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Background: pancreatic ductal adenocarcinoma (PDAC) is a malignant tumor

with a very poor prognosis and a complex tumor microenvironment, which plays

a key role in tumor progression and treatment resistance. Glycosylation plays an

important role in processes such as cell signaling, immune response and

protein stability.

Materials and methods: single-cell RNA sequencing data and spatial

transcriptome data were obtained from GSE197177 and GSE224411,

respectively, and RNA-seq data and survival information were obtained from

UCSC Xena and TCGA. Multiple transcriptomic data were comprehensively

analyzed to explore the role of glycosylation processes in tumor progression,

and functional experiments were performed to assess the effects of MGAT1

overexpression on PDAC cell proliferation and migration.

Results: In PDAC tumor samples, the glycosylation level of macrophages was

significantly higher than that of normal samples. MGAT1 was identified as a key

glycosylation-related gene, and its high expression was associated with better

patient prognosis. Overexpression of MGAT1 significantly inhibited the

proliferation and migration of PDAC cells and affected intercellular interactions

in the tumor microenvironment.

Conclusion: MGAT1 plays an important role in PDAC by regulating glycosylation

levels in macrophages, influencing tumor progression and improving

prognosis.MGAT1 is a potential therapeutic target for PDAC and further studies

are needed to develop targeted therapeutic strategies against MGAT1 to improve

clinical outcomes.
KEYWORDS

single-cell analysis, immunotherapy, predictive marker, glycosylation,
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most

aggressive malignancies with a very poor prognosis. Despite advances

in molecular and genetic research, the five-year survival rate for PDAC

remains below 10% (1). Key characteristics of PDAC include late-stage

diagnosis, rapid disease progression, and resistance to conventional

therapies. The tumor microenvironment (TME) of PDAC is complex,

comprising cancer cells, stromal cells, immune cells, and an extensive

extracellular matrix (2–4). These components collectively promote

tumor growth, metastasis, and therapeutic resistance. Understanding

the interactions within this microenvironment is crucial for developing

effective treatment strategies (5).

Glycosylation is a post-translational modification process in

which glycans are enzymatically attached to proteins or lipids. This

process plays a critical role in various biological processes, including

cell signaling, immune response, and protein stability. Aberrant

glycosylation is a hallmark of cancer, influencing tumor

progression, metastasis, and immune evasion. Glycosyltransferases,

the enzymes responsible for glycan synthesis and modification, are

often dysregulated in tumors. This dysregulation can lead to the

expression of unique glycan structures not present in normal tissues,

affecting cell-cell interactions, signal transduction, and immune

recognition (6). Therapeutic strategies targeting glycosylation

pathways offer a novel approach to cancer treatment.

Glycosyltransferase or glycosidase inhibitors, as well as monoclonal

antibodies targeting specific glycan structures, are being explored to

inhibit tumor growth and metastasis (7, 8).

In pancreatic cancer, research on glycosylation is gaining

increasing attention, particularly the role of glycosyltransferases (9).

These enzymes are involved in the biosynthesis of complex N-glycans,

and their expression changes are closely related to alterations in cell

adhesion, migration, and immune evasion. Understanding the impact

of glycosylation on immune cells within the tumor microenvironment

can reveal new biological mechanisms of tumor progression and

identify new therapeutic targets (10).
2 Materials and methods

2.1 Source of raw data

The pancreatic cancer single-cell sequencing data in this study

were obtained from the GSE197177 dataset in the Gene Expression

Omnibus (GEO) database, and the spatial transcriptome data were

obtained from the GSE224411 dataset. In addition, RNA-seq data

for pancreatic cancer from the UCSC Xena platform (https://

xena.ucsc.edu/) were downloaded from the TCGA (The Cancer

Genome Atlas) cohort, which contains sequencing information for

a total of 183 samples, and the corresponding survival data for

survival analysis.
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2.2 Processing of single-cell
sequencing data

In this study, we conducted an in-depth analysis of PDAC

single-cell RNA sequencing data using the Seurat package (version

4.3.0) (11). To ensure the accuracy of the analysis, strict quality

control measures were implemented to filter the cells. Cells were

screened based on the criteria that each cell must express between

200 and 4000 genes and have a mitochondrial gene expression

percentage of less than 10%. Normalization was then performed

using the NormalizeData function to eliminate the effects of

sequencing depth. The FindVariableFeatures function was used to

identify 2,000 highly variable genes, which were then subjected to

Principal Component Analysis (PCA) and cell clustering. UMAP

was used to visualize the clustering results. During cell type

identification, we referenced cell marker gene information from

pancreatic tissues in the CellMarker database (http://

xteam.xbio.top/CellMarker/index.jsp) to ensure accurate cell

type identification.

