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Multi-cellular biological systems, including the immune system, are highly

complex, dynamic, and adaptable. Systems biologists aim to understand such

complexity at a quantitative level. However, these ambitious efforts are often

limited by access to a variety of high-density intra-, extra- and multi-cellular

measurements resolved in time and space and across a variety of perturbations.

The advent of automation, OMICs and single-cell technologies now allows high

dimensional multi-modal data acquisition from the same biological samples

multiplexed at scale (multi-OMICs). As a result, systems biologists -theoretically-

have access to more data than ever. However, the mathematical frameworks and

computational tools needed to analyze and interpret such data are often still

nascent, limiting the biological insights that can be obtained without years of

computational method development and validation. More pressingly, much of

the data sits in silos in formats that are incomprehensible to other scientists or

machines limiting its value to the vaster scientific community, especially the

computational biologists tasked with analyzing these vast amounts of data in

more nuanced ways. With the rapid development and increasing interest in using

artificial intelligence (AI) for the life sciences, improving how biologic data is

organized and shared is more pressing than ever for scientific progress. Here, we

outline a practical approach to multi-modal data management and FAIR sharing,

which are in line with the latest US and EU funders’ data sharing policies. This

framework can help extend the longevity and utility of data by allowing facile use

and reuse, accelerating scientific discovery in the biomedical sciences.
KEYWORDS

FAIR data, systems biology, immunology, OMICs, multi-modal data, artificial
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Introduction

Data powers our understanding of the world around us. As the

world becomes fully digitized and technology continues to develop,

researchers’ ability to gather different types of measurements at

scale is only increasing, making the adoption of Data Science

principles across all disciplines increasingly necessary. This is

particularly true in biomedical research, where the race to

understand the basis of life and human disease has encouraged

researchers to push the boundaries of method development for

decades. Most notably, the advent of high-throughput technologies

such as high-content imaging, multi-parameter flow cytometry/

CyToF, microarrays, next generation sequencing, and mass

spectrometry has transformed biologic research into a rich multi-

modal data science.

The increase in scale across the research enterprise requires

careful experimental design as well as the development of novel

statistical and mathematical frameworks that can help researchers

synthesize all this data into meaningful, and occasionally non-

intuitive biological insights. We collectively refer to these

frameworks as artificial intelligence (AI). Practically, this

necessitates making the data accessible and interpretable to other

researchers as well as machines in ways that allow it to be used for

applications beyond its original intent. In the case of human studies,

this also requires deliberate efforts to ensure the data is

representative of human diversity and is well-guarded to protect

individuals’ privacy and rights. Only then can society fully benefit

from the richness and complexity of the data needed to enable AI-

driven advances in the biomedical field for the benefit of all.

A term commonly used to refer to good data stewardship in the

life sciences is FAIR data sharing (1). The term is an acronym for

data that is findable, accessible, interoperable, and reusable, all

features that extend the usability of data beyond the purposes it was

generated for, thereby increasing its long-term impact. Here, we

outline practical steps towards FAIR data-sharing practices that can

improve the longevity and utility of biomedical data. The principles

are applicable to any field in the Life Sciences.
Why share data

Before ChatGPT made conversations about AI, multi-modal

data, data and computational bias so mainstream (2, 3) the

biomedical field had its taste of AI’s enabling potential, yet

relatively little light was shed on the central role community-wide

data curation and sharing played in enabling these biomedical

breakthroughs. We discuss two prominent examples below.
AlphaFold

In the case of AlphaFold (4), which won its developers the

Lasker Award in 2023 (5) and Nobel Prize in 2024 (6), years of

researchers publicly depositing experimentally determined protein

structures and genomic sequences was fundamental to training the
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underlying model (4). These data resided in public databases such

as UniRef90 (7), BFD (8), Uniclust30 (9), MGnify clusters (10),and

the Protein Data Bank (PDB) (11) which house some of the world’s

largest collections of biologic sequences and structures, respectively.

