
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Alexander Brill,
University of Birmingham, United Kingdom

REVIEWED BY

Andrew Weber,
Northwell Health, United States
Jose Luis Garcı́a-Giménez,
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Extracellular histones are crucial damage-associatedmolecular patterns involved

in the development and progression of multiple critical and inflammatory

diseases, such as sepsis, pancreatitis, trauma, acute liver failure, acute

respiratory distress syndrome, vasculitis and arthritis. During the past decade,

the physiopathologic mechanisms of histone-mediated hyperinflammation,

endothelial dysfunction, coagulation activation, neuroimmune injury and organ

dysfunction in diseases have been systematically elucidated. Emerging preclinical

evidence further shows that anti-histone strategies with either their neutralizers

(heparin, heparinoids, nature plasma proteins, small anion molecules and

nanomedicines, etc.) or extracorporeal blood purification techniques can

significantly alleviate histone-induced deleterious effects, and thus improve the

outcomes of histone-related critical and inflammatory animal models. However,

a systemic evaluation of the efficacy and safety of these histone-targeting

therapeutic strategies is currently lacking. In this review, we first update our

latest understanding of the underlying molecular mechanisms of histone-

induced hyperinflammation, endothelial dysfunction, coagulopathy, and organ

dysfunction. Then, we summarize the latest advances in histone-targeting

therapy strategies with heparin, anti-histone antibodies, histone-binding

proteins or molecules, and histone-affinity hemoadsorption in pre-clinical

studies. Finally, challenges and future perspectives for improving the clinical

translation of histone-targeting therapeutic strategies are also discussed to

promote better management of patients with histone-related diseases.
KEYWORDS

extracellular histones, damage-associated molecular patterns, inflammation, histone-
neutralization, heparin, blood purification
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1 Introduction

Histones, the main protein component of nucleosomes, can be

divided into core histones (H2, H3, H4) and linker histones (H1)

according to their function. Histones play a crucial role in

regulating gene expression under physiological conditions (1).

Due to their high proportion of amino acids with alkaline side

chains, histones normally exhibit cationic properties that contribute

to maintaining the well-organized structure of chromatin.

However, histones can cause harmful host response under

certain pathological conditions. Once a pathogenic attack or

sterile inflammation occurs, neutrophils are activated to form

neutrophil extracellular traps (NETs), followed by the

citrullination of histones by peptidylarginine deiminase 4 (PAD4),

which further leads to the decondensation of chromatin and the

release of extracellular histones (also known as circulating histones)

and other histone-containing complexes (nucleosomes, NETs, etc.)

into the blood circulation (2). In addition, numerous inflammatory

mediators can activate innate immune cells including macrophages

and induce massive tissue injury that also incur the release of

extracellular histones. During the past decade, extracellular histones

have been identified as a new group of damage-associated molecular

patterns (DAMPs) that significantly induce hyperinflammation (3,

4), thrombocytopenia (5, 6), platelet aggregation (7), coagulopathy

(8), endothelial cell death (9), and organ dysfunction (10, 11).

Clinical studies further show that extracellular histones are

associated with disease severity and mortality in patients with

critically ill or inflammatory conditions such as sepsis (12, 13),

septic shock (14), acute pancreatitis (13), ischemia–reperfusion

injury (15, 16), acute liver failure (17), vasculitis (18),

autoimmune arthritis (19), SARS-CoV-2 infection (20), and acute

respiratory distress syndrome (ARDS) (21–24). Additionally,

evidence has indicated that extracellular histones are capable of

binding and inducing the aggregation of low-density lipoprotein

and are strongly associated with the progression of atherosclerosis

(25, 26). Extracellular histones also play a vital role in cancer

dissemination, monitoring, and tumorigenesis in both

hematologic malignancies and solid tumors (27). Furthermore,

extracellular histones can also aggravate autoimmune arthritis by

inducing lytic cell death in synoviocytes and macrophages through

electrostatic interactions (19). For example, in patients with

trauma-associated lung injury, nondegraded circulating histone

elevated immediately from 10 to 230 mg/mL within 4 h and

peaked at about 24 h (10). Other evidence showed the

concentration of histones in serum and interstitial fluid was

significantly increased in several disorders, such as sepsis, ARDS,

systemic inflammatory response syndrome, cerebral stroke, trauma,

liver dysfunctions after donor hepatectomy, and tumors (10, 25, 28–

32), and was positively associated with the severity of organ failure

and mortality (10, 28, 30, 33, 34).

Citrullination, the most discussed modification of histones, is

the posttranslational conversion caused by PAD4 that leads to the

decondensation of chromatin during NETosis. It is reported that

that histone citrullination facilitates the translocation of NF-kB to
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the nucleus, which increases the release of proinflammatory

cytokines tumor necrosis factor (TNF)-a and IL (interleukin)-1b
(35). Wang et al. (36) reported that the serum levels of citrullinated

histone 3 (citH3) were increased in a dextran sulfate sodium-

induced ulcerative colitis murine model, while Cl-amidine (a

PAD4 inhibitor) or PAD4 genetic knockout successfully alleviated

the clinical colitis index, intestinal inflammation, and barrier

dysfunction. Recently, many studies have collectively shown that

CitH3 is significantly elevated in septic (37–39), ischemia-

reperfusion (40), and abdominal aortic aneurysms (41) murine

models and patients. CitH3 is more specific, persistent and sensitive

than procalcitonin and inflammatory cytokines (37, 38, 42). Hence,

increasing attention has recently been given to the multiple roles of

citrullinated histones in disease diagnosis and prognosis (13, 38, 41,

43, 44). Tian Y et al. found that CitH3 was significantly increased in

septic patients compared to healthy volunteers (101.5 pg/mL vs 8

pg/mL, p<0.0001) (38), and CitH3 level above 39 pg/mL correlated

with higher disease severity and poorer prognosis patients with

septic shock (38). Interestingly, Wang et al. (44) recently elucidated

that the serum levels of citH3 in dermatomyositis patients were

lower than those in healthy individuals (6.6 ng/mL vs. 33.6 ng/mL).

This is due to the facts that not all the NETs-derived histones are

citrullinated, and that citrullination is not a common characteristic

of NETs (45, 46). Nakazawa et al. and Furubeppu et al. further

demonstrated that therapy targeting NETs alone could not

completely inhibit the remote organ dysfunction caused by free

histones in systemic inflammation in ischemia/reperfusion injury

(11, 40). Accordingly, emerging therapeutic strategies targeting

extracellular histones for critical and inflammatory illnesses have

arisen during the past decade.

Although the roles of extracellular histones in mediating

systematic inflammation, thrombotic microangiopathy and

disseminated intravascular coagulation, complement activation,

and vascular endothelial dysfunction have been summarized in

detail (47–51), reviews on histone-targeted therapy are lacking. In

this review, we first update our latest understanding of the

underlying mechanisms of histone-induced deleterious effects,

and then summarize the latest advances in histone-targeting

therapy strategies with heparin, anti-histone antibodies, histone-

binding proteins or molecules, and histone-affinity hemoadsorption

to shed light on novel therapeutic strategies for histone-related

critical and inflammatory diseases.
2 Understanding the multiple roles of
histones in critical and
inflammatory diseases

The fine structure and physiological function of histones have

been well-studied in recent decades. However, once histones are

exposed to the extracellular environment, they exert significant

cytotoxic and proinflammatory activities in a dose- and time-

dependent manner (52). Recently, Riehl et al. (53) reported that

histones are released in a temperature-dependent manner during
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reperfusion in renal transplantation. Interestingly, not all the

subunits exhibited the same cytotoxicity. Numerous studies have

indicated that subunits H3 and H4 are the main contributors to

proinflammation, procoagulation (54), fibrinolysis (55) and

endothelial injury (46). The detailed pathological roles of

extracellular histones in critical and inflammatory diseases are

discussed below and summarized in Figure 1.
Frontiers in Immunology 03
2.1 Histone-induced hyperinflammation

Histones are released during necrotizing tissue damage and

NETosis and lead to a domino reaction in inflammation in sepsis,

acute liver failure, ARDS, etc. (56) Recent data have indicated that

streptococcal inhibitor of complement, a protein released by

Streptococcus pyogenes, can bind to histones to form large
FIGURE 1

Pathological roles of extracellular histones. (A) Histones induce hyperinflammation by activating the TLR 2/4/9 or NLRP3 inflammasome pathways,
which results in the release of proinflammatory cytokines, such as IL-6, IL-1a, IL-8, IL-1b, IL-18, and TNF-a, calcium oscillation, and cell pyroptosis,
and further augments innate immune cell recruitment in the blood. (B) Histones sense TLR-4 to induce endothelial dysfunction, which is
characterized by endothelial glycocalyx degradation, intercellular adherents destruction and vascular leakage, ultimately leading to inflammatory
exudation, tissue edema and organ failure. (C) Histones self-recognizing with TLR-2 and TLR-4 promote histone-mediated platelet activation and
aggregation and thrombocytopenia in a platelet-dependent manner. The expression of tissue factor and Weibel-Palade bodies is further induced by
activating endothelial cells, causing thrombosis. TLR, Toll-like receptor; NLRP3, NOD-like receptor family pyrin domain-containing 3; IL, interleukin;
TNF, tumor necrosis factor; ICAM, intercellular adhesion molecule; VCAM, vascular cell adhesion molecule. This picture was generated using
MedPeer software.
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aggregates that abolish the antimicrobial function and prohemolytic

function induced by histones. However, the proinflammatory effect

was boosted (57). In vitro, direct administration of histones in the

whole blood was significantly associated with thrombocytopenia

and hyperinflammation in a dose-dependent manner (58).
2.1.1 Activation of Toll-like receptor pathways
Many studies have verified that histones interact with Toll-like

receptors (TLRs), especially TLR4 and TLR2, to cause the

production of proinflammatory cytokines (IL-6 and TNF-a) via

MyD88-dependent pathways (11, 57, 59–61), to trigger calcium

oscillations (62), and to activate platelets that drive the augmented

immune response resulting in tissue injuries (60, 63, 64). Recent

data also indicated that the NOD2-VSIG4/NLRP3 (65), and TLR4-

NF−kB/CAM (66) pathways may also be involved in histone-

mediated inflammation by increasing the expression of IL-1b, IL-
18, TNF-a, and IL-6 (67–69). Moreover, Zhang et al. (70) illustrated

that the interaction between mitochondrial formyl peptides or

m i t o c h o nd r i a l DNA and TLR9 a c t i v a t e d h uman

polymorphonuclear neutrophils, which may ultimately contribute

to histone-mediated systemic inflammatory response syndrome.

