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gd T-cells are a rare population of T-cells with both adaptive and innate-like

properties. Despite their low prevalence, they have been found to be implicated

various human diseases. gd T-cell infiltration has been associated with improved

clinical outcomes in solid cancers, prompting renewed interest in understanding

their biology. To date, their biology remains elusive due to their low prevalence.

The introduction of high-resolution single-cell sequencing has allowed various

groups to characterize key effector subsets in various contexts, as well as begin

to elucidate key regulatory mechanisms directing the differentiation and activity

of these cells. In this review, wewill review some of insights obtained from single-

cell studies of gd T-cells across various malignancies and highlight some

important questions that remain unaddressed.
KEYWORDS
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immunotherapy, cell therapy (CT)
Introduction

gd T-cells are present at a low frequency of between 0.5 – 1.6% in the human peripheral

blood while being found at higher abundance in tissues such as the liver and intestinal

lining (1, 2). Despite this, they are involved in modulating immune response against a range

of infections of both bacterial and viral origins (3, 4). Since the 90s, there has been also an

emerging body of literature suggesting the involvement of these cells in leukemic and solid

malignancies. The significance of these cells in human malignancies was subsequently

highlighted by Gentles and colleagues, where they demonstrated using deconvolution of

bulk RNA-seq that increased gd T-cell infiltration was associated with improved prognosis

across different disease indications (5). Since then, renewed interest in leveraging these cells

for cancer immunotherapy has culminated in various clinical trials to determine their

efficacy (6, 7). However, these clinical trials yielded mixed results, calling for more extensive

characterization of these cells. Single cell approaches that allow high-resolution insights
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into these cells in various physiological and pathological settings

have enabled these detailed characterizations. In this review, we

focus on key single-cell studies of human gd T-cells in the past

decade, highlighting some of the significant findings of relevance in

gd T-cells based cancer immunotherapy.
Challenges of scRNA-seq analysis in
the context of gd T-cell biology

There are various technical challenges in single-cell RNA-seq

(scRNA-seq) with potential implications on the analysis and

interpretation of results. One issue is zero-inflation, where an

absence of reads mapping to a gene could be biological (no gene

expression) or non-biological (e.g. drop-outs) in origin. Drop-outs

have been shown to impact various downstream analyses such as

clustering and differential gene expression (8). Various imputation

methods have been proposed to recover the actual expression of

genes with zeroes to reduce its impact on downstream analysis. A

rigorous benchmark study demonstrating that improvements in

results were obtained with SAVER (9) and NE (10, 11). While

imputation can be used to recover the expression of genes, it can

also lead to masking of signals from rare cell populations such as gd
T-cells in complex cell mixture. This is because “zero read”-gene

imputation is performed by considering that gene’s expression

observed in cells with similar transcriptomic profiles. The rarity

of gd T-cell could lead to the masking of their gene expression

profiles by that of highly similar, yet more prevalent cell types such

as CD8 T-cells and NK cells (12). Additionally, the presence of non-

biological zeroes in scRNA-seq also complicates gene module

scoring. Gene module scoring is a common approach used to

inform cluster annotation. The most common gene module

scoring approach is implemented in Seurat and uses the sum of

expression of genes in the signature as the input for score

calculation (13). Various other scoring schemes [reviewed by

Zhang and colleagues (14)] are ranked based. However, regardless

of whether scores are calculated by summing or ranking the

expression of genes in a module, the presence of zeros can lead to

an underestimation of pathway activity, problematizing

cluster characterization.