Since models are only as good as the data they were trained on, it is

no surprise that proteins poorly predicted by AlphaFold are often

classes that are underrepresented in nature either because they lack

homologues such as orphan proteins (12), or because they are

highly variable such as antibodies (13). Since its release, over a

million AlphaFold predicted protein structures have been shared in

the public domain (14), including the proteins of bacteria rapidly

developing antibiotic resistance, thereby posing an urgent threat to

global health. The entirety of the AlphaFold model is also available

publicly for others to explore and expand (15), which has enabled

researchers to adopt it for their use-case of choice expanding its

impact even further (16). Without publicly deposited data the

development of AlphaFold would not have been possible, neither

would much of the science enabled by it.
NextStrain

As part of the global COVID19 response researchers worldwide

rushed to sequence and share the SARS-CoV2 genomes they

isolated. SARS-CoV2 genomic sequences were centralized in a

repository called NextStrain (17), which also provided researchers

the world over with tools that allowed tracking mutations in the

viral genome, some of which threatened to be associated with

changes in transmissibility, virulence, and/or clinical presentation

thereby informing public health responses (18–21). Other

researchers got straight to developing vaccines against the

devastating virus (22). NextStrain’s developers’ focus on data and

code sharing was central to its broad utility during the COVID19

pandemic, which was accompanied by an exponential increase in

the number of citations from 19 in 2018 to over 2500 citations by

May 2024. Its user-friendliness and transparency likely played a role

in it featuring in several policy reports (18, 19, 21).

These two examples demonstrate how data and code sharing is

fundamental to driving impactful scientific advances in the digital

age. Both efforts required the development of globally accessible

platforms that allowed the sharing of important, standardized

biomedical data at scale. This enabled others to develop

computational methods that could crunch through the massive

volumes of data thereby providing more researchers with usable

information on which to build. As more types of data are

standardized and shared, we can only begin to imagine the scope

and impact of future breakthroughs.
The shifts in funding agency requirements

While the utility of sharing SARS-CoV2 genomic data was likely

obvious to many, it is difficult to imagine that the developers of PDB

or NCBI predicted the development of AlphaFold. It’s even more

difficult to believe that every researcher depositing their protein
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structures since 1971 or sequences since 1982 understood they

would be individual contributors to such a development many years

down the line. Even if they did, it is no secret that the current

scientific eco-system lacks a short-term mechanism for rewarding

raw data sharing, which is a time-consuming and laborious process

many researchers find unpleasant.

Incentive systems that reward data sharing are still under

development but should be possible with the popularization of

digital object identifiers (DOIs) (23), which allows users to uniquely

cite papers as well as code and data in the digital sphere. In the

meantime, science policy makers and funders seeking to maximize

return on their and/or the public’s investment in basic research have

resorted to mandating data sharing. In the absence of clear

mechanisms for accountability much of the enforcement

currently falls to publishers. As a result, the emerging practice is

for researchers to only share positive data or data that is included in

a publication which means a lot of data remains unaccounted for.

Another important implication is that AI algorithms are being

trained disproportionately on positive data which will affect their

performance and generalizability (24). That said, enforcement at

publication has served science well and is arguably one of the main

reasons PDB is now populated with close to 200,000 experimentally

validated protein structures. Among the funders now encouraging

data and code deposition are the NIH (25) and NSF (26) which are

currently updating their policies following mandates from the

Whitehouse Office of Science and Technology (27), as well as

philanthropic organizations such as the Bill and Melinda Gates

Foundation (28), and the Chan Zuckerberg Initiative (29) in the

USA. In Europe, the Wellcome Trust (30) and Horizon Europe (31)

mandate FAIR data sharing whenever possible.
Key elements for responsible data use
and informed reuse

Rich metadata provides necessary context

Experimental data are most reusable when associated with rich

metadata, often referred to as data about data, that help future users

interpret and differentiate between data sets and individual data

points. Imagine a set of hand-made Russian dolls. The smallest doll

(the dataset) is nested within other dolls (the layers of metadata

collected at each experimental step leading up to the data). Being

hand-made, the innermost doll from a single set is made to fit the

outer dolls perfectly, but might not fit within another set of Russian

dolls, even if they were made by the same craftsperson, and even less

so if made by another. If the craftsperson were to share the

dimensions of each of the dolls, however, they could help others

predict which inner dolls are combinable between sets (Figure 1).

The more detailed and understandable the dimensions, the better

the predicted fit, thus the need for rich and standardized metadata.