Interestingly, Abrams et al.indicated significant MPO release in

histone-associated inflammation, although histones did not directly

simulate ROS production.
2.1.2 Activation of NOD-like receptor family pyrin
domain-containing 3 inflammasome

The NOD-like receptor family pyrin domain-containing 3

(NLRP3) inflammasome is activated and assembled in response

to diverse damage stimuli, including DAMPs, lysosomal

destruction, mitochondrial dysfunction, reactive oxygen species,

and toxin-induced pore formation in cell membranes (71). As

major DAMPs, extracellular histones significantly contributed to

NLRP3 inflammasome activation and subsequent pyroptosis during

sepsis (65) and acute lung injury (72). Jiang et al. (30) demonstrated

that extracellular histones promoted alveolar macrophage

pyroptosis through the NLRP3 inflammasome pathway, which

aggravated inflammation in ARDS. The administration of

MCC950, a NLRP3 inhibitor, particularly suppressed histone-

induced macrophage pyroptosis and reduced the serum levels of

IL-1b and IL-18, thus alleviated ARDS-related lung inflammation in

murine models (29). The authors further showed that histone-

induced NLRP3 activation in alveolar macrophages during sepsis

was associated with increased TWIK2-dependent potassium efflux

(73). Furthermore, Li et al. found that extracellular histones

augmented heat stroke-induced hepatocyte pyroptosis and liver

injury both in vitro and in vivo in a dose- and time-dependent

manner via the TLR9-NLRP3 pathway (74). Likewise, histones were

found to mediate the activation of the NLRP3 inflammasome and

pyroptosis in endothelial cells to cause endothelial dysfunction (75).
2.1.3 Other inflammatory pathways
Extracellular histones can also induce adipose tissue

inflammation, which further contributes to metabolic

dysfunction. Recently, Roos et al. (76) found that, in a murine
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polytrauma model, serum levels of histones significantly increased

accompanied by an inflammatory response in white adipose tissue.

Specifically, the histone-evoked inflammatory response in human

adipocytes was mediated via the MYD88-IRAK1-ERK signaling

axis (76). Moreover, histones can induce lytic cell death in human

adipocytes executed independently of caspases and RIPK1 activity

(76). These results suggest that preventing adipose tissue

inflammation and adipocyte death by targeting extracellular

histones in patients with polytrauma may help minimize

posttraumatic metabolic dysfunction.

Histones are also implicated in the molecular pathogenesis of

interstitial lung disease. Riehl et al. (53) recently found that the level

of extracellular CitH3 was significantly increased in cell-free

bronchoalveolar lavage fluid of patients with idiopathic

pulmonary fibrosis than in that of healthy controls. Histones first

activated platelets to release TGFb1, which signaled through the

TGFbRI/TGFbRII receptor complex on LysM+ cells to antagonize

macrophage-derived IL-27 production (53). Neutralizing histones

with monoclonal anti-histone H2A/H4 antibodies reduced the

severity of experimental pulmonary fibrosis in mice.

Extracellular histones can mediate periodontitis by potentiating

IL-17-mediated inflammation. Kim et al. recently showed that the

levels of extracellular histones in the blood and local lesions of

severe periodontitis patients were significantly increased (77). In an

established periodontitis animal model, the authors demonstrated

that histones triggered the upregulation of IL-17/Th17 responses,

and bone destruction (77).
2.2 Histone-induced
endothelium dysfunction

Among the different tissues affected during critical illnesses

such as sepsis and pancreatitis, the endothelium is one of the most

affected, as it is the first line of exposure to stimuli. The endothelium

actively participates in and is affected by inflammatory progression.

In particular, endothelial cells initiate coagulation by releasing

factors that control platelet adhesion and blood clotting,

magnifying the immune response by linking local and systemic

immunoreactions, and regulating vascular tone and blood pressure

(78). Data has proposed that endothelium dysfunction may be the

primary cause of multiple organ dysfunction syndrome (MODS)

and a crucial contributor to mortality in critically ill patients (79). In

this regard, counteracting endothelial injury shows good

prognostic characteristics.

Comprehensive studies of the effects of histone subunits on

endothelium injury emphasize the pathological importance of

subunits H3 and H4 (46, 80, 81), while the H1 and H2 subunits

do not contribute to endothelial cytotoxicity (82). Recently, Osca-

Verdegal et al. (39) demonstrated that citrullinated histones had less

cytotoxic effects on endothelial cells than did free histones.

Nevertheless, citrullinated histones still affect the inflammatory

response and regulatory endothelial mechanisms (39). Histones

significantly contribute to endothelial cell death, autophagy or

apoptosis in a dose-dependent manner and mediate the

destruction of cell-cell adherens junctions.
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2.2.1 Histone-induced endothelial cell death,
autophagy and apoptosis

The dose threshold for histone-mediated endothelial dysfunction

remains controversial due to endothelial variation (83). Generally, a

high dose of histones can ubiquitously cause severe endothelial

damage, resulting in a remarkable reduction in cell viability via

direct binding between histones and phospholipid–phosphodiester

bonds on the cell membrane, which leads to high permeability and

the activation of calcium ion influx (48, 84). Although histones

exhibited high affinity with glycosaminoglycans, especially heparan

sulfate, the removal of heparan sulfate showed little protective effects

against histone cytotoxicity, suggesting that the combination between

glycosaminoglycans with histones might not be necessary for histone-

mediated cytotoxicity (85). Importantly, Meara et al. (85) indicated

that the addition of histones markedly reduced the liftime of lipid

bilayers, verifying the direct cytotoxicity of histones. In contrast, low-

dose histones induce autophagy and apoptosis in endothelial cells via

mammalian target of rapamycin signaling (86).

2.2.2 Histone-induced dysregulation of
endothelial cell-cell adhesion

Although a high dose of histones (>100 µg/mL) can directly

cause endothelial cell death (86), plasma levels of extracellular

histones in patients are far below this threshold in most

pathological conditions. Increasing evidence indicated that

histone could cause endothelial barrier dysfunction beyond

endothelial cytotoxicity. For instance, plasma concentrations of

endothelial integrity-associated molecules, including syndecan-1,

sphingosine-1-phosphate and soluble VE-cadherin, were

significantly altered in severe septic patients (87, 88), suggesting

that alterations in intracellular adhesion molecules might also play a

crucial role in barrier dis-integrity and disease progression. More

specifically, extracellular histones could destroy cell-cell adherents

junctions, such as VE-cadherin (80, 89, 90), occluding (91) and

zonular occludens 1 (84), and reorganize the cytoskeleton with

increased F-action stress fibers to disrupt the endothelial barrier and

directly exacerbate inflammatory damage (88).

Ramasubramanian et al. (82) compared the effects of various

histone subunits (H1, H2A, H2B, H3, and H4) on human pulmonary

endothelial cell permeability and the inflammatory response. Their

results showed that histone H3 and H4, but not H1, H2A, or H2B,

caused an increase in endothelial cell permeability accompanied by

the disassembly of adherens junctions in a dose-dependent manner

via a TLR4-dependent mechanism. Moreover, at higher doses,

histones H3 and H4 activated the NF-kB inflammatory cascade

and upregulated the expression of the endothelial adhesion

molecules intercellular cell adhesion molecule 1 (ICAM1), vascular

cell adhesion molecule 1 (VCAM1), and E-selectin and

inflammatory cytokines. Similar findings were observed in other

studies by Kim et al. and Pérez-Cremades et al. (66, 80). Notably, the

elevated expression of adhesion molecules on the endothelial cell

surface may increase the rolling, adherence, and transmigration of

leukocytes into the underlying tissue.