Another challenge encountered in scRNA-seq analysis is cell

clustering and annotation. A key requirement for optimal cell

clustering is sufficient variation between the transcriptomic

landscape of different cell types. However, this is not the case

with gd T-cells. Instead, gd T-cells have transcriptomic landscapes

similar to CD8 T-cells and NK cells (12). In a seminal study,

Pizzolato and colleagues demonstrated that a high clustering

resolution of 1.2 was required to differentiate gd T-cells clustered

among CD8 and NK cells (12). This resolution is higher than the

default value of 0.8 used in the popular scRNA-seq analysis software

Seurat (15). The increased clustering resolution comes at the

expense of an increase in sub-divisions of cell types. In the study

by Pizzolato and colleagues, they reported the subdivision of

monocytes (from three to six clusters), B-cells (from one cluster

to two clusters) and T-cells (from two clusters to eight clusters) (12).
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This increase in number of reported clusters poses significant

challenges to cell annotation as researchers need to discern

between noise and biologically meaningful differences

between clusters.
gd TILs in human malignancies

Having discussed some of the major technical challenges in the

analysis of scRNA-seq data, we turn to critically review some of the

key findings made in tumor-infiltrating gd T-cells (gdTILs)
characterized using scRNA-seq in the following 4 human

malignancies (Figure 1).
Breast cancer

scRNA-seq study of gd TILs in the context of breast cancer was

performed by Boufea and colleagues (16). Using unsupervised

clustering of scRNA-seq from purified gd T-cells, they identified

three clusters of gd TILs (T1, T2 & T3), with the gene signatures of

T2 being the only one showing significant correlation with

improved survival in TCGA breast cancer patients. Interestingly,

the authors also noted that the T2 gene signature score inversely

correlated with expression of abT cell markers, cytolytic scores as

well as breast cancer tumor mutation burden.

To deduce the origin of gd TILs (tissue resident vs re-

circulating), Boufea and colleagues used scID (17) to perform

label transfer to compare circulating gd T-cells with gd TILs in

breast cancer patients. Using this approach, they deduced that the

clinically relevant T2 subset was of a tissue origin. Label transfer is a

valuable approach that can be used to overcome the challenges

of cluster annotation. It annotates cells by comparing the

transcriptomic landscape of labelled cells (reference) with the

unlabeled cells (query). A key requirement of this approach is

the need for a comprehensive atlas of gd T-cell effector types.

Additionally, this approach does not preclude the possibility of

cells acquiring a different effector subtype upon tumor infiltration

and hence can only suggest an absence of shared gd T effector

subtypes between PB and the tumor microenvironment (TME). A

more definitive approach to address this question is the use of

paired single-cell T-cell receptor (TCR) sequencing (scTCR-seq)

that enables clonotype tracking to show that there are no shared

clones between the PB gd T-cell and gd TILs in the TME. However,

paired scTCR/scRNA-seq can be prohibitively expensive for large

number of cells. An attractive alternative is the use of 5’ scRNA-seq

to infer TCR sequences. Various approaches have been developed to

enable such analysis, including TRUST4 (18) and MiXCR (19). The

value of this approach was demonstrated by Li and colleagues who

demonstrated that the use of TCR sequence inferred from RNA-seq

enabled the identification of gd T-cells that had been previously

annotated as CD8+ T-cell due to their transcriptomic profile.

However, a potential limitation of such an approach is the

inability to identify low frequency clonotypes. This was

highlighted in the study by Peng and colleagues, who found that

bulk RNA-seq based TCR inference can accurately identify
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abundant clonotypes but are limited in ability to identify low

frequency clonotypes as well as perform TCR reconstruction in

samples with low T-cell contents (20). Whether scRNA-seq based

inference of TCR sequences suffers from the same limitations

remains to be rigorously benchmarked.
Colorectal cancer

gd TILs have been extensively characterized in colorectal cancer

(CRC), with both anti-tumorigenic and pro-tumorigenic functions

identified for these cells. The first scRNA-seq study to support a

pro-tumorigenic function of gd TILs in CRC was from Reis and

colleagues (21). They leveraged a tumor-adjacent normal study

design to address the question of whether gd T-cells in the TME

were distinct from those in normal colonic tissue. They found that

gdTILs had increased expression of genes associated with IL17

producers such as CD9 and LGAL3 whereas cells in the adjacent

normal tissue had higher expression of cytotoxicity related genes

and an enrichment of an IFNg gene signature. This data was the first
to show that transcriptionally distinct gd T cell populations were

spatially segregated within the same tissue organ and suggested that

the tumor microenvironment might have an active involvement in

gd T cell functional reprogramming.