In a research setting, capturing rich and understandable metadata is

useful not only for researchers in the same lab, but also when re-

used by others once the data is in the public domain, and is key to

interoperability. Technical and biological confounders can often

skew the interpretation of data and can only be accounted for if they
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are reported as part of the original study. This practice minimizes

the chances that others will re-use the data under false assumptions

leading to the generation of poorly informed hypotheses. The result

is an avoidable loss of time, energy, and resources of many chasing

the wrong ideas. More importantly, this contributes to the safe and

cost-effective development of safer medicines for patients if such

data is ever to be used in that context.

As an example, consider DNA sequencing data from a series of

different tissue biopsies from a non-human primate. Each raw

sequencing file is linked to a DNA library, prepared from a tissue,

extracted from an animal. At the time the animal is taken into a

study, it’s important to assign it a unique identifier, and document

its age, sex, species and geographical origins, any interventions it

underwent and when, as well as the organ from which the sample

was extracted, plus the time and method of extraction. Each biopsy

should also receive a unique identifier and be linked to the parent

animal. Similarly, the DNA library should also receive a unique

identifier and be linked to the biopsy from which it was prepared,

together with information about the DNA extraction kit/process

(eg: the thermocycler used, the number of amplification cycles, the

temperature at each step, and the sequencing primers). Finally, it’s

also important to note which samples were multiplexed on which

chip (which should also have unique identifiers), the sequencer

used, read length, and sequencing depth. If a plate-based

fluorescence assay was done on cells from the same tissue, which

sample was in which well, what was the analyte, antibody, and

fluorophore, which plate reader was used, on which day, and what

were the excitation and emission spectra. Much of this information

can be captured in independent tables that serve as templates for

researchers at every experimental step and can later be linked

together as a set of relational databases, a simple but elegant and

well-established solution in Data Science, that ensures full data

provenance for single or multi-modal datasets from the same

experiment. The metadata can then be shared in the public

domain making the associated data truly FAIR (Figure 1).

Historically, a lot of this metadata would simply be described to

various degrees of thoroughness throughout a paper, but not

directly linked to a particular raw or analyzed data file. While this

practice might have been sufficient to interpret one small dataset at

a time, it no longer serves biology well today, and adds uncertainty

where it need not exist. That is especially true when combining

different datatypes within a study (vertical or multi-modal data

integration; Figure 2) or across studies (horizontal integration),

where the statistical uncertainty associated with data from tissues

from the same animal would be different from that from different

animals or studies even if the animals were treated similarly.

Open-source data management systems can be found in

NextSEEK (32) which allows public metadata sharing on

FAIRDOMHub (33), or the Open Science Framework (34),

though the latter is currently more suited for the social sciences.

A similar, but more powerful alternative is Fairspace (35) provided

commercially by The Hyve which supports the cancer research

community’s c-Bioportal (36, 37). In principle, metadata collected

as part of standard electronic notebook keeping can be easily

exported when and where needed, facilitating FAIR data sharing

through any of these systems.
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FIGURE 1

Relational databases help link metadata from multi-step experiments. Relational databases are similar to Russian dolls, nested in a particular order.
They allow researchers to capture metadata at every experimental step. For example, linking sequencing data to the cDNA library, tissue (lung
biopsy) and animal (non-human primate, NHP) from which it came from. The metadata for the two different sequencing files helps future users
realize that the main difference between the sequenced samples is that they come from different animals that vary by sex and treatments, despite
being from the same species.
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Standardization enables interoperability

Data integration has long been the focus of computational

biologists, to various degrees of success (38–40) in part -some

argue- because of a combination of poor data quality, experimental

design and metadata availability (41–43). With the continuous

increase in integratable data modalities of relevance to systems

immunology, it is more important than ever to standardize how

metadata is collected within and across experiments, and

harmonize the vocabularies used for annotation. Unfortunately,

this is no easy task. Agreeing on metadata standards for a new data

type or experimental format often involves hours of discussion

between experimental and computational biologists and should

happen before data collection begins to avoid discrepancies down

the line. This is especially true in the case of nascent technologies

and requires an ability to foresee potential uses beyond what the

data were originally planned for. Doing this on a field-wide level is

even more challenging and requires strong vision and leadership.

For popular data types, specialist repositories often exist and

some enforce the use of common data elements (44) (CDEs; pre-

defined variables and acceptable values). However, these CDE are

often different between repositories which makes vertical integration

difficult and is further complicated by the fact that many siloed

repositories offer no inherent way to link data from the same samples.

