble CD163 and the upregulation of IFN-inducible genes have been

detected in anti-MDA5-positive patients. These findings suggest the

upregulation of the type 1 IFN system through the activation of

monocytes, macrophages, or other immunocompetent cells in the

pathophysiology of anti-MDA5-positive DM with RP-ILD (59).

Depending on disease severity, autoAbs profiles differ among anti-

MDA5+ patients, with autoAbs from B cells of patients directly

stimulating IFN-gamma production in the peripheral blood.

Mounting evidence indicates that dysregulated NET formation

participates in the pathogenic process of IIM, particularly in anti-

MDA5-positive disease (67, 68).CirculatingNET levelswere increased

while the plasmaDNase I activitywas impaired, resulting in the failure

to degrade the aberrant NETs in patients with anti-MDA5

autoantibodies, especially in those with ILD. Enhanced NET

formation was observed in affected organs, including the skin,

muscle, and lungs, of anti-MDA5-positive patients but not in those

with MSA-negative IIM (67).

A recent study also delineated that anti-MDA5 autoantibodies

isolated from patients significantly enhanced NET formation in

neutrophils isolated from healthy controls compared with control

IgG. Furthermore, NETs purified from IIM neutrophils have been

observed to induce myotube damage. Another study described that

peripheral NET levels were associated with calcinosis, ICs, and IL-8

levels in patients with JDM (49, 69). In particular, JDM patients

with anti-MDA5 autoantibodies exhibited impaired NET clearance.

Indeed, anti-MDA5 autoantibodies play a critical role in inducing

NET formation. The study emphasizes the need for further

investigation into the mechanisms underlying NET dysregulation

and its contributions to autoimmune responses and tissue damage

in IIM.

In addition, an earlier study found that a murine model of ILD

mediated by autoimmunity against MDA5 mirrors the severe and

rapid progression of ILD observed in patients with anti-MDA5
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1439807
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1439807
antibody-positiveDM. Key findings highlighted the vital role of CD4+

T cells and IL-6 in the development and severity of fibrotic ILD. The

results suggest that targeting IL-6 could be a potential therapeutic

approach for the management of ILD in patients with anti-MDA5

antibody-positive DM (70). Animal models are valuable for studying

disease mechanisms, given that they allow for controlled

experimentation and manipulation of specific immune components.

The evidence from thesemodels convincingly unveiled that T cells can

inducedisease independentlyof autoantibodies, emphasizing their role

in disease pathogenesis. Despite the compelling evidence from animal

models, there are limitations that cannot be overlooked. Animal

models may not fully reflect the complexity of human disease, and

findings in animals may not always translate directly to humans.

Besides, the presence of autoantibodies in patients with DM is

associated with specific clinical features and outcomes, suggesting

they still play a role in the disease, albeit not as primary inducers.
Anti-SRP and anti-
HMGCR autoantibodies

Anti-signal recognition particle (anti-SRP) antibody was

initially identified in a subgroup of polymyositis patients in 1986

(71). In 2002, muscle the presence of necrotic muscle fibers without

significant muscle inflammation was detected in biopsies from anti-

SRP antibody-positive patients (72). In 2003, a group of immune-

mediated necrotizing myopathies (IMNMs) was recognized for the

first time as a separate entity, based on pathological criteria showing

predominant muscle fiber necrosis with no or mild muscle

infiltrates, and these patients generally have a poor prognosis

(73–75). A novel myositis-specific antibody targeting the

hydroxy-3-methylglutaryl-CoA reductase (HMGCR) protein was

discovered in a subset of IMNM patients thereafter (6, 7, 76–78).

Anti-SRP patients exhibit more severe muscle weakness and

atrophy with substantial muscle damage in magnetic resonance

imaging studies (79–81). Anti-SRP is detected in 2% of patients with

adult dermatomyositis. Moreover, approximately 10-20% of anti-SRP

patients develop extramuscular symptoms, especially ILD (80). Anti-

SRP was associated with HLA-DQA1*01:04 and HLA-DQA1*01:02.

Conversely, anti-HMGCR patients are often linked to statin exposure

(82, 83) and were detected in 6% of adult dermatomyositis cases.

Importantly, it was associated with HLA-DRB1*11:01 and HLA-

DRB1*07:01. For both autoantibodies, a high correlation between

CK levels and MAC (C5b-9) deposits with the percentage of

myofiber necrosis was reported (r=0.6, p < 0.01 and r=0.4, p < 0.01,

respectively) (84). The titer of these auto-antibodies correlates with

disease activity in anti-SRP and anti-HMGCR-positive patients (49).