To explore metabolic state differences between normal and

tumor tissues, we used the scMetabolism package (version 0.2.1)

to quantitatively analyze metabolic pathway activities in single-cell

data. This package includes human metabolic gene sets covering 85

KEGG pathways and 82 REACTOME entries, utilizing the VISION

algorithm to score each cell for activity levels in these pathways.

This method allowed us to quantify metabolic pathway activities at

the cellular level, providing a powerful tool for understanding how

cells regulate their metabolic states under different physiological

and pathological conditions.

We used five algorithms, AddModuleScore, ssGSEA, AUCell,

UCell, and singscore, to perform gene set scoring on single-cell data

based on 185 glycosyltransferase-related genes (12, 13). This multi-

method approach provides robust scoring, reduces errors and biases

in the gene set scoring process, and provides comprehensive, robust

and biologically meaningful insights. By means of scoring, we

quantified the levels of glycosylation in cells of various cell types

in both tumor and normal groups.

To comprehensively analyze cell communication patterns, we

used the CellChat package (version 1.6.1) (14). CellChat modelled

and analyzed intercellular communication by considering gene

expression data and known interactions between signal

transduction ligands, receptors and cofactors. Macrophages were

divided into two groups based on glycosylation scores, and

differences between high and low level glycosylated macrophages

were compared by cell communication analysis. In addition to

CellChat, we also utilize the CellCall software package (version

1.0.7) (15). The CellCall package integrates intracellular and

intercellular signals to infer communication networks and

internal regulatory signals that form the L-R-TF axis, and

includes pathway activity analyses to assess changes in receptor

cellular pathways induced by intercellular communication.
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For enrichment analysis of different cell types in PDAC single-

cell transcriptome data, particularly macrophages, we used the

clusterProfiler (version 4.6.2) and GSVA (version 1.50.1) packages

(16, 17). The clusterProfiler package supports querying multiple

biological information databases, including GO, KEGG, and

Reactome, while GSVA efficiently handles large datasets, allowing

precise evaluation of gene set enrichment at the single-cell level.

Finally, the ggplot2 package (version 3.4.2) was the core tool for

visualizing our results, offering a powerful and flexible way to create

complex graphics based on the grammar of graphics.
2.3 Processing of spatial transcriptome
sequencing data

Spatial transcriptomics data were processed and analyzed using

the Seurat package (version 4.3.0). We applied the “SCTransform”

function to normalize and scale the UMI counts to identify the most

variable features. The “RunPCA” function was then used to perform

dimensionality reduction to simplify the data structure. The

“SpatialFeaturePlot” function was used for visualization after

dimensionality reduction and clustering, allowing us to display

cell subpopulation distributions in the spatial context of tissue

slices, thus providing deeper insights into the spatial organization

and functional status of cells.

The scMetabolism package was also applied to the spatial

transcriptomics data. By evaluating the metabolic characteristics

of different cell clusters in the dimensionally reduced and clustered

spatial transcriptomics data, we could uncover important metabolic

differences. This approach is invaluable for understanding the

functional heterogeneity of cells and their interactions, thereby

enhancing our comprehension of tumor complexity from both

spatial and functional perspectives.