To further relate effector subtype to clonotype, the authors

performed scTCR-seq in mouse models of CRC. They found that

effector subtype was associated with Vg gene usage, with a more

clonally diverse Vg7+/Vg1+ subtype being IFNg producing and the

Vg6+Vd1+ had more pronounced clonal focusing that mapped to

IL17 producing gd T-cells. The authors used the total number of

distinct clonotypes (defined using the CDR3 amino acid sequence)

as a measure of clonotype diversity, which in turn was associated

with clonal focusing. While intuitive to interpret and adequately

capturing diversity, this metric does not provide information on

clonotype evenness and can be influenced by under-sampling.

Hence, while the overall claim of reduced diversity in the
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dominant clonotypes is sound, a more cautious interpretation of

clonal focusing is warranted given the sensitivity of their metric to

under-sampling. Instead, clonal focusing can be more robustly

quantified using other ecology-based metrices, such as the Gini

coefficient or Gini-Simpson index. One suitable metric that can be

used is the Gini-Simpson index which was demonstrated to be less

sensitive to low frequency clones and more robust to under-

sampling (22). Another popular metric is the Gini coefficient that

measures inequality, with a low Gini coefficient reflecting a lack of

clonal focusing and a more innate-like mode of expansion (23).

On the other hand, a more pronounced anti-tumorigenic role of

gd TILs has been identified in CRC patients with microsatellite

instability (MSI). The study by De Vries and colleagues (24)

demonstrated that gd TILs are the main effector of the sustained

immune checkpoint blockage (ICB) response in MSI-high (MSI-H)

patients displaying HLA-I defects (25). Deducing from the scRNA

expression of TRDV gene alone (with a low threshold of 1), the

authors concluded that Vd1+ and Vd3+ T cells were the more

prevalent gd T cell subsets in b2-microglobulin (B2M) deficient

MSI-H CRC. The use of TRDV gene expression alone for

identification of subtypes can lead to false negatives due to the

zero-inflated nature of scRNA-seq data. A better approach for

identifying which gd T cell subtype at the single-cell level would

be the use of TCR reconstruction or a more comprehensive gene

panel such as that proposed by Pizzolato that considers the overall

sequencing characteristics by performing both intra and inter-cell

normalization. Nevertheless, the overall conclusion of De Vries

study remains sound especially with the substantiation of additional

functional validations.

The role of gd T-cells in MSI-H CRC was further highlighted in

the study from Harmon and colleagues (26). Comparing between

MSS and MSI-H CRC, they found that a subset of gd TILs with high

cytotoxicity (characterized by expression of PRF1, GZMA, CCL5,

ENO1, PKM and GNLY) was enriched in mismatch repair (MMR)-

deficient CRC, whereas the less cytotoxic, PLZF+ wound-healing gd
TIL subset (with high expression of ZBTB16, AREG, TAGLN2 and
FIGURE 1

Summary of key findings in selected solid cancers. Key findings in gd T-cell biology in breast cancer, colorectal cancer, hepatocellular carcinoma and
renal cell carcinoma using both human and mouse samples are highlighted. Detailed description of each study is found in the accompanying text.
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CD44) was associated with MMR-proficient CRC (26). To account

for non-biological sources of variation across different patients, the

authors used Harmony for integration (27). Because Harmony

uses a model-based approach for batch correction, all sources

of variation must be provided. In practice, not all variables can

be identified. Instead, other model-free approaches such as CCA

for integration can be employed (15). Additionally, Harmony

optimizes a maximum diversity function that penalizes

clusters with low cell-origin diversity. This leads to a preference

for clustering solutions that have high batch heterogeneity.

A potential consequence of this is the loss of biologically

meaningful patient-specific or subtype-specific effector cells. From

the analysis of the combined dataset, the authors identified AREG

as a key modulatory gene that exerts a pro-tumorigenic function.

This finding is substantiated by wound healing assays showing that

Vd1+ cells producing AREG led to increased cell proliferation

and migration.