This is also true in the case of inherently multi-modal measurements

such as sequencing-based spatial transcriptomic technologies, which
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rely on a complementary set of sequencing and imaging data (45). In

such cases, and in the absence of a repository for multi-modal data,

the imaging data would be stored in one repository and the

sequencing data in another, and would need to be linked through a

public-facing database such as FAIRDOMHub (33) to be of future use

(See Table 1 for examples of existing repositories for spatial

transcriptomic data). Furthermore, the metadata collected by

repositories is often too sparse for meaningful analysis as they tend

to focus on capturing common points of variation across experiments

and not much of the nuance. Generalist repositories, being data

agnostic by design, are even less suited for standardized metadata

collection. Thus, it is left to depositors to decide what they think is

important metadata to share, and to future users to harmonize across

datasets which can be very difficult without prior standardization or

the release of good dictionaries with every dataset.

Data dictionaries clearly define each field as well as their possible

values such that they are comprehensible to someone who was not part

of the original study or is new to the field. It also facilitates

standardization, which is why CDEs (44) are broadly useful. As an

example, species could always be referred to by their NCBI

Taxonomical ID and Latin name (73), their geographical origins by

ISO 3166 codes (74), proteins by their Uniport ID (75), and antibodies

by their company of source plus catalogue number, epitope, and

conjugate. To avoid reinventing the wheel, researchers should reach

for CDEs and standardized vocabularies in the public domain and

share the ones they develop publicly for the benefit of others.
FIGURE 2

An example of how relational databases can be used to collect metadata for multi-modal data generation. (A) An experiment in which a lung biopsy
(TIS) from a non-human primate (NHP) infected with Mycobacterium tuberculosis (BAC) is sequenced (D.SEQ) and analyzed by flow cytometry
(D.Flow). DNA refers to the cDNA library sent for sequencing, AB refers to the antibody used in the flow cytometry analysis. The experimental
protocol describing how each step was conducted is captured in a file denoted with a “P.” suffix and referenced in the Protocol metadata field.
(B) An example of some metadata fields to be collected in association with each step of the research process. These fields are by no means
comprehensive. Find more detailed metadata fields for a similar experiment at https://fairdomhub.org/studies/1134.
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Curation ensures data trustworthiness

Depending on the resources available, data sharing done well can

be a time and labor-intensive process involving several people,

especially when using infrastructure that is not built-for-purpose.

Thus, it is important for researchers to focus on sharing high-quality

(well annotated and from well-designed experiments) irrespective of

whether their own analysis of the data supports their original

hypotheses. This should be done with an eye towards enhancing

reproducibility, but also the reuse of data for mechanistic modeling,

machine learning (ML) and deep learning (DL) applications, which will

undoubtedly increase the impact of the data on the long-term. As

mentioned above, curated data should include both negative and

positive data to avoid biased training datasets that do not allow the

development of models that are broadly generalizable. If time is tight,

researchers should prioritize multiplexed datasets (multi-parameter

flow cytometry/CyToF, high-throughput sequencing of all kinds,

mass spectrometry, high volume imaging data, array-based data,

cytokine panels, systems serology data to name a few), which are

most useful for data hungry ML/DL applications, as well as data

acquired from experiments that are difficult to reproduce without an

abundance of resources or access to highly specialized infrastructure.
Code, model and parameter sharing
facilitate reproducibility,
interpretation, and informed reanalysis
and meta analyses

Also important for reproducibility, integration, and the informed

interpretation of analyzed data is capturing the complexity of data

processing and computational analyses occurring post-generation of

raw data. Unlike classical statistical tests familiar to many biologists

[eg: the parametric and non-parametric tests pre-programmed in

many available software suites such as Excel (76), Google Sheets (77),

and GraphPad Prism (78)], many OMICs and most multi-OMIC

analyses are far from standardized. Furthermore, compute

environment, the choice of software, software version, and user-

defined parameters can significantly affect the final output (1). For

these reasons, researchers need to precisely document and share all

aspects of a workflow including the code (including version number if

using a publicly available package) and exact parameters used to

analyze a particular dataset, with clear descriptions of any non-

standard steps maybe as comments between blocks of code. This can

be accomplished in a variety of ways but is greatly facilitated by the

use of community workflows such as nf-core (79), containerized

compute environments like Docker (80) and Singularity/Apptainer

(81) shared in container repositories like DockerHub (82). Also useful

are package and environment managers such as Bioconda (83).