Extracellular histone-induced endothelial damage further

triggers severe pulmonary hemorrhage (10, 92). Transglutaminase

2 is abundant in endothelial cells, plays an essential role in
Frontiers in Immunology 05
promoting endothelial sprouting and the migration of vascular

mesenchymal cells into endothelial cells (92). Mizuno et al.

recently reported that, in a histone-induced acute lung injury

animal model, transglutaminase 2 prevented C57BL/6J mice from

histone-induced pulmonary hemorrhage by promoting fibrin

deposition and adhesion of platelets to endothelial cells to restore

endothelial barrier (92).
2.3 Histone-induced coagulopathy

Histones, as major DAMPs, promote thrombosis in a platelet-

dependent manner. Histones bind to platelets, inducing platelet

aggregation and thrombocytopenia (6) through self-recognition of

TLRs, especially TLR2/TLR4 (93, 94). Verdegal et al. found a clear

correlation between histones and total prothrombin, with the

hypothesis that the histone-induced activation of the endothelium

deprived the ability of platelets to adhere to the endothelium, which

led to a longer time for clot development (39, 46). Histones can also

promote endothelial cell activation, induce the expression of tissue

factors (54) and Weibel-Palade bodies (1.46-fold) in a caspase

dependent, calcium dependent, and charge-dependent manner,

and thus cause thrombocytopenia (48, 95, 96). Additionally,

histones can induce platelet polyphosphate release and

phosphatidylserine exposure, which leads to the intrinsic

coagulation activation in an FXII-dependent and TLR2/4-

dependent manner (94, 97, 98).

Moreover, Michels et al. noted that the levels of histones and

Weibel-Palade bodies were positively correlated with inflammation

(95), suggesting that the histone-Weibel-Palade bodies axis might

link coagulopathy to inflammation. Moreover, histones could also

activate impairing thrombomodulin-dependent protein C (99) and

were crosslinked to fibrin by FXIIIa (100), leading to increased

thrombin generation and promoted fibrinolytic resistance.

In summary, histones markedly disrupt the fine balance and

crosstalk between coagulant, anticoagulant, and inflammatory

pathways to augment the procoagulant phenotype. Although the

exact mechanism by which histones trigger thrombosis remains

open to debate, it is well recognized that inflammation, thrombosis,

and endothelial injury form an interactive network that contributes

to multiorgan dysfunction or even death.
2.4 Histone-induced
neuroimmune responses

During the past decade, it has been well established that

histones exert neurotoxic effects that contribute to neuroimmune

responses (101). For instance, Da Silva et al. demonstrated that

histones could both damage neurons in a TLR4-dependent manner

and alter the neuroimmune functions of glial cells, as evidenced by

the reduced phagocytic activity of BV-2 microglia after LPS

stimulation (102). Similarly, McRae et al. showed that both linker

histone H1 and core histone H3 induced proinflammatory

activation of microglia-like cells by upregulating the secretion of

NO and cytokines, including interferon-g-inducible protein 10 and
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TNF-a, through the TLR pathway (103). Accordingly, targeting

extracellular histones to inhibit their neurotoxic activities may

represent a potential strategy for combating neurodegenerative

diseases that are characterized by the adverse activation of

microglia and neuronal death.
2.5 Histone-induced vascular calcification

Vascular calcification is a major risk factor for cardiovascular

events and is associated with a poor prognosis in patients with

chronic kidney disease (104, 105). Vascular calcification is often

characterized by the transformation of vascular smooth muscle cells

into cells with osteoblast-like characteristics. Hoshino et al. recently

reported that extracellular histones intensified calcium phosphate-

dependent calcification by decreasing the expression of vascular

smooth muscle cell marker genes while simultaneously increasing

the expression of osteoblast marker genes (106). Histones could also

induce inflammation and senescence in vascular smooth muscle

cells by activating the AMPK/FOXO4 signaling pathway (107).
2.6 Histone-induced cardiac dysfunction

Histones significantly contribute to sepsis-associated cardiac

dysfunction. Alhamdi Y et al. first demonstrated that histones

induced profound calcium influx and overload in cultured

cardiomyocytes, with dose-dependent detrimental effects on

intracellular calcium transient amplitude, contractility, and

rhythm, suggesting that histones directly affect cardiomyocyte

function adversely (52). In histone-infused C57BL/6 mice model,

a moderate sublethal histone dose of 30 mg/kg caused left

ventricular contractile dysfunction characterized by a reduced

ejection fraction and prolonged relaxation time. However, at high

doses (≥ 60 mg/kg), histone administration led to pulmonary

vascular obstruction, which further induced an increase in right

ventricular pressure and dilatation. More recently, the same

research group reported that histone-induced cardiac contractility

depression was associated with protein kinase C alpha activation

and troponin phosphorylation (108). Accordingly, blocking protein

kinase C alpha significantly abrogated histone-induced

deterioration in peak shortening, duration and the velocity of

shortening and re-lengthening of cardiomyocyte contractility.

These findings suggest that targeting circulating histones has

potential translational benefits for critically ill patients with

cardiac dysfunction and elevated plasma histone levels.
2.7 Histone-induced acute lung injury

The lung microvasculature is predominantly affected once

histones are released into the blood circulation. Histones are toxic

to cultured pulmonary endothelial cells, and histone levels are

associated with acute lung injury and mortality (3). Extracellular

histones could incur endothelial injury via the multiple pathways

mentioned above, causing microvascular thrombosis, lung edema,
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and pulmonary hemorrhage. Recently, Fu et al. reported that histones

could directly induce pulmonary syndecan-1 degradation via the

heparinase pathway to cause a hyperpermeability of the pulmonary

endothelium, as evidenced by collapsed alveoli, thickened alveolar

walls, and obvious infiltration of neutrophils, lymphocytes, and

erythrocytes in the alveoli in histone-infused murine models of

ARDS (109). Moreover, histones can induce hyperinflammation

and lung injury through activating either caspase-1 dependent

inflammasome pathway, TWIK2-dependent potassium efflux or

TLR4-dependent mechanisms (68, 73, 80). Accordingly, the

administration of TLR-4 inhibitors significantly alleviated histone-

induced vascular leakage and reduced the protein content and total

cell and polymorphonuclear cell counts in bronchoalveolar lavage

fluid in acute lung injury murine models (80, 82).
2.8 Histone-induced liver and kidney injury

During ischemic-reperfusion injury, dying hepatocytes and

tubular epithelial cells release histones locally, promoting

microvascular and parenchymal injury (3). Interestingly, the

intraperitoneal administration of probiotics (200 mg/kg)

significantly decreased the activation of the NF-kB pathway,

decreased the mRNA levels of TLR-4, and improved the cell

apoptosis in kidney tissues in an ischemia-reperfusion-induced

acute kidney injury model (110, 111). Moreover, Li et al. reported

extracellular histones could exacerbate heat stroke-induced liver

injury by triggering hepatocyte pyroptosis and liver injury via the

TLR9-NLRP3 pathway (74), stimulate collagen expression in vitro

and promote liver fibrogenesis in a mouse model via the TLR4-

MyD88 signaling pathway (112). Histone neutralization with an

anti-histone antibody reduced postischemic liver and kidney

injury (3).
3 Emerging anti-histone therapeutic
strategies for critical and
inflammatory diseases

As outlined above, extracellular histones are major mediators of

tissue injury and organ dysfunction. Accordingly, histones have

become therapeutic target candidates for many critical or

hyperinflammatory diseases in which inflammation and

microcirculation disturbance play crucial pathological roles. In this

section, we summarize the latest advances in emerging therapeutic

strategies targeting extracellular histones for the management of these

critical or hyperinflammatory diseases. Furthermore, we summarize

the mechanisms of these anti-histone strategies in Figure 2.
3.1 Heparin and its derivatives

3.1.1 Heparin
Heparin, a negatively charged glycosaminoglycan derived from

porcine intestine, has been used as an anticoagulant for decades
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(113). In addition to anticoagulation, heparin also reduces the

release of inflammatory molecules, such as interferon (IFN)-g,
TNF-a, IL-6, and IL-8, via the inhibition of NF-kB signaling and

the cleavage of complement proteins and ultimately alleviates the

inflammatory response in vivo (114). As much evidence shown,

heparin has a naturally strong affinity for positive toxins such as

histones due to its high negative charge density, thus, conditions

such as sepsis, COVID-19, intestinal microcirculatory dysfunction

and pancreatitis may benefit from heparin administration

(114–120).

Numerous data collectively showed that heparin could prevent

histone-mediated cytotoxicity, hyperinflammation, and organ

injury by forming avirulent heparin-histone complexes (115, 121–

124). For instance, unfractionated heparin (UFH) treatment

significantly reduced the level of histone-induced inflammatory

markers such as IL-6, IL-8, tissue factor and C3a in whole blood
Frontiers in Immunology 07
(124). Zhu et al. found that the instant intravenous administration

of 100 IU/kg/h UFH significantly ameliorated intestinal

microcirculation dysfunction in both LPS- and histone-induced

endotoxemic rat models by antagonizing histones (115, 119). Jiang

et al. indicated that pretreatment with UFH (250 U/kg) significantly

inhibited histone-induced alveolar macrophage activation and

alleviated lung damage in LPS-induced ARDS murine model (30).

Fu et al. reported that UFH (400 U/kg) significantly mitigated

histone-induced inflammatory exudation, hyperpermeability, and

low expression of syndecan-1 in the lung (109).