Taken together, these studies not only confirmed the

heterogenous nature of gd TILs within CRC, but also highlighted

their dynamic interactions with the TME that contribute to their

functional diversity. Further work remains to be done to elucidate

how the TME regulates functional diversity of gd TILs in CRC.
Renal cell carcinoma

The first signal suggesting a role of gdTILs in renal cell carcinoma

(RCC) was from a FACs study by Lee and colleagues (28). They

found variable cell surface CD3 expression level among gdTILs. The
CD3lo population was found to be FAS+CD28+ indicating a chronic

activated state. Interestingly, the CD3 expression levels was associated

with TRdV usage, with CD3lo cells being Vg9d1 whereas the CD3hi

cells were dominantly Vg9d2. Additionally, they found that the

infiltrating Vg9d1 was biased towards a cytotoxic phenotype rather

than cytokine production, indicated by an inability to secrete

cytokines in response to phorbol myristate acetate or ionomycin.

The cytotoxic role of the Vg9d1 population in the RCC TME

was corroborated in a later study by Rancan and colleagues (29).

They found that tumor infiltrating gd T-cells are mainly Vd2- cells
that were functionally heterogeneous. Consistent to earlier studies

(30), Vd2+ and Vd2- had distinctive transcriptomes. They found

that the Vd2- cells population expressed higher levels of exhaustion

markers PD1, TIGIT and TIM3. Interestingly, when cultured ex-

vivo, the authors found that Vd2- cells expressing high levels of

these exhaustion markers were able to secrete comparable amounts

of effector molecules such as IFNg, TNF and PRF1. Additionally, the
“exhausted” gd T-cells were also able to retain cytotoxicity against

RCC tumors. These findings challenge the conventional paradigm

of T-cell exhaustion exemplified by ab T-cells and raises the

question of the extent to which effector subtypes are shared

between ab T-cells and gd T-cells despite studies suggesting

similarity in developmental trajectories (31). Further studies to

identify gd T-cell specific exhaustion markers is required.
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Hepatocellular carcinoma

Zakeri et al. had shown via a multi-parameter flow cytometry

that the Vg9Vd2 subset was selectively depleted within

hepatocellular carcinoma (HCC) (32). This does not appear to be

due to a defect of Vg9Vd2 T-cells in homing to the liver as the

authors demonstrated the ability of both Vd1 and Vg9Vd2 T-cells to
acquire a tissue-resident memory T cell (TRM) like phenotype

characterized by expression of CD69/CD49A or CD69/CD103. Of

note, gd T cells with TRM phenotype were also shown to display long

term hepatic retention, arguing against the active egress of Vg9Vd2
T-cells into circulation. Functionally, TRM

+ gd T cells were found to

favor towards cytokine production rather than being cytotoxic.

Nevertheless, the specific roles of the different gd T cell subsets in

HCC remain poorly defined and awaits further investigations.

scRNA-seq to characterize human liver-associated gd T-cells

was performed by He and colleagues (33). They found that gd T-

cells from both healthy controls and HCC patients formed six

clusters, with only one cluster (c4) originating from HCC patients.

Functional analysis of the gene expression of this cluster found that

gd TILs had high expression of stress marker genes such as

GADD45g and GADD45b, the exhaustion marker gene LAG3

and cytotoxic genes such as NKG7, GNLY, GZMB and IFNg. The
combination of gene markers suggest that the gd TILs are an

exhausted but cytotoxic population within HCC tumors. This is

in keeping with the findings by Rancan and colleagues in RCC (29).

By combining trajectory analysis with RNA velocity analysis, they

demonstrated that the developmental trajectory of gd TILs was

unidirectional, developing from a naïve state through various

transitionary state before being irreversibly exhausted. Gene

enrichment analysis also revealed that gd TILs in HCC had

extensive metabolic re-wiring with increased expression of genes

related to glutamine metabolism. Whether the change in gene

expression leads to changes in the metabolome remains unclear

and awaits clarification in future studies.

Taken together, data from existing research on gdTILs confirm
that exhausted gd T-cells can be found in the TME of HCC patients.