Jupyter (84) or Rstudio (85) notebooks shared and managed in

code repositories such as Github (86) provide a method for sharing

both standard and custom analyses, though this practice does not

guarantee reproducibility across computing environments since

Github does not enforce rigorous testing to ensure deposited

packages are performant.
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Researchers should also share their trained models given how

time and computationally intensive this can be, in addition to the

data on which they were trained to ensure full transparency and

inform users’ understanding of sources of bias or underperformance.

Parameterized mechanistic models can be shared on BioModels (87),

while their machine and deep learning equivalents can be shared and

deployed on Hugging Face (88).
Resources that enable good FAIR
data stewardship

Infrastructure

To support FAIR data practices institutions must facilitate accurate

data and metadata collection with little time and effort on researchers’

side. Research institutions and funders also need to account for the

increasing specialization that necessitates collaboration between labs.

To enable that, there is a need for a radical change in infrastructure to

support an evolution to the “decentralized digital Lab with a human in

the loop”. In this model, laboratory infrastructure is set up such that

data acquisition and import is largely automated within and between

labs with the proper agreements in place, meaning scientists spend less

time generating and managing data and more time curating and

analyzing it. The first step towards that has been a slow-to-start but

accelerating shift from paper to electronic lab notebooks (ELNs),

catalyzed by the evolution of user-friendly digital platforms such as

Benchling (89). Benchling’s cloud-based ELN system now allows

independent users anywhere in the world to share experimental

templates, as well as track reagents, samples, and data through a

shared registry, while linking these features through a set of relational

databases ensuring data provenance is continuous and available to all

who have access. Add to that the addition of features that allow the

integration of lab instruments such that the data coming off them can

be directly stored in the cloud, and the effort of moving data, linking to

metadata, and -eventually- sharing no longer seems as daunting. Other

providers such as L7 informatics are catching up (90). With more

players in the Digital Lab eco-system the future of FAIR data sharing is

looking promising (Figure 3). Quite importantly, this also facilitates

data interpretation and saves research teams hours of lengthy

discussion about how data was generated and handled.

Dedicated cloud computing platforms for biology are also

emerging to compliment the shift to data-intense, decentralized

and collaborative life science research, including Cirro (of the Fred

Hutchinson Institute) (91), DNANexus (a techbio start up) (92),

LatchBio (a techbio start up) (93), Terra (of the Broad Institute) (94),

and L7 Informatics (also a techbio start up) (90). These platforms

allow researchers to run complex analysis workflows in the cloud but

in a more user-friendly environment than what’s offered directly by

cloud providers and are customized to biologists’ needs. With the

data already in the cloud, running such analyses is now possible

without the need to duplicate and shuffle around large volumes of

data between collaborators, and -in principle- facilitates analyses that

respect institutional and national data governance requirements.

Cloud providers vow they take data security seriously, and the likes

of the NHS, FDA and NIH are beginning to trust them with data for
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https://doi.org/10.3389/fimmu.2024.1439434
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mugahid et al. 10.3389/fimmu.2024.1439434
TABLE 1 Key data repositories useful for systems immunology.

Data Type Repository Key Features Number of
datasets as of
May 2024

Date of
establishment

Mass spectrometry (MS)-
based Proteomics

PRIDE: PRoteomics IDEntifications
Database (46) (https://www.ebi.ac.uk/
pride/)

Direct submission allowed, data
visualization and annotation tools.

26847 2005

MassIVE (47) (https://massive.ucsd.edu/) Direct submission allowed, data
analysis tools.

15,231 N/A

PeptideAtlas (48) (https://
peptideatlas.org/)

Curated database, no data analysis tools. N/A 2006

Panorma (49) (https://panoramaweb.org/) Data from targeted proteomics
experiments, direct submissions allowed,
tools for designing and analyzing targeted
proteomics experiments.

596 2014

iProX (50) (https://www.iprox.cn/) Direct submission allowed, no data
analysis tools.

4792 Projects (3602
Public Projects)

2019

JPOST (51) (https://
repository.jpostdb.org/)

Direct submission allowed, no data
analysis tools.

2671 projects 2017

MS-based Metabolomics MetaboLights (52)
(https://www.ebi.ac.uk/metabolights)

Direct submission allowed, no data
analysis tools

1496 2012

National Metabolomics Data Repository
(NMDR; https://
www.metabolomicsworkbench.org/
data/DRCCDataDeposit.php)

Direct submission allowed, no data
analysis tools.