In addition to prophylactic treatment or cotreatment with

stimuli in in vitro and in vivo studies, Wang et al. further

investigated whether postsurgical heparin interference was still

beneficial to histone-induced organ damages (118). In this study,

UFH was subcutaneously injected into C57BL/6J mice 4 h after

cecal ligation and puncture (118). The UFH-treated group showed a
FIGURE 2

Mechanism of action of currently available anti-histone therapeutic strategies in preclinical studies. Extracellular histones exposed to the circulation
induce the activation and aggregation of platelets, formation of clots, release of proinflammatory cytokines and recruitment and adhesion of innate
immune cells, processes that can be inhibited by the use of histone-neutralizers, such as heparin and its heparinoids, polyanions, nanoparticles,
hydrogels, monoclonal antibodies, RNA aptamers, plasma proteins (albumin, pentraxin-3, C-reactive protein, osteopontin, etc.), etc. Furthermore,
various histone-interference strategies, including the promotion of histone degregation (FSAP, activated protein C, and GzmA) and extracorporeal
blood purification for histone removal, decrease extracellular histone levels. Lesional histones induce barrier disintegrety, cell death and
inflammatory reactions, processes that can be inhibited by related receptor blockers. Additionally, the inhibition of NET release by PAD4 inhibitors
prevents the release of histones from neutrophils and reduces associated inflammation. Likewise, the administration of short-chain fatty acids and
dexmedetomide lower histone levels in circulation. FSAP, factor VII-activating protease; GzmA, granzyme A; PAD4, peptidylarginine deiminase 4;
TLR, toll-like receptor. This picture was generated using MedPeer software.
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significant decrease in serum histone concentration and kidney

injury, as evidenced by reduced expression of neutrophil gelatinase-

associated lipocalin, kidney injury molecule-1 and inflammatory

factors and less sepsis-induced tissue edema and apoptosis in

kidney (118). Similarly, Li et al. found that intravenous injection

of 400 U/kg UFH 1 h or 6 h after treatment with 50 mg/kg histone

successfully alleviated histone-induced lung injury and pulmonary

edema, improved histone-induced endothelial injury and highly

procoagulant phenotype, and decreased mortality (120).

Additionally, Longstaff et al. reported that the particular

combination of heparins and histones might attenuate the

anticoagulant effects of heparins (122).

It is well-known that histones could promote fibrinolysis (100,

125, 126). However, the effect of heparin on histone-induced

fibrinolysis inhibition remains controversial. Locke et al. reported

that therapeutic doses of low-molecule-weight heparin (LMWH)

could inhibit histone-fibrin crosslinking and attenuate the delayed

effects on histone-induced fibrinolysis (100). However,

Komorowicz et al. inversely indicated that the histone-induced

inhibition of fibrin lysis by plasmin could not be neutralized by or

even exacerbated by polyanions such as heparins and short

polyphosphates (125). Administration of LMWH (4000 U/0.4

mL) or aspirin both reduced placenta-mediated pregnancy

complications, but only LMWH reversed the histone-induced

inhibition of invasion, suggesting that the protective effect of

LMWH mainly depended on the direct neutralizing combination

of histones and LMWH rather than the anticoagulatory structure

(127). Heparin treatment may also reduce the release of

extracellular histones. For instance, UFH administration (400 U/

kg, 30 min prior to LPS stimulation) was found to diminish the

concentration of extracellular histones in a LPS-induced neonatal

ARDS mouse model (128).

Although heparin showed extremely strong affinity with

histones, which resulted in a significant improvement in histone-

induced damage, the specific safety threshold of heparin use in

animal models was still unclear. It is widely accepted that the

administration of high dose of heparins increases the risk of

bleeding, which limits their further clinical application. Sun et al.

reported that intraperitoneal injection of 250 U/kg heparin

significantly relieved alveolarization and vascular development,

reduced NETosis, decreased the levels of inflammatory cytokines

such as TNF-a, IL-1b and IL-6, and enhanced the survival rate in

both hyperoxia-induced bronchopulmonary dysplasia and histone-

induced lung injury murine models without increasing risk of

alveolar capillary bleeding (129). However, a higher dose at 500

U/kg showed no effect on reducing NETosis or inhibiting

inflammatory reactions but did result in alveolar capillary

bleeding (129). In contrast, Iba et al. investigated that both

heparin (350 or 700 U/kg) and LMWH (2.0 or 4.0 mg/kg), rather

than argatroban, attenuated histone-induced liver and kidney

dysfunction and improved the survival rate (116). Additionally, a

high concentration of heparin (700U/kg) could further inhibit the

interaction between histones and platelets (116). Finally, it is also of

great interest whether additional benefits can be gained from

combination treatment with low doses of heparins and other anti-

histone strategies. Medeiros et al. compared the efficacy of DNase I
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monotherapy, LMWH monotherapy, and combination therapy

(130) and reported that the mono-administration of DNase I and

LMWH improved the survival of cecal ligation and puncture-

induced septic mice compared with that of saline-treated mice

(81.8% vs. 83.3% vs. 38.7%, respectively) (130). Notably, the co-

treated group exhibited only a small improvement in survival,

suggesting that there may be a negative drug-drug interaction

between DNase I and LMWH (130).

3.1.2 Nonanticoagulant heparins and heparinoids
Sharma et al. compared the binding affinity of heparin and its

derivatives with different molecular weight and structural

characteristics for histone subunits by using biolayer

interferometry technology and further investigated their ability to

attenuate histone-mediated cytotoxicity, procoagulant activity, and

impairments in activated protein C (APC) generation (131). As

shown in Table 1, all four types of heparin variants showed

inversive histone-mediated impairment of APC generation, which

indicated that this ability was size- and anticoagulant-independent

(131). Reciprocally, the capacity to neutralize histone-induced

cytotoxic and procoagulant effects had a strict requirement for a

molecular weight above 1.7 kDa (131). Likewise, Wang et al. used 8

mL/g non-anticoagulant heparin intraperitoneally, which reduced

liver injury, and fibrogenesis in CCl4-induced liver fibrosis murine

models, confirming that the anticoagulant structure was not

necessary to neutralize histones (112). Sevuparin, a heparinoid in

which the high-affinity antithrombin III-binding pentasaccharide

had been removed, significantly reduced group A streptococcal-

induced plasma leakage and endothelium activation (81). However,

unlike heparin and its derivatives, sevuparin has a compromised

ability to inhibit neutrophil adhesion and degranulation (81).

Antithrombin-affinity chromatography of UFH yields no-

anticoagulant or low-anticoagulant heparin molecules. For

instance, Reutelingsperger et al. demonstrated that M6229, a low-

anticoagulant fraction of UFH obtained by affinity chromatography

employing immobilized antithrombin, significantly protected a rat

model of acute hyperinflammation from histone-induced liver

injury, kidney dysfunction, and mortality (132).

Additionally, the structural requirement of sulfation, which took

part in maintaining a negative charged construction, was

investigated by Hogwood et al. (124). In this study, heparin and 4

selectively desulfated heparins, 2-O-desulfated, 6-O-desulfated, N-

desulfated-re-N-acetylated, and fully desulfated heparin, were added

to whole blood from healthy volunteers with or without 50 mg/ml of

histones (124). The results showed that both 2-O-desulfated and 6-

O-desulfated retained different degrees of anticoagulant activity

(90% vs 75%) compared to unmodified heparin, and all selectively

desulfated heparins, except fully desulfated heparin, significantly

reduced histone-induced responses in both inflammatory reactions

and complement activity, suggesting that 1) the position of sulfur

modification was significant for the change of heparin anticoagulant

activity and 2) negatively charged sulfate groups were important for

anti-histone treatment (124). Moreover, N-desulfated-re-N-

acetylated heparin, which has a neutral acetyl group, occupied the

positive sites exposed after N-desulfation and restored the anti-

histone capacity, indicating that there might be other pathways
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involved in heparin-induced anti-histone treatment in addition to

the combination (124).
3.2 Chondroitin sulfate and its derivatives

Chondroitin sulfate (CS), which is the side chain of

proteoglycans, is widely distributed on the cell surface and in

extracellular matrices. Nagano et al. reported that the

administration of CS significantly reduced liver and renal injuries,

thrombocytopenia, and platelet/leukocyte aggregation in histone-

infused rats and exerted protective effects on vascular endothelial

cells against histone-induced toxicity in vitro (133). Accordingly, Li

et al. enzymatically synthesized CS-E nonadecasaccharide (CS-E

19-mer), as shown in Figure 3 (134). The results showed that the

CS-E 19-mer had a tight binding affinity for histones, with a binding

affinity constant of 4.47 × 10-8 detected by surface plasmon

resonance technology (134). CS-E 19-mer treatment alleviated

LPS-induced vascular hyperpermeability, improved kidney and

liver functions, and reduced mortality from 92% to 30% in LPS-

induced septic mice (134). Notably, compared with heparins, CS

and the CS-E 19-mer scarcely affected coagulation regulation,

suggesting that CS and its variants could be novel agents for

lethal systematic disorders at risk for hemorrhage (133).
3.3 Natural plasma proteins

Natural plasma proteins, such as albumin, C-reactive protein

(CRP), osteopontin, and fibrinogen, can also significantly interact

with histones in a charge-dependent manner to prevent the

deleterious effects of circulating histones. In this section, we

mainly discuss the latest advances in the use of natural plasma

proteins as potential histone neutralizers.
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3.3.1 Albumin
Early in 1961, it was reported that calf thymus histones can bind

to negatively charged albumin through electrostatic interactions

(135). Lam et al. first investigated the role of serum albumin in

preventing histone-induced platelet activation and aggregation

using flow cytometry and aggregometry (7). The results showed

that serum albumin significantly inhibited histone-induced platelet

activation and aggregation in a dose-dependent manner, which

could be remarkably reduced by surface neutralization of albumin

through the modification of carboxyl groups in the albumin

molecule (7). More recently, Iba and colleagues found that

physiological levels of albumin significantly attenuated histone

H3-mediated vascular endothelial cell death in vitro (136).