The results from He and colleagues suggest that exhaustion is

driven by LAG3. However, whether ICB can be used to re-

activate exhausted gd T-cells in the TME remains unclear.

Additionally, whether decreased TCR diversity in gd TILs found

in the HCC TME has prognostic or functional implications

remains unclear.
Normal human gd T-cells – avenues
for adoptive cellular therapies

Increasing our understanding of gd T-cells in the tumor

microenvironment is pivotal in enabling adoptive cell therapy

(ACT). Here, we briefly review some of studies that will enable

translation of gd T-cell based ACT.
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Cord blood vs adult PB derived gd T-cells

While peripheral blood (PB) serves as the conventional source

of gd T-cells, cord blood (CB), with extensive worldwide banking,

offers a readily available alternative. However, gd T-cells from both

sources have been shown to differ significantly. A key difference

between CB and PB gd T-cells is the clonotype diversity observed in

both sources. CB gd T-cell repertoire has been reported to be more

complex (34) with more extensive usage of TRdV1 chain. On the

other hand, PB gd T-cells are dominantly the Vd2Vg9+ subtype

with more restricted clonotype diversity.

Relating to difference in TRdV usage, Tan et al. performed

scRNA-seq comparing PB and CB gd T-cells. To facilitate the

analysis of marker genes to functionally characterize cell clusters,

they applied unsupervised clustering based on the average expression

of these marker genes in each cluster to identify gene modules that

are associated with different biological processes. Using this

approach, they found that neonatal gd T-cells were distinctive from

adult gdT-cells. This approach of using co-expression to identify gene
modules has been implemented in Monocle (35). Other than the use

of co-expression, co-regulation by shared transcription factors can

also be used to identify gene modules. The identification of genes

under shared regulation is the basis for SCENIC (36), which leverages

publicly available chromatin immunoprecipitation sequencing

(ChIP-seq) datasets to score the activity level of regulons. Finally,

another approach that can be used for functional characterization of

cell clusters is the use of gene module scoring. A combination of

functional characterization methods is often used for ab-initio cluster

analysis to ensure accurate labelling of cell clusters which are

reflective of effector subtypes in the absence of a reference cell atlas.

Leveraging on a pan-immune cell dataset from developing the

developing thymus, Tan and colleagues also suggested that IL17

producing gd T-cells arise early in the embryonic thymus. However,

the small number of gd T-cells in the dataset did not allow analysis

of how IL17 gd T-cells could have developed throughout

thymic development.
In vitro expanded gd T-cell products

Despite the well-established phosphoantigen stimulated

expansion of Vg9+Vd2+ cells, there is a paucity in high resolution

phenotypic and transcriptional characterization of these cells in in

vitro expanded cell products. At the same time, development of

protocols for human Vd1+ cell expansion has been lagging, and in

turn affecting the progress in understanding the mechanisms

involved in regulating the activities of these cells. Our team has

previously adopted a modified rapid expansion protocol (REP) to

study the differential behaviors of the various CB derived gd T cell

subsets when subjected to the same stimulatory signals (ie: culture

system). We found that upon culture stimulations, naïve CB gd T

cells adopted at least two majorly distinct developmental trajectory

that reflects differential functional cell states (37). Developmental

trajectories were inferred using Slingshot (38), which has been

shown to be robust across different differentiation topologies (39).
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Although all gd T cell subtypes were represented in the different cell

states, we observed a much higher propensity for the Vd2- subsets
to acquire the cytotoxic cell phenotype compared to the Vd2+
counterpart. Work remains to be done to identify critical gene

regulatory programs that drive cell differentiation into each state.
Analytical innovations can shed
deeper insights into gd T-cell biology

The increasing accessibility of scRNA-seq led to rapid

innovation in analytical strategies that in turn shed deeper

insights into the biology of gd T-cells. Here, we highlight a few

key avenues of future inquiries to further our understanding of gd
T-cells in human malignancies that is enabled by both established

and emerging bioinformatics tools in other scRNA-seq studies

(Figure 2). We also suggest some bioinformatics tools that have

been developed for these specific analyses (Table 1).