Histopathological analysis of muscle biopsies from anti-HMGCR-

positive patients revealed muscle fiber degeneration and regeneration,

as well as up-regulation of MHC-I on occasional non-necrotic muscle

fibers with rare or absent inflammatory infiltrates (22, 76, 83, 85, 86).

Furthermore, necrotic fibers were largely associated with CD68+

macrophage infiltration and membrane attack complex (MAC)

deposition on scattered non-necrotic fibers, suggesting the presence

of an antibody-dependent cell-mediated toxicity pathway (87).
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These autoantibodies were associated with an increased

secretion of proinflammatory cytokines (IL-6 and TNF),

reduction in the levels of anti-inflammatory cytokines (IL-4 and

IL-13), production of reactive oxygen species, and upregulation of

genes encoding atrophic factors. This decrease of IL-4 and IL-13

suppressed myotube formation by impairing myoblasts fusion. In in

vitro experiments on myotubes, incubation with anti-SRP

antibodies, anti-HMGCR antibodies, or total IgG from patients’

plasmapheresis induced atrophy and was associated with increased

expression of the transcription factors TRIM63/MURF1 and MAFbx,

which are involved in the atrophy pathway. In vitro experiments

showed that purified anti-SRP and anti-HMGCR autoantibodies

could recognize their cognate autoantigens and activate the classical

complement pathway (87). Experimental studies in animal models

further support the pathogenic role of the anti-SRP and anti-HMGCR

autoantibodies (88, 89). Purified IgG from anti-HMGCR and anti-

SRP-positive patients was injected in mice, provoking muscle

deficiency and myofiber necrosis, similar to human disease (89).

Interestingly, muscle deficiency tends to be more severe in mice

receiving IgGs from anti-SRP antibody-positive patients compared

to those receiving IgGs from anti-HMGCRantibody-positive patients.

Immunizationwith SRP andHMGCRproteindrove the production of

specific antibodies, indicating a pathogenic association with these

proteins. Myopathy in IMNM was alleviated in IgG-transferred

complement C3-KO mice, whereas supplementation with human

complement reversed this effect (16). The study implied that patient-

derived anti-SRP and anti-HMGCR antibodies are pathogenic toward

muscles in vivo through a complement-mediated mechanism.

However, treatment with a C5 complement inhibitor was not

effective in anti-SRP-positive and anti-HMGCR-positive patients (90).

The research highlights the dual diagnostic and pathogenic role

of anti-SRP and anti-HMGCR autoantibodies in IMNMs, as well as

their potential impact on muscle pathology through cytokine

modulation, macrophage infiltration, and complement activation.
Anti-TRIM72 autoantibody

Several tripartite motif (TRIM) family proteins (Ro52, TIF1a,
TIF1b, and TIF1g) are well-established autoantigens associated with
IIM (91–93). a novel TRIM family protein termed TRIM72 (also

known as MG53) and its function were identified in IIM. TRIM72 is

an integral component of the sarcolemmal repair process in striated

muscle (94–96). ELISA analysis uncovered elevated TRIM72

autoantibody levels in IIM, with 11.5% of DM sera and 11.8% of

PM sera tested presenting with high levels of anti-TRIM72 (97).

Trim72–/– mice develop significant skeletal muscle myopathy and

cardiovascular defects due to defective sarcolemmal repair (98–

100). In an adoptive transfer mouse model, sarcolemmal resealing

defectsweredetectedat1and4weeks, indicating that inaTreg-deficient/

dysfunctional environment, amarginal increase in anti-TRIM72 levels is

correlated with reduced sarcolemmal resealing capacity. Additionally,

exogenous delivery of a polyclonal antibody against TRIM72

significantly reduced sarcolemmal resealing capacity in flexor

digitorum brevis (FDB) muscles from healthy C57BL mice regardless
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of anti-TRIM72 levels. Overall, the findings suggest that a defect in

sarcolemmal resealing may precede skeletal muscle degeneration and

inflammation associated with IIM (97). Taken together, these findings

highlight the essential role of TRIM72 in muscle membrane repair and

its potential involvement in the pathogenesis of IIM through

autoantibody production and impaired membrane resealing.
Anti-cN1A autoantibody

Anti-cytosolic 5’- nucleotidase 1A (cN1A)was described in 2011 by

Salajegheh et al. as an autoantibody against a 43 kDa protein associated

with inclusion bodymyositis (IBM) (1, 7, 101, 102). The corresponding

autoantigen was identified as cN1A expressed in skeletal muscle (103).