However, clinical evidence that routine albumin administration

may improve the clinical outcomes of critically ill patients with

elevated plasma circulating histones is still lacking.
3.3.2 Pentraxin-3
Pentraxin-3 (PTX3), an acute-phase protein that belongs to the

long-chain pentameric protein superfamily, is a pattern recognition

receptor involved in the regulation of the innate immune response

(137). It is widely accepted that plasma PTX3 levels are significantly

associated with disease severity in patients with sepsis (138),

autoimmune diseases (139), and cardiovascular diseases (140). In

2014, Daigo et al. reported that PTX3 interacted with histones to

form histone-PTX3 aggregates, and that PTX3 protected

endothelial cells from histone-mediated cytotoxicity both in vitro

and in vivo (141). Additionally, PTX3 administration substantially

decreased mortality and massive lung hemorrhage in mice infused

with a high dose of histone without affecting platelet function,

which is a distinct feature of PTX3 compared with other reported

anti-histone molecules, such as anti–histone H4 antibody, heparin,

CRP, and recombinant thrombomodulin.
TABLE 1 Heparin variants and their histone-affinity properties.

UFH LMWH
Vasoflux
(LMWH)

Fondaparinux

Molecular weight ~15 kDa ~5 kDa ~5 kDa 1.7 kDa

Dosage 250 U/kg/q12 h 200 U/kg/24h 200 U/kg/24h 7.5 mg/q24h

Anticoagulant ability (+) (+) (-) (+)

Histone
affinity

H1 2.88×104 ± 9.72×103 4.10 × 104 ± 2.95 × 104 6.67 × 104 ± 3.33 × 104 1.48 × 107 ± 3.98 × 106

H2A <1.00 ± 0 <1.00 ± 0 <1.00 ± 0 4.71 × 107 ± 2.02 × 107

H2B 3.14 × 101 ± 3.04 × 101 <1.00 ± 0 <1.00 ± 0 3.06 × 106 ± 1.97 × 106

H3 <1.00 ± 0 <1.00 ± 0 <1.00 ± 0 1.53 × 107 ± 6.26 × 106

H4 <1.00 ± 0 <1.00 ± 0 <1.00 ± 0 8.11 × 1010 ± 2.87 × 1010

Anti-cytotoxic
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
Modest,

Dose-dependent

Anti-procoagulant
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent

Impairment of APC generation
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
Appreciable,

Dose-dependent
(-)
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3.3.3 C-reactive protein
C-reactive protein (CRP), a major acute-phase protein, is

involved in both innate and adaptive immunity against bacterial

infection. Abrams et al. showed that CRP could compete with

phospholipid-containing liposomes to form CRP-histone

complexes in serum from patients with both elevated CRP and

histones (142). In vitro, CRP significantly alleviated histone-

induced endothelial cell damage, permeability increase, platelet

aggregation, and coagulation activation (142). In vivo, 10 mg/kg

CRP markedly protected mice challenged with lethal doses of

histones (75 mg/kg) from lung edema, hemorrhage, thrombosis,

and mortality (142). In addition, Hsieh et al. demonstrated that

CRP significantly reduced histone-induced neutrophil respiratory

burst responses (143). Therefore, CRP-mediated detoxification of

circulating histones might be a generic host defense mechanism

against excessive inflammation in humans. However, whether an

elevated CRP level will bring a net anti-inflammatory benefit in

patients with hyperinflmmatory conditions such as interstitial lung

disease, cytokine release syndrome following post CAR-T cell

therapy, sepsis, and severe COVID-19 remains unknown.

3.3.4 Osteopontin
Osteopontin (OPN), a highly anionic molecule secreted by

epithelial cells, can also modulate the proinflammatory and

cytotoxic properties of circulating histones. Kasetty et al. found

that OPN bound to histones with high affinity in vitro (Kd=2.8×10-7

for histone H3.1 and Kd=1.4×10-8 for histone H4 determined by

surface plasmon resonance) and that the histone–OPN complex

levels in the bronchoalveolar lavage fluid of ARDS patients were

significantly higher than those in the bronchoalveolar lavage fluid of

healthy individuals (144). Accordingly, OPN treatment inhibited

the histone-induced cytotoxic and hemolytic effects of histones,

significantly reducing histone-induced epithelial cell cytotoxicity,

endothelial cell hyperpermeability, and hemolysis in vitro and

protecting mice from histone-induced acute liver injury in vivo,

as evidenced by a significant increase in the incidence of necrosis of

hepatocytes in OPN-/- hepatic injury mice induced by ischemia–

reperfusion (145).

3.3.5 Cl esterase inhibitors
Cl esterase inhibitor (ClINH), an endogenous acute-phase

protein, is the main physiologic inhibitor of the contact phase

and the kallikrein-kinin system (146). In 2012, Igonin et al.
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conducted a randomized controlled study involving 62 sepsis

patients to assess the impact of high-dose ClINH administration

(12,000 U) on the systemic inflammatory response and survival

(147). Their results showed that ClINH infusion in sepsis patients

was significantly associated with reduced all-cause mortality (12%

vs. 45% in controls) as well as sepsis-related mortality (8% vs. 45%

in controls) over 28 days (147). Since then, increasing evidence has

shown that ClINH can also neutralize histone-induced toxicity via

tight combination with histones due to its glycosylation-dependent

overall negative charge (148). C1INH was found to bind all histone

types, independent of its protease inhibitory activity (148).

Moreover, C1INH treatment inhibited the cytotoxic activity of

extracellular histones in vitro and protected mice against histone-

evoked lung injury and death . As his tone-mediated

hyperinflammation and organ injury may occur in numerous

critical illnesses, the application of C1INH may provide a new

therapeutic option in disease states characterized by excessive

inflammation and cell death.

3.3.6 Clusterin
Clusterin (CLU) is a ubiquitous extracellular protein that

chaperones misfolded proteins and promotes their removal.

Recently, CLU was found to be dramatically decreased in patients

with sepsis (95.0 ± 67.5 in non-survivals vs. 133.1 ± 69.5 µg/mL in

survivals) (149). Augusto et al. reported that CLU could bind to

histones with a dissociation constant of 4-6 nM in a dose-dependent

manner (149). Pretreatment with CLU inhibited the inflammatory,

thrombotic, and cytotoxic properties of circulating histones in vitro

(149). Furthermore, intravenous CLU supplementation

significantly improved survival in lethal dose of histone (100 mg/

kg)-induced murine models, murine endotoxemia models and

CLP-induced septic models (149). The identification of CLU as

an endogenous regulator of histone activity provides another

example of the host’s intrinsic ability to counter or quench

ongoing proinflammatory and antimicrobial defense mechanisms

to maintain homoeostatic control.

3.3.7 Fibrinogen
Fibrinogen, an acute phase protein, could functionally sequester

histones as complexes to eliminate the cytotoxic effects of histones

and cluster on the surface of ionomycin-stimulated neutrophils to

delay NETosis in a b2-integrin-dependent manner, thus

significantly maintaining the viability of neutrophils (150). More
FIGURE 3

The chemical structure of CS-E 19-mer.
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recently, Toh et al. (151) demonstrated that fibrinogen bound

histones through its D-domain with high affinity (calf thymus

histones KD=18.0 ± 5.6 nM, histone 3 KD=2.7 nM ± 0.8 nM, and

histone 4 KD=2.0 ± 0.7 nM) and thus significantly reduced histone-

induced endothelial damage and platelet aggregation. In a cohort of

critically ill patients, the authors further found that a histone-to-

fibrinogen ratio≥6 on admission was associated with moderate-

severe thrombocytopenia and independently predicted mortality.

Fibrinogen buffers the cytotoxic properties of circulating histones.

3.3.8 Inter-a inhibitor protein
Inter-a inhibitor protein (IAIP), an endogenous plasma serine

protease inhibitor, carries a CS moiety in the light chain where the

light chain covalently links to 2 heavy chains (152). Chaaban et al.

revealed that IAIP, particularly high-molecular-weight hyaluronan

and negatively charged CS which showed natural affinities

for histones, could significantly reduce histone-induced

cytotoxicity via reducing histone-induced calcium influx, platelet

aggregation, prothrombinase activity in a dose-dependent manner

in vitro (152). Pre-injection of IAIP counteracted histone-

induced thrombocytopenia, prolonged bleeding time, systemic

inflammation and organ injury, as evidenced by a significant

abrogation of P-selectin expression, fibrin deposition and

neutrophil accumulation in the lung and decrease plasma levels of

proinflammatory cytokines (IL-1b, IL-6, TNF-a), chemokines, and

anti-inflammatory IL-10 (152).
3.4 Other histone neutralizers

3.4.1 Methyl b-cellobioside per-O-sulfate
In 2020, Meara et al. reported that a highly sulfated hexose

disaccharide was the minimum structure for small polyanions

(SPAs, ~0.9–1.4 kDa) to inhibit histone-mediated cytotoxicity as

effectively as heparins (85). In this study, three SPAs, namely,

cellobiose per-O-sulfate (CBS), methyl b-cellobioside per-O-

sulfate (mCBS), and maltotriose per-O-sulfate (MTS), were found

to inhibit the cytotoxic, platelet-activating and erythrocyte-

damaging effects of histones by electrostatically interacting with

histones. SPAs could also improve the stability of lipid bilayers and

reduce histone-induced intracellular calcium overload in vitro (85).