While purifying gd T-cells enable characterization of effector

subtypes, these studies preclude the analysis of cell-cell

communication between different cell types. Hence, a biologically

relevant approach is to perform scRNA-seq on admixtures from the

TME. A critical first step is to accurately label cell types present in

the admixture. This remains a hurdle that has not been adequately

addressed, as evidenced by the lack of gd T-cells identified across

various pan-immune cell atlases have been published (46, 47). The

lack of gd T-cells identified can be due to their low frequency and

transcriptomic similarity to CD8 T-cells and NK-cells (12). There is

a need for more sensitive approaches to identify rare populations of

gd T-cells. In this space, innovative signature-based and signature-

free approaches have been developed. A drawback of signature-

based approaches is the need for defined gene signatures identifying

gd T-cells. This remains an area of active research. However, an

advantage of the use of signature-based approach is the

interpretability of these models. This is exemplified by scGate

(42), a digital gating approach used to classify cells in a manner

reminiscent of flow-cytometry assisted cell sorting. On the other

hand, signature-free approaches depend on the identification of

suitable low-dimension embedding for label transfer. In this space,

various deep learning-based approach for label transfer using graph

neural networks (GNN) has been proposed (40, 41). A key

advantage of the use of GNN-based approaches is their

insensitivity to batch effects and the ability to handle incomplete

reference dataset annotation due to the ability of GNNs to learn

graph structures. Despite their power, the use of GNN-based

approach for label transfer is limited by need for powerful

graphic processing units (GPUs). The increasing accessibility of

GPUs alongside the availability of additional annotated datasets will

enable further advances and adoption of GNN-based approaches

for label transfer. Another drawback of these approaches is the lack

of interpretability of these models.

Studies have pointed to the role of cell-cell communication

between immune cells and fibroblasts (48–50) and endothelial cells

(51) have been suggested to regulate the immune tumor

microenvironment. The identification of these crosstalk can be
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done using methods to identify cell-cell communication such as

CellPhone DB (43) and CellChat (44). These methods utilize

existing knowledge of ligand-receptor interactions and protein-

protein interactions to infer potential cell-cell interactions. The

low abundance of gd T-cells in the TME could serve to limit the

ability of these algorithms to detect meaningful cell-cell interaction

in two ways. Firstly, the requirement for heterogenous cell mixtures

without selection could lead to inability to identify gd T cells in the

mixture. As discussed previously, more sensitive methods to

identify gd T cells is crucial for enabling such integrative analyses.

Additionally, the low abundance of gd T-cells could hinder the

identification of cell-cell communications between gd T cells and

other compartments due to the masking by more dominant cell

communication networks between the major compartments to

control false discovery rate. In this space, future work to improve

sensitivity of these methods while controlling false discovery

could be instrumental in understanding how tumor infiltration of

gd T-cells is regulated and improve patient selection of gd T-cell

based therapy.

The role of metabolism in regulating cell differentiation was

elegantly demonstrated by Lopes and colleagues, who demonstrated

that IL17 and IFNg producers were metabolically distinct, with the
Frontiers in Immunology 06
former extensively using oxidative metabolism and the latter was

exclusively glycolytic (52). Various studies in gd TILs have also

suggested a role of metabolic re-wiring, with an involvement of

glutamine metabolism and AREGmetabolism in HCC (33) and CRC

gdTILs (26) respectively. These important role of metabolism in

influencing gd T-cell development is in keeping with other immune

cell types as described in the growing body of literature in

immunometabolism (53–57). While most studies in gd T-cells have

inferred metabolic rewiring based on the expression of key metabolic

genes, being able to characterize metabolic fluxes at the single-cell

level can be a powerful approach to enable the efficacy of in-vitro

expanded gd T-cells. Flux balance analysis, such as that implemented

in METAFlux (45), has emerged as a computationally efficient

approach to address this question in other contexts such as the

metabolic landscape of tumors but has yet to be extended to the

analysis of gd T-cells in both physiological and pathological contexts.