2788 2020

ELISA, ELISPOT, Luminex ImmPort (53) (https://
www.immport.org/)

Immunology-focused, direct submission
allowed, rich metadata in relational
database, no data analysis tools.

262, 54, 61 2018

Flow Cytometry ImmPort (53) (https://
www.immport.org/)

Immunology-focused, direct submission
allowed, rich metadata in relational
database, no data analysis tools.

257 2018

FlowRepository (54) (https://
flowrepository.org/)

Direct submission allowed, follows
MIFlowCyt standard, endorsed by
International Society for Advancement of
Cytometry (ISAC), no data analysis tools.

~2125 2012

Imaging Image Data Resource (55) (IDR; https://
idr.openmicroscopy.org/)

Direct submission allowed, handles variety
of image types, no data analysis tools.

127 Studies 2017

The Cell (CIL-CCDB) (56): (http://
www.cellimagelibrary.org/)

Curated database, no data analysis. 57 2012

Cancer Imaging Archive (TCIA) (57):
(https://www.cancerimagingarchive.net/)

Data de-identified, allows direct
submissions, no analysis tools.

N/A 2013

NGS and array data Sequence Read Archive (58) (SRA;
https://www.ncbi.nlm.nih.gov/sra)

Allows direct submissions of sequencing
data, no analysis tools.

N/A 2007

Database of Genotypes and Phenotypes
(59) (dbGAP; https://
www.ncbi.nlm.nih.gov/gap/)

Allows direct submissions of sequencing
data, controlled access repository for
human genotype/phenotype data.

309 general use
studies ie: sharable
according to these
(60) terms and
nothing else.

2006

The Bioinformation and DNA Data Bank
of Japan (61) (DDBJ; https://
www.ddbj.nig.ac.jp/)

Allows direct submissions of sequencing
and array data, provides advanced search
functionalities and built-in analysis tools.

4,250,864,039
Sequences

1987

European Nucleotide Archive (62) (ENA;
(https://www.ebi.ac.uk/ena)

Allows direct submission of sequencing
and data, no data analysis tools.

4.6 billion Sequences 1982

Gene Expression Omnibus (63) (GEO;
https://www.ncbi.nlm.nih.gov/geo/)

Allow direct submissions of sequencing
and MIAME-compliant array data as well

4348 2000

(Continued)
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megaprojects such as the UK Biobank (95) and PrecisionFDA (96)

who use DNAnexus and the NIH’s All of Us Research program (97)

that uses Terra (Figure 3). Enticingly for the computational biologists,

these platforms also provide impressive compute that scales to

increasingly large and complex models, come with customizable

and pre-installed pipelines that save researchers hours of set-up

time, and automate log generation which allows tracking the

analyses done on every dataset together with the parameters used

making it easy to trace how results were derived. In addition, some of

these platforms support the integration of Jupyter notebooks which,

as mentioned above, allow users to run and share their own custom

code within those environments and share them when needed.
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Less attractive is the price for cloud storage and compute which

becomes an ongoing expense liable to immense runaway costs (98),

especially at the hands of less experienced users who are the majority

at academic institutions today. These costs could be overcome -in

part- by better training, negotiating university/funder-wide contracts

with cloud platforms, and could be off-set by long-term savings in

personnel, maintenance, and upgrades. However, this does leave

academics at the mercy of tech oligarchs such as Amazon

[providers of AWS (99)], Alphabet [providers of Google Cloud

(100)], and Microsoft [providers of Azure (101)]. At the moment, it

is also unclear how easy migration between any of these platforms will

be if they fail to meet future user needs. That said, competition in the
TABLE 1 Continued

Data Type Repository Key Features Number of
datasets as of
May 2024

Date of
establishment

as processed data, some data
analysis tools.

Single Cell Sequencing Single Cell Portal: (https://
singlecell.broadinstitute.org/)

Allows submission of sequencing and
processed single cell data files, data
visualization and analysis tools.

670 total
studies found

2018

Single Cell Expression Atlas (64) (https://
www.ebi.ac.uk/gxa/sc/home)

Curated database, data visualization
and analysis.

355 2018

Spatial Transcriptomics CROST (65) (https://ngdc.cncb.ac.cn/
crost/home)

Curated database, supports different
technologies, rich suite of data analysis
and visualization tools.