Furthermore, both mCBS and MTS (the chemical structures are

shown in Figure 4) significantly improved liver, cardiac, and kidney

injury with less cell death in the tissue in histone-infused, CLP and

cardiac ischemia-reperfusion injury murine models. However, the

authors found that MTS, the most potent neutralizer of DNA-free

histones in this study, was not effective in protecting mice from

NET-mediated cardiac ischemia-reperfusion injury and peritonitis-

induced sepsis. Therefore, mCBS ahead of MTS was chosen as the

SPA for clinical development. Importantly, mCBS, which was well

tolerated in rats and dogs when continuously infused at 125 mg/kg/

h for 14 days, had excellent safety and minimal anticoagulant

activity; that is, mCBS was 110-fold less effective than LMWH

and 764-fold lower than UFH. More recently, Shah et al. reported

that mCBS significantly reduced histone-mediated cardiomyocyte
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death and infarct size in isolated murine myocardial ischemia–

reperfusion models (16). Similarly, Ge et al. indicated that

intravenous injection of 100 mg/kg mCBS mitigated LPS-induced

lymphocyte recruitment, neutrophil infiltration, inflammatory

cytokine release, and pulmonary edema and significantly

improved oxygenation function in LPS-induced ARDS rat models

(153). In 2023, a randomized placebo-controlled experimental

study further assessed the effects of mCBS on the severity and

outcome of a peritonitis-induced sheep sepsis model. Twenty-four

mechanically-ventilated female sheep were randomized into three

groups: control, early treatment, and late treatment (n = 8 each).

mCBS was given as a bolus (1 mg/kg) followed by a continuous

infusion (1 mg/kg/h) just after sepsis induction in the early

treatment group, and 4 h later in the late treatment group. The

results showed that mCBS-treated animals required significantly

less norepinephrine to maintain a mean arterial pressure between

65 and 75 mmHg than did controls and had lower creatinine,

lactate, and IL-6 levels, which were associated with reduced changes

in plasma H3.1 nucleosome levels (p = 0.02). Together, this

encouraging preclinical evidence indicates that neutralization of

extracellular histones with mCBS may represent a new therapeutic

approach for multiple histone-mediated critical illnesses, including

sepsis, severe COVID-19, and ARDS.

3.4.2 Magnesium
Magnesium ion, the second most abundant intracellular cation

after potassium, may possess anti-inflammatory and antioxidant

properties (154). Hypomagnesemia is commonly observed in 22.2%

of septic patients and can lead to multiple life-threatening

complications, such as malignant arrhythmia, coronary artery

spasm, and cardiac arrest. In 2023, Gu et al. conducted a

retrospective cohort study using the Medical Information Mart in

Intensive Care-IV database to investigate the association of

magnesium administration with mortality and organ support in

critically ill septic patients (155). The results showed that

magnesium sulfate use was significantly associated with lower in-

hospital mortality and a lower need for renal replacement therapy.

Most recently, Zhong et al. studied the role of magnesium

supplementation in preventing histone-mediated macrophage

damage, coagulation dysfunction, and lung injury in both septic

patients and animal models (156, 157). Their clinical data showed

that the level of circulating histones correlated negatively with both

monocyte and platelet counts in septic patients and that low

magnesium levels were associated with low monocyte levels in

such patients. In histone-induced mice models, magnesium

administration significantly improved survival and attenuated

histone-mediated endothelial cell injury, coagulation dysfunction,

and lung histopathological damage. Magnesium can further protect

macrophages from apoptosis and defective bacterial phagocytosis

through the PLC/IP3R/STIM-mediated calcium signaling pathway

and therefore significantly reduce the bacterial load in a CLP+

histone-induced mouse model. Accordingly, well-designed

prospective randomized controlled studies are needed to further

verify the protective effect of magnesium supplementation in septic

patients with high plasma levels of circulating histones.
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3.4.3 Suramin
Suramin is a multifunctional polyanionic drug that has been

used for a century to treat the first stage of acute human sleeping

sickness caused by Trypanosoma brucei rhodesiense. As shown in

Figure 5, suramin is highly negatively charged owing to the presence

of sulfate groups in its molecular structure. In 2023, Villalba et al.

demonstrated that suramin avidly bound to extracellular histones

with a dissociation constant of 250 nM through stable electrostatic

interactions between the sulfate groups on suramin and hydrogen

bonds in the histone octamer. In vitro, suramin blocked histone-

evoked thrombin generation in endothelial cell cultures and

vasodilatory dysfunction in isolated mouse vessels (158). Suramin

administration (50 mg/kg) significantly protected mice from lethal

doses of histones (75 mg/kg) by decreasing lung endothelial

cytotoxicity, lung edema, and intra-alveolar hemorrhage in vivo

(158). However, suramin has less affinity for citrullinated histones

from neutrophil extracellular traps. Together, these data

demonstrate the therapeutic potential of suramin in critically ill

patients characterized by elevated circulating histone levels.

3.4.4 Histone inhibitory peptide
In 2019, Silvestre-Roig et al. first revealed that extracellular

histone H4 mediated membrane lysis of smooth muscle cells and

thus contributed to arterial tissue damage and inflammation.

Accordingly, they synthesized a histone inhibitory peptide that

could form stable complexes with the H4N-terminus, which was

found to attenuate histone-mediated smooth muscle cell death and

stabilize atherosclerotic lesions (26). They further investigated that

the continuous administration of histone inhibitory peptide
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significantly increased the stability of plaques but did not alter

neutrophil recruitment in spontaneous atheroprogression murine

models (26). More recently, the authors further developed another

novel peptide inhibitor, namely, cyclical histone H2A interference

peptide, which bound to NET-resident histone H2A to block

monocyte adhesion and consequently reduced atheroprogression

during endotoxemia in hypercholesterolemic mice (159). These new

synthetic peptides may provide a new direction for the development

of novel anti-histone drugs and the management of cardiovascular

diseases and other histone-related chronic inflammatory diseases.
3.4.5 RNA aptamers
Aptamers, a group of chemically stabilized nucleic acid drugs,

are synthetic RNA or DNA oligonucleotide ligands that have high

affinity and specificity for their targets (160). Unlike proteins,

aptamers are redox-, pH- and temperature-insensitive, small-

sized, and economical to produce (161). In this regard, Urak et al.

developed an RNA aptamer-based anti-histone therapeutic strategy

to selectively neutralize extracellular histones implicated in MODS.

Nuclease-resistant, 2′ fluoro-modified RNA aptamers that had a

high affinity for histones were first developed by exponential

enrichment. By using surface plasmon resonance, the dissociation

constants between the tailored RNA aptamers (KU7 and KU9) and

histone H4 were determined to be 4.01 and 1.51 nM, respectively,

while no significant binding between the RNA aptamers and human

albumin was observed, confirming the specificity of the tailored

RNA aptamers for histones vs. serum proteins. On the one hand,

the obtained RNA aptamers significantly inhibited histone-

mediated platelet aggregation and endothelial cell death in vitro.
FIGURE 4

Chemical structures of mCBS (A) and MTS (B).
FIGURE 5

Chemical structure of suramin.
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On the other hand, RNA aptamers not only alleviate calf thymus

histone-induced TLR activation, as measured by IL-6 production

but also reduce edema, thrombi, hemorrhage, and inflammatory

factor IL-6 expression in the liver, lung and spleen in histone-

infused murine models (160). Similarly, Lei et al. showed that a

tailored RNA aptamer (KU7) could prevent histone-induced

proinflammatory cytokine production, endothelial dysfunction

and platelet activation in vitro (162). In a histone-mediated acute

lung injury mice model, inhalation of KU7 prevented increased

pulmonary vascular permeability and alleviated histone-evoked

alveolar damage, as evidenced by reduced neutrophil infiltration,

alveolar destruction, and interstitial edema in KU7-treated lungs

(162). Together, these data highlight the potential safety of RNA

aptamers for targeting extracellular histones while minimizing

unwanted off-target effects.
3.4.6 Defibrotide
As shown in Figure 6, defibrotide is a polydisperse mixture of

predominantly single-stranded polydeoxyribonucleotide sodium

salts that is produced via controlled depolymerization of porcine

intestinal DNA (163). It is well established that defibrotide has

antithrombotic, fibrinolytic, anti-inflammatory, antioxidative, and

antiadhesive effects. Unlike heparin and other common

anticoagulants, defibrotide has no systemic anticoagulant effects,

making it safer to use in critically ill patients with intrinsic

coagulation disorders. Recently, Shi et al. reported that defibrotide

directly and tightly bound to histone H4 through charge-charge

interactions with an equilibrium dissociation constant of 53.5 nM,

as detected by surface plasmon resonance (164). Accordingly,

defibrotide abolished histone-induced endothelial activation,

endothelial cell death, and hyperpermeability of the endothelial

layer in vitro and countered histone-mediated endothelial activation

and venous thrombosis in large-vein thrombosis murine models

(164). These data provide insights into the potential role of

defibrotide in protecting the endothelium from thrombo-

inflammation with potential therapeutic potential for histone-

mediated critical illnesses.
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3.4.7 Polyphenol-modified proteins
Protein modification also helps to neutralize histones. Recently,

Itakura et al. figureported that proteins incubated with oxidized

vitamin C can function as histone-binding ligands, inhibit the

binding of plasminogen to histone H2B and regulate the

recruitment of monocytes/macrophages to sites of inflammation.