Unlike the adaptive nature of ab T-cells, gd T-cells possess a

mix of both adaptive-like and innate-like subpopulations with

distinctive roles in disease control. Various studies have suggested

that the innate-like gd T-cells are critical to the antitumorigenic

functions of gd TILs (23, 24) in various cancers. However, what

regulatory programs determine cell fate along the adaptive-innate
B

A

FIGURE 2

Unresolved questions in gd T-cell biology. (A) The microenvironment of solid tumors is a complex admixture of various cell types, each with the
potential to influence gd TILs. However, how these cells function to regulate gd TIL activation remains unclear. In-silico analysis to identify cell-cell
interactions is a powerful approach to generate testable hypotheses for further validation in in-vitro studies. (B) gd T-cell differentiation is a dynamic
process that is tightly controlled by cell metabolism (including energy production and biosynthesis) and transcriptomic profiles. The interplay
between metabolism, gene expression profile and gd T-cell development remains largely unclear; however, further understanding can inform future
manufacturing of these cells for therapy.
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axis remains unclear. Recently, our group characterized the

transcriptomic landscape of the clonotypically diverse cord blood

derived gd T-cells (CBgd T-cells) following in-vitro expansion using

a time-course experimental design (37). Although there was

clonotype-dependent bias in adaptive-like and innate-like

expansion, clonotype-specific expansion was not observed in

either compartment (37). The results point to the role of other

yet-undetermined factors that determine whether gd T-cells adopt a
more adaptive-like or innate-like profile. Identifying both

regulatory programs and biomarkers of innate-like gd T-cells

remains an important but unaddressed question in the context of

improving the therapeutic utility of gd T-cells in cancer

management. A powerful approach that can be used to identify

key transcriptomic regulators is trajectory inference (TI). In TI, cells

are arranged in pseudo-time, which corresponds to stages along the

development pathway of cells. A central assumption of TI is that

cells with similar transcriptomes are close in developmental time.

Various approaches for TI have been developed. The choice of

method is highly dependent on prior knowledge of the

differentiation trajectory, as the choice of the most appropriate

tool for TI is dependent on trajectory topology (39).
Frontiers in Immunology 07
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There is no doubt a growing interest in the use of gdT-cells in cancer
immunotherapy. Improved understanding of gd TILs can provide

mechanistic insights that enable better product manufacturing. This is

demonstrated by Harmon and colleagues, who showed that exploiting

metabolic differences between effector populations led to the generation

of more a potent expanded cell products with higher cytotoxicity against

CRC cell models (26). Additionally, integrative analysis of gdT-cells with
clinicopathological correlates is crucial to inform patient selection for gd
T-cell based therapies. Expanding our understanding of the biology of

this unique cell population is critical in unlocking its potential as a novel

therapeutic modality.
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TABLE 1 Analytical tools and approaches.

Tool Function Reference

scID Label transfer using discriminant analysis of
marker gene expression

Boufea et al (17)

Seurat Dimension reduction, unsupervised
clustering, transcriptome-based label transfer,
multi-modal and integrative analysis of
single-cell dataset

Hao et al (15)

scMRA Label transfer using deep learning Yuan M, Chen L,
Deng M. (40)

graph-sc Ciortan M,
DeFrance
M. (41)

Monocle3 Basic analysis as per Seurat, gene module
inference, trajectory inference

Trapnell
et al (35)

SCENIC Inference of gene regulons Aibar et al (36)

Slingshot Trajectory inference Street et al (38)

TRUST4 TCR sequence from 5’ gene expression Song et al (18)

MiXCR Bolotin et al (19)

scGate Digital gating for identification of cell type Andreatta M,
Berenstein AJ,
Carmona SJ. (42)

CellPhone
DB

Inference of cell-cell communication Efremova
et al (43)

CellChat Jin et al (44)

METAFlux Inference of metabolic flux from scRNA-seq Huang et al (45)
This table provides a non-exhaustive list of some of the tools that have been developed for the
bioinformatics analysis of scRNA-seq.
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