182 2024

Spatial DB (66)
(http://www.spatialomics.org/SpatialDB/)

Curated database, supports different
technologies, some data analysis tools.

24

STOmicsDB (67)
(https://db.cngb.org/stomics/)

Curated database, allows direct
submission, some data visualization and
analysis tools.

228

Spatial Omics DataBase (68) (SODB;
https://gene.ai.tencent.com/SpatialOmics/)

Curated database, supports different
technologies, some data visualization and
analysis tools.

3145 2023

Aquila (69) (https://aquila.cheunglab.org) Curated database, allows direct
submission, some data visualization and
analysis tools.

110 2023

Single Cell Sequencing Single Cell Portal (70) (https://
singlecell.broadinstitute.org/)

Allows submission of sequencing-based
spatial transcriptomic data, data
visualization and analysis tools.

670 total
studies found

2018

Multi-modal OMICs Single Cell Atlas (71) (https://
www.singlecellatlas.org/)

Curated database, multiple data types,
data visualization and analysis.

NA 2024

Generalist Zenodo – commercial (https://
zenodo.org/)

50GB dataset limit, any file type, GitHub
integration, DOI creation, version control,
immediate release, usage statistics.

1,609 Projects 2013

Figshare -commercial: (https://
figshare.com/)

20 GB per user, any file type, DOI
creation, version control, private and
public release, usage statistics.

N/A 2012

BioStudies (72) (https://www.ebi.ac.uk/
biostudies/)

Allows the integration of metadata,
orphan data, and data found in other EBI
databases and link to a paper.

2,398,047 2015

FAIRDOMHub (33)
(https://fairdomhub.org)

Allows the integration of metadata,
orphan data, and data found in other
databases and link to a paper.

402 projects 2017
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infrastructure-as-a-service space is increasing because of ubiquitous

demand across a variety of industries which will hopefully spur

technological innovation and push prices down, democratizing

access to infrastructure-as-a-service in the long-term.

The development of equally powerful open-source alternatives,

continuously developed by and for the research community would

be ideal. Unfortunately, funding such efforts is costly requiring a

hefty upfront investment from governments or philanthropists and

would take years adding more distance between them and their

well-developed commercial counterparts. Once developed, long-

term sustainability could be possible by licensing that allows free

academic/non-profit usage and paid licensing in the case of for-

profit entities similar to the Rosetta Commons approach (102).
Personnel

With the emergence of infrastructure-as-a-service, better ELNs

and digital lab management software (also referred to as LIMS),

data, compute, and metadata are all now connectable and shareable

with relative ease. But the transition to this new model is no easy

feat, mostly because of the need for complex and often continuous

change management since academic research inherently involves

training inexperienced individuals and high turnover.

To facilitate this, the first kind of position universities need to

create is that of the Data Officer. This individual outlines university-
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wide policy, and ensures it aligns with national and international

mandates and legal frameworks. Together with the IT officer, they

can help coordinate the roll out and adoption of the needed

technology for the shift to Digital Labs across the university while

vetting different vendors and platforms - all in coordination with

Department Data Managers. The latter help roll out these changes

within their departments and communicate the importance of FAIR

data sharing to researchers of different disciplines, as well as work

with them to develop and share best-practices that make FAIR data

sharing a natural part of researchers’ workflow with the help of

enabling infrastructure. They also provide guidance regarding the

choice of private storage and public data repositories depending on

the types of data generated (eg: sequencing, flow cytometry,

imaging), its sensitivity (eg: clinical versus pre-clinical data), and

its stage in the research life cycle (pre- vs post-publication). On the

other hand, the university/department IT officers works on

optimizing on premise compute and data storage requirements to

adapt to a shift to the cloud. For larger, data-intensive departments,

it might be necessary to have lab data managers who work even

more closely with the researchers on the day-to-day. That said, buy-

in from PIs is absolutely necessary for the success of these efforts

and communicating the importance of good data management

practices early on in every project is immensely important for

labs’ long-term success. This is particularly important in academic

contexts, where lab turnover is high, and data often pass multiple

hands before it ends up in a paper or in the public domain.
FIGURE 3

Overview of cloud-based infrastructure for digital labs with humans in the loop. Cloud-based electronic documentation systems with registries for
animals, samples, reagents, equipment allow facile linking within lab notebooks. This makes experimental protocols transparent and facilitates FAIR
metadata and data collection and sharing. Data from lab equipment is imported directly into the registry and can also be linked in lab notebooks
saving time and effort, while minimizing human error. Metadata and data can be pushed to cloud computing platforms that allow collaborative and
transparent data analysis.
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Common types of data and
their repositories