In light of this finding, Yamaguchi et al. further screened 7

polyphenol-modified proteins as a source of histone ligands. The

authors demonstrated that the obtained polyphenol-modified

proteins had strong affinities for the N-terminal tail region of

histones to form aggregates and thus reduced histone-mediated

endothelial cytotoxicity (165). In the future, more studies are

needed to evaluate the formation of protein-bound polyphenols

in vivo and investigate the contribution of this unique molecule to

histone-related diseases.
3.4.8 Thrombomodulin
Thrombomodulin, expressed on the surface of the endothelium,

is a cofactor that regulates intravascular coagulation (166, 167) and

consists of 5 domains, while the N-terminal lectin domain is capable

of exerting anti- inflammatory effects (166) and combining with

some DAMPs (168). Akatsuka et al. reported that both recombinant

thrombomodulin and the N-terminal lectin domain could

significantly reduce H3 release, neutralize extracellular histones to

decrease H3 levels and improve the prognosis of CLP-induced

septic murine models (169). Interestingly, no significant difference

was found between the recombinant thrombomodulin-treated

group and the N-terminal lectin domain-treated group, indicating

that the N-terminal lectin domain was the core domain of

recombinant thrombomodulin for anti-histone function (169).
3.4.9 Nanomedicines
Synthetic, nonbiological polymer nanomedicines to capture and

neutralize extracellular histones are also promising therapeutic

agents for sepsis therapy. Koide et al. first attempted to conjugate

histone-capturing synthetic linear copolymers to a lipid

nanoparticle (a highly biocompatible drug delivery agent) to

achieve specific histone neutralization in the bloodstream

circulation (170). However, these lipid nanoparticles had a low

histone capture capacity and tended to aggregate after histone

capture. To overcome these limitations, the same research group

developed polyethylene glycol (PEG)-modified hydrogel

nanoparticles (PEGHNPs), which showed greater affinity for

histones and longer remaining time in the bloodstream compared

with naked hydrogel nanoparticles (HNPs), whose chemical

structure was shown in Figure 7, and thus significantly improved

the histone adsorption efficiency of HNPs (171). They further

explored the curative effects of optimized PEGHNP12, which had

the longest circulation time (150 times longer than that of naked

HNPs) and high affinity for histones. The results indicated that

PEGHNP12 could selectively neutralize both circulating and cell-

surface-captured histones without strong affinity for common,

abundant proteins in plasma, such as albumin and fibrinogen.

Moreover, PEG decoration inhibited histone-induced interactions

with cell surfaces and cellular uptake compared with those of naked
FIGURE 6

Chemical structure of defibrotide.
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HNPs, and PEGHNP12-histone complexes exhibited less

aggregation after the formation of PEGHNP12-histone

complexes. Most importantly, pretreatment with 10 mg/kg

PEGHNP12 before histone stimulation (75 mg/kg) significantly

inhibited platelet aggregation and migration into the lungs, and

improved the survival rate 2-fold compared with those in the naked

HNPs group and saline group. Similarly, compared with saline and

naked HNPs, PEGHNP12 significantly decreased mortality in LPS-

induced septic murine models compared with saline and naked

HNPs groups during a 20-hour observation period.
3.5 Monoclonal anti-histone antibodies

After being released into the circulation, histones cause tissue

damage and trigger a vicious cycle via direct contact or incurring

internal circulation disorders. Hence, efforts had been put in

investigating the various monoclonal anti-histone antibodies

recently (10, 40, 68, 172, 173). Deng et al. investigated an anti-

histone H3 (citrullinated R2+R8+R17+R26) monoclonal antibody

that could completely block the catalyzation by both PAD2 and

PAD4 (173). This novel antibody decreased the serum levels of IL-

1b and dsDNA and protected against LPS-induced acute lung

injury, as assessed by histopathology changes and acute lung

injury scores in lethal LPS-induced septic murine models (173).

Importantly, compared with the CitH3 mAb (3 Cit), the CitH3

mAb (4 Cit) exhibited better histone binding ability,

histopathological changes and survival rate (173). Similarly, Tian

et al. indicated that intravenous injection of anin-house-developed

CitH3 antibody with four citrulline residues significantly inhibited

Capsase-1 activation, attenuated lung injury and improved the

survival rate in murine models of CLP-induced septic murine

models (68). Abrams et al. produced an anti-histone scFv

(ahscFv) that could recognize histones H1, H3 and H4 and

significantly decreased histone-mediated cytotoxicity (10).

Moreover, pretreatment with 10 mg/kg ahscFv significantly

decreased the serum levels of soluble thrombomodulin, thrombin

antithrombin, and IL-6 and improved pathological changes and the
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survival rate in both trauma- and histone-infused murine models

(10). Although many studies have reported that anti-histone

antibodies can protect against histone-induced cytotoxicity, their

efficacy has been found to be inconsistent to some extent. Hence,

there is a need for the development of more reliable anti-histone

antibodies, and more efforts are needed to provide solid data from

in vivo animal experiments.
3.6 Inhibition of the release of
extracellular histones

3.6.1 PAD4 inhibition
Modifications of histones could change the way they interact

with cells by affecting their size, charge, and structure (88). For

instance, citrullination, the most common but not the only form of

histone modification (45), was reported to increase the cytotoxic

effect of histones on HUVECs, including significantly increased

permeability and triggered NETosis (173). However, the differences

in cytotoxicity between native histones and citrullinated histones

remain controversial (174). Histone citrullination, which is mainly

modified by PAD4, is commonly recognized as the initiator of

NETosis and secondary histone release in sepsis (173, 175), ARDS

(10), COVID-19 (176), lupus nephritis (177), rheumatoid arthritis

(178). Many studies demonstrated that pharmacological or genetic

approaches inhibiting PAD4 activity in animal models could help to

achieve obvious benefits by reducing histone release and NETosis

(43, 179–194).

3.6.2 Short-chain fatty acids
It has been reported that probiotics that colonize the intestine

under physiological conditions can produce short-chain fatty acids

like acetate, butyrate and propionate, which have anti-inflammatory

abilities to some extent (195, 196). An increasing number of

experiments showed that the administration of short-chain fatty

acids improved the outcomes of acute kidney injury (110, 111, 197).

A recent study by Li et al. demonstrated that short-chain fatty acids

might improve the Staphylococcus aureus-induced inflammatory
FIGURE 7

Chemical structure of HNPs.
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response and endothelial injury by inhibiting the autophagy of

neutrophils, which resulted in decreased NET formation and

histone release (198). However, the underlying mechanism

remains unclear (198).

3.6.3 Dexmedetomide
Furthermore, Sun et al. reported that dexmedetomide, an a2-

adrenoceptor agonist, could alleviate LPS-induced NLRP3

inflammasome recruitment, caspase-1 activation, and astrocyte

pyroptosis in vitro (67). Dexmedetomide stabilized the cellular

integral structure, which resulted in decreased quantification of

histones in the culture medium compared with that in the LPS-

treated group and improved survival in LPS-induced septic

rats (67).
3.7 Promotion of the degradation of
extracellular histones

It has been proposed that the noncleaved histone contributes to

tissue damage (34). Proteolysis of histones seems to be an advisable

treatment. To date, several histone scavengers have been reported to

cleave histones into fragments to abolish their damaging abilities. In

this section, we mainly discuss the use of histone-degrading agents

for the treatment of histone-related diseases.

3.7.1 Factor VII-activating protease
Factor VII-activating protease (FSAP), a serum serine protease,

is widely involved in regulating hemostasis, inflammation,

fibrinolysis, and tissue remodeling. Marsman et al. indicated that

after the incubation of serum with histones, endogenous FSAP was

activated, suggesting that histones were also involved in FSAP

activation and promoted fibrinolysis (126, 199, 200). Additionally,

FSAP could cleave the N-terminal tail of free histone H3 to reduce

histone-mediated cytotoxicity in vitro and decreased free serum

histone levels in both septic baboons and patients with

meningococcal sepsis (200). Similarly, Cui et al. found that the

serine protease domain of FSAP could significantly attenuated

histone-induced hyperpermeability, reduced the redistribution of

junctional proteins, and abolished histone-induced upregulation of

TLR-2 expression in vitro (61). Notably, FSAP caused multisite

cleavage of histones, not just N-terminal cleavage, suggesting

thorough degradation of histones by FSAP (61). However, solid

data from in vivo animal experiments are needed to support the use

of exogenous FSAP to cleave histones for sepsis treatment.

3.7.2 Activated protein C
Protein C, a vitamin K-dependent protein and a member of the

protein C system that is synthesized by hepatocytes, is converted to

APC by the thrombomodulin-thrombin complex on the

endothelium (9). Xu et al. reported that coinjection of APC

significantly relieved histological injuries in the lung, ameliorated

renal function, and improved the survival rate in both histone-

infused murine models and E. coli-injected baboons (9).