This autoantigen is implicated in the hydrolysis of adenosine

monophosphate, leading to physiological energy homeostasis,

metabolic regulation, and cell replication (103, 104). Anti-cN1A is

present in about 33-34% of IBM, 4-5% of PM, and 3-4% of DM cases.

Considering that Herbert et al. concluded that this autoantibody is

present in 36% of patients with Sjogren’s syndrome and 20% of SLE

cases, the specificity of this autoantibody for myositis is likely low (105,

106). it might assist in differentiating between myositis subgroups (49,

106–108).

A recent study demonstrated the pathogenic role of anti-cN1A in

IBM both in vivo and in vitro using a passive immunizationmodel. The

anti-cN1A autoantibody potentially affects protein degradation in

myofibers (109). Several experimental in vivo and in vitro passive

immunization studies in mice were performed. The results similarly

identified that anti-cN1A antibodies could impact muscle protein

degradation and fiber size with small angulated fibers in mice injected

withanti-cN1A-positivesIBMIgG.However, theseexperiments failed to

demonstrate changes in motor activities. The findings conjointly

indicate that anti-cN1A autoantibodies play a role in the pathology of

IBM by altering muscle protein degradation and muscle fiber

morphology. Nonetheless, the lack of changes in observed motor

activity suggests further research is warranted to fully elucidate the

clinical impact of these autoantibodies.
Anti-FHL1 autoantibody

Four-and-a-half-LIM-domain 1 (FHL1) is a muscle-specific

antigen abundantly expressed in skeletal and cardiac muscle.

Mutations in the FHL1 gene have been detected in diverse X-linked

myopathies (1, 110, 111). The prevalence of anti-FHL1 autoantibodies

has been reported to range between14 and25%of IIMpatients andhas

been associated with poor prognostic characteristics such as

pronounced muscle fiber damage, muscle atrophy, vasculitis, and

dysphagia. In an independent cohort, anti-FHL1 autoantibody

frequency was higher in PM and IBM patients and was frequently

observed in those with MSA-negative IIM.

To explore the role of FHL1, MHC class I transgenic mice were

immunizedwith FHL1protein and adjuvant, which resulted inmuscle

inflammation, weakness, and weight loss nine weeks after the

immunization in double-transgenic mice but not in single-transgenic

mice. The presence of anti-FHL1 autoantibody was detected in both
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immunized mice groups. HT mice had significantly lower survival

rates, and histopathological examination exposed prominent muscle

damage with IgM depositions, suggesting a link between anti-FHL1

responses and muscle damage. Anti-FHL1 autoantibodies serve as

markers for more severe disease in IIM, and the experimental data

reinforce their pathogenic role, underscoring the importance of FHL1

in the disease mechanism.

In total, the presence of anti-FHL1 autoantibodies in IIM is

indicative of more severe disease manifestations. The experimental

evidence from transgenic mice corroborates the pathogenic role of

anti-FHL1 responses, emphasizing the role of FHL1 in muscle

damage and inflammation in IIM patients.
Anti-eIF3 autoantibody

The anti-eukaryotic initiation factor 3 (eIF3) autoantibody was

recently identified in the sera of three Caucasian patients with PM.

Noteworthily, the level of this autoantibody was low (<1%) and was

associated with a good prognosis and a favorable response to

treatment (1). The depletion of eIF3 in mouse models was

associated with reduced skeletal muscle mass, indicating that this

protein might play a paramount role in muscle growth and skeletal

muscle homeostasis (1, 112) However, these associations remain to

be investigated in further studies.

Conclusion

This review summarizes the classical and novel MSAs in IIM

identified over the past years. These autoantibodies are

preferentially expressed in disease-associated tissues and play a

major role in disease initiation and propagation. For some of the

MSAs, experimental data support their potential role in the

pathogenesis of IIM. Understanding the functional role of these

autoantigens and their corresponding autoantibodies in disease

initiation, propagation, and expression is fundamental for

providing further insights into pathogenic pathways, which in

turn may facilitate the development of new therapeutic targets.
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