For systems immunologists in particular and life science

researchers in general, some of the most important data types today

include multiplexed flow cytometry and CyTOF, Luminex, systems

serology [Luminex-based antibody profiling assays (103, 104)], single

cell RNASeq, bulk RNASeq data, and imaging data, for which

specialized repositories currently exist. For more nascent fields or in

the case of orphan datatypes researchers are encouraged to deposit

their datasets in generalist repositories, until a dedicated repository is

developed (Table 1).
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Considerations for consortia

While the guidelines outlined above are broadly generalizable,

they are highly relevant for interdisciplinary academic consortia

which are somewhat of a special case for three main reasons: (1)

data sharing between labs in almost real-time (as opposed to at the

time of publication) is important for consortia to achieve their goals

as experimental and biological versus mathematical and

computational expertise tend to be distributed, (2) physical

samples are often exchanged between labs so tracking sample as

well as data provenance at scale is key to data integrity, (3) timely

exchange of knowledge requires close communication across
FIGURE 4

Workflow diagram describing how suboptimal practices can affect data integrity, analytical rigor, and waste valuable research time. Suboptimal
practices also compromise FAIR data sharing at the end of a study.
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disciplines to move project goals forward and course-correct

as needed.

To address the first and second point, setting up a unified or at

least interoperable, digital infrastructure at the onset is key as it

allows members of the consortium to share lab notebooks, reagents,

and data. Harmonization and standardization becomes easier to

achieve and enforce, and analyses can also be shared. This allows for

internal transparency, facilitates collaboration, troubleshooting, and

corrections, and ultimately multi-modal data analysis. Eventually,

sharing the data and knowledge in the public domain also becomes

easier (Figure 4).

Assigning a data officer and data base manager for the

consortium is key. Together they need to establish a system that

allows centralized sample and data tracking and work with each lab’s

data manager and/or individual researchers to collate curated data

and ensure the accompanying metadata is accurate, standardized, and

complete. In instances when access to unified infrastructure is

prohibitively expensive, individual components can be strung

together. For example, they could set up a shared Dropbox or

Google Drive account where all the consortium’s curated data is

collected until it can be shared in the appropriate repositories. Setting

up a local instance of NextSEEK would facilitate metadata collection

in a relational database, after researchers fill out easy to use

spreadsheet-based templates. Tracking samples shipped between

sites can be done using tools such as Qualtrics (105) or Google

Forms (106). To facilitate early and accurate collection of metadata

about samples, only samples for which unique identifiers and a

comprehensive set of metadata has been collected should be

shipped to other sites. Data should only be shared when all the

metadata is complete, they are uploaded to a repository (privately) or

a common drive, and linked in the central database. Recipients can

then use the unique identifiers to look up key information about each

sample/dataset in the database and find all the necessary metadata.

Access to the data before it is public can be decided as needed since

considerations may vary depending on project needs or data type and

source, eg: human versus non-human sequencing data.

To address the third point, establishing recurrent meetings that

bringing together researchers of complementary expertise to discuss

experimental design, data analysis, next steps, and synthesize

information is important. This helps ensure that the data is

analyzed and interpreted in a meaningful way, as well as used to

inform the design of appropriate follow-up experiments.
FAIR data sharing between
interdisciplinary teams is critical to the
responsible development and
deployment of AI

To summarize, the life sciences are on the cusp of a transformation

to a data-intense field that requires experimental and computational

biologists to work together andmake sense of large swaths of data using

mechanistic, ML and DL models. This will allow researchers to

generate new insights that drive biomedical research forward in ways

and at a scale previous not possible. Enabling this involves embracing a
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collaborative and digital-first mentality to sustain the development of

data hungry, unbiased, generalizable models that are helpful to

biomedical researchers. We argue that the future of such a

transformation involves a shift to the Digital Lab and decentralized

FAIR data sharing and compute to enable broader collaboration across

disciplines. Despite the complexity of the feat, it is necessary to ensure

that data is scrutinized, used, and re-used to the best extent possible,

maximizing return on investment in the research enterprise for the

benefit of all.
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