Interestingly, this anti-histone capacity was reported to be
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mediated by the direct cleavage of histones after binding histones

with its densely anionic N-terminal Gla domain rather than by

influencing cellular pathways such as PAR1 signaling (9, 94). In

addition, Xu et al. indicated that liposomes containing

phosphatidylethanolamine enhanced histone cleavage via APC,

indicating that phospholipid exposure after injury acted as a

potent agonist of the anti-histone effects of APC (9). Healy et al.

reported that APC could bind human leukocytes, prevent activated

platelet supernatant or phorbol 12-myristate 13-acetate from

inducing NETosis, and inhibit histone citrullination in an

neutrophil receptors endothelial protein C receptor-, protease

activated receptor 3-, and macrophage-1 antigen dependent

manner (201). Saffarzadeh et al. further indicated that APC

significantly reduced histone-mediated cytotoxicity rather than

NET-mediated cytotoxicity, possibly because the formation of

complexes between histones and other NET components limited

the degradation ability of APC (202). Notably, the routine use of

APC is not optimal for the treatment of histone-mediated critical

illnesses due to the bleeding side effects associated with the

anticoagulant properties of APC. To address this issue, Huckriede

et al. used molecular docking and molecular dynamics simulation

methods to identify key interacting residues that mediated the

interaction between APC and histone H3 and to generate novel

optimized APC variants (203). The results demonstrated that the

designed APC variants 3D2D-APC and 3D2D2A-APC showed

significantly decreased anticoagulant activity, increased binding to

histone H3, and a similar ability to proteolyze histone H3 compared

with wild type APC. Therefore, it is possible to rationally design

APC variants that do not increase the risk of bleeding to treat

histone-mediated diseases via the proteolytic reduction of histones.

3.7.3 Cytotoxic T lymphocyte protease
granzyme A

Granzyme A (GzmA), also known as a cytotoxic T lymphocyte

protease protein, is expressed in the nucleus and is related to

caspase-independent cell death when it is introduced into target

cells by perforin (204). GzmA targets nuclear proteins like histones

and lamins for degradation. However, the anti-histone effect of

GzmA on cell death and differentiation has been reported (204,

205). Evidence for the use of GzmA or its variants for anti-histone

therapy is sparse.
3.8 Targeting histone-related pattern-
recognition receptors

As outlined above, cellular pathways activated by histones

mainly include TLRs and inflammasome signaling pathways (68).

To date, numerous studies indicated that TLR-2/4 inhibitors/

antibodies could attenuate histone-associated tissue damage (82,

206), reduce platelet-actin-associated molecules such as P-selectin,

PS and FV/Va (94), and relieve inflammation (206). However, these

inhibitors could not tackle all types of histone-mediated

impairments, such as myocardial ischemia-reperfusion injury (16)

and atherosclerosis (26). Thus, exploring the specific mechanism of
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histone-induced endothelial dysfunction, which may be the

initiating factor of tissue damage, would be valuable.
3.9 Extracorporeal blood purification for
histone removal

Extracorporeal blood purification has been widely used to

replace dysfunctional organs and remove exogenous or

endogenous toxins in clinical practice for more than six decades.

Recently, growing preclinical and clinical evidence has supported

that extracorporeal blood purification with adsorptive hemofilters,

such as the CytoSorb® hemoperfusion cartridge and oXiris

membrane, may exert an immunomodulatory effect by

eliminating inflammatory cytokines, endotoxin, and histones in

patients with critical illnesses (207, 208). In this section, we will

discuss the latest advances in the removal of circulating histones

from blood by different hemofilters.

CytoSorb® (CytoSorbents Inc., NJ, USA) is a cylindrical

cartridge that is filled with tiny, highly porous, hemocompatible

polyvinylpyrrolidone-coated polystyrene-divinyl-benzene

copolymer beads with a total surface area of > 40,000 m2. It is

evident that hemoadsorption with CytoSorb® significantly adsorbs

hydrophobic cytokine molecules within the 5–55 kDa molecular

weight range (209). Recently, Weber et al. found that a 6-h

hemadsorption procedure with a CytoSorb adsorber significantly

decreased circulating histone levels in the blood of 22 humans with

multiple injuries. In vitro, approximately 92% to 99% of histones

could be adsorbed by a mini CytoSorb® hemadsorption column,

although the specific mechanism of histone adsorption by

CytoSorb® is still unknown (210). Future clinical studies need to

evaluate the efficacy and safety of CytoSorb® for histone adsorption

in patients with multiple types of trauma and other critical illnesses.

Extracorporeal hemoadsorption with heparin-functionalized

adsorbents may significantly eliminate circulating HMGB1 and

histones to exert their immunomodulatory effects. For instance,

Marie et al. found that both Seraph-100 and heparin-immobilized

Sepharose beads could result in efficient depletion of histones in

septic plasma samples (211).
4 Future perspectives

In summary, extracellular histones are crucial contributors for

hyperinflammation, platelet aggregation, coagulation disorders,

endothelial dysfunction, and organ dysfunction, and level of

histones in plasma are correlated with disease severity. Preclinical

studies have consistently demonstrated that various methods for

reducing free histone levels, especially heparins, anti-histone

antibodies and novel negatively charged particles such as mCBS,

Defibrotide, Suramin and HNPs, can effectively alleviate

inflammation, reduce tissue exudation, relieve multiorgan damage

and thus improve prognosis of histone-infused animal models.

It should be noted that there are also several research challenges

hampering the use of these histone-targeting therapeutic strategies

in clinical practice. First, the widely used methods used to detect
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histones in serum are compromised in distinguishing free histones,

DNA-histone complexes and nucleosomes. Due to the large

differences in histone concentration between different models,

these encouraging findings should be further investigated under

precise detection of histone concentration, which remains a major

problem for histone-related studies. To solve this problem, Park

et al. developed a miniaturized biosensor that could detect the

concentration of citH3 with high speed, high sensitivity, high

accuracy, and a large detection range (212). Thålin et al. utilized

highly specific monoclonal antibodies and semisynthetic

nucleosomes containing citrulline in place of arginine at histone

H3 to improve a novel approach that enabled reliable quantification

of H3Cit in human plasma, expanding the practicality of citH3 as a

disease biomarker (213). Everitt et al. constructed an instantaneous

diagnostic system with a 112 ng/mL detection limit that utilized the

inherent interactions between histones and DNA (214). After being

added to blood samples that were pretreated with dextran to induce

red blood cell aggregation, the 147 bp double-stranded DNA

wrapped around histones was removed. Additionally, after an

incubation period, EvaGreen intercalated into DNA that was not

bound to a histone and then fluoresced (214). Thus, an inverse

relationship between the fluorescence signal and free histone

concentration was observed, enabling the quantification of

histones in the sample (214). More recently, Matta et al.

developed a multiplex ELISA that combined the use of three

antibodies against myeloperoxidase (MPO), citrullinated histone

H3 (CitH3), and DNA to detect NETs in serum/plasma with

increased specificity (215). Additionally, they designed a novel

smear immunofluorescence assay to detect NETs in as little as 1

mL of serum/plasma along with other bodily fluids, which could also

visually detect intact structures of NETs with minimal time,

reagents, specialized equipment, and/or cost (215). However,

immunoassays usually show poor reproducibility, wide error

ranges and low concordance between assays due to the variety of

antigen-antibody interferences. Garcıá-Giménez et al. proposed an

absolute quantification method for extracellular histones based on

multiple reaction monitoring targeted mass spectrometry (MRM-

MS), which used standard curves with different concentrations of

light peptides and stable isotopically labelled spike-in peptides to

detect circulating H3 and H2A in plasma (14). In this work, the

peptides LLLPGELAK and STELLIR were chosen as the best

candidates for H2B and H3, respectively, for subsequent spiked-in

preparations and posterior MRM-MS measurements in blood

samples (14). Using receiver operator characteristic curve

analysis, this method showed optimal sensitivities and specificities

in detecting H3 (sensitivity = 94.1%, specificity = 90.0%, cut-off

value = 574.25 ng/mL) and H2B (sensitivity = 82.4%, specificity =

70.0%, cut-off value = 739.53 ng/mL) (14). They further validated

the detection of H2B in 89 patients with sepsis and found that H2B

was an optimal biomarker for early-stage diagnosis of septic process

(sensitivity = 77.0%, specificity = 89.0%, cut-off value = 0.53 ng/mL)

and sepsis classification (sensitivity = 63.2%, specificity = 72.7%,

cut-off value = 74.66 ng/mL) (12).

Second, knowledge gaps also appear when only citrullinated

histones and nucleosomes are detected and treated in some studies.

It is noteworthy that citrullination is not a universal characteristic of
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histones, and not all histone variants exhibit same cytotoxicity.

Many evidence revealed that purified nucleosomes are not toxic to

cultured endothelial cells in vitro, and injection of 1 mg of megadose

in mice did not induce any cytotoxicity or mortality in vivo, while

injection of 1.25 mg of purifies histones in mice is lethal within 1 h

(216). Interestingly, nucleosomes can also induce neutrophil

activation with CD66b and CD11b upregulation, and secreted IL-

8 in a TLR 2/4/9- and MyD88- independent manner (216).

Moreover, nucleosomes have been reported to induce lymphocyte

necrosis, which is not found in circulating histones, as evidenced by

a significant decrease in lymphocytes in the spleen, while there were

no signs that lymphocytes had migrated to other organs after the

injection of purified nucleosomes in mice (216). Thus, more

explorations are encouraged to accurately determine the

concentrations of all variants of free histones.

Third, although studies on anti-histone strategies have

increased over the past few decades, comparisons of therapeutic

effects between various anti-histone drugs are still lacking. Thus,

more efforts are needed to compare the safety and efficacy of

currently available histone-targeting therapeutic strategies using

in vitro studies and in vivo animal models, which are valuable for

determining the tailored histone-targeting strategy for better

management of patients with histone-related critical or

inflammatory diseases.
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