Using the Monocle package, we conducted pseudotime analysis

to reveal the developmental and differentiation processes of cell

clusters located at different positions within the spatial

transcriptomics data. To run stlearn in Python, we employed the

Scanpy package to perform preprocessing, visualization, clustering,

pseudotime analysis, and differential expression analysis on the

spatial transcriptomics data.
2.4 Spatial transcriptomics data combined
with single-cell sequencing for
deconvolution analysis

We used deconvolution analysis to infer the proportions of

different cell types from mixed cell samples. This method combines

the advantages of single-cell sequencing, which provides cell-level

gene expression information within tissues, and spatial

transcriptomics, which offers spatial location information of cells

within tissues, revealing spatial heterogeneity. This approach

enables a deeper understanding of tumor complexity and

heterogeneity at high spatial resolution.

During the deconvolution analysis, we implemented RCTD

(Robust Cell Type Decomposition) using the spacexr package
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(version 2.2.1). First, we constructed a reference model using the

Reference function, based on annotated single-cell transcriptome

data, providing essential baseline information for subsequent

analysis. Next, we loaded the spatial transcriptomics data using

the SpatialRNA function, forming a SpatialRNA object, a crucial

step ensuring the accurate integration of spatial information. We

then created an RCTD object using the create. RCTD function and

estimated the relative proportions of each cell type within the mixed

cell population by estimating the specific gene expression patterns

of each cell type and using the least-squares method. This analysis

not only provided proportion estimates of each cell type within the

mixed samples but also inferred the proportion distribution of

different cell types within each spot in the spatial transcriptomics

data. Combining single-cell and spatial transcriptomics data in the

deconvolution analysis allowed our study to reveal the cellular

composition and spatial heterogeneity of tumor tissues at an

unprecedented level of detail.

To further understand the cell-cell communication patterns

within the tumor microenvironment, we used the mistyR package

(version 1.6.1) for spatial transcriptomics data interaction analysis.

mistyR is a powerful package specifically designed for spatial

transcriptomics data analysis, capable of utilizing spatial location

and gene expression data to effectively uncover interactions between

cells within tissues. By calculating the spatial proximity between

cells, mistyR can infer potential cell-cell communication networks,

offering new insights into how cells interact spatially within the

tumor microenvironment.
2.5 Prognostic analysis of MGAT1 gene
expression in macrophages using bulk data

We explored the potential clinical prognostic value of MGAT1

expression in macrophages. To this end, we conducted an in-depth

analysis combining bulk sequencing data with single-cell data.

Using the Seurat package to process single-cell sequencing data,

we first categorized macrophages from patient tumor tissues into

MGAT1-positive and MGAT1-negative groups based on their

MGAT1 gene expression. Next, we identified marker genes for

these two subgroups using the FindAllMarkers function.

After identifying the marker genes for MGAT1-positive

macrophages, we quantified these genes in bulk sequencing data

to construct high-risk and low-risk groups. To evaluate the

expression of these cell subgroups in invasive tumors, we

processed the bulk RNA-seq data and performed single-sample

gene set enrichment analysis (ssGSEA) using the GSVA method.

This approach allowed us to quantitatively assess the enrichment

levels of these marker gene sets in various tumor samples.

Finally, we combined these enrichment analysis results with

clinical survival data to evaluate the clinical prognostic differences

between the different risk groups. For survival analysis, we used the

survminer (version 0.4.9) and survival (version 3.4-0) packages.

Initially, we determined the optimal risk group cut-off point using

the surv_cutpoint function. Based on this threshold, samples were

divided into high-risk and low-risk groups, and survival curves were

constructed using the survfit function.
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Through this series of analyses, we not only revealed the

potential role of MGAT1-positive macrophages in tumor

prognosis but also provided important biomarkers for future

clinical applications.
2.6 Cell culture and transient transfection

In our experimental study, we used two pancreatic cancer cell

lines, SW1990 and PANC-1. These cell lines were obtained from the

cell bank of the Central Laboratory at the Affiliated Hospital of

Southwest Medical University. To ensure normal growth and

maintenance of these cells, we cultured them in DMEM

(HyClone) medium supplemented with 10% fetal bovine serum

(HyClone), 100 U/L penicillin, and 100 mg/L streptomycin

(Thermo Fisher Scientific). Standard culture conditions were

maintained, including a 5% carbon dioxide environment, to

ensure optimal cell viability and experimental consistency.

For transient transfection experiments, we used Lipofectamine

3000 (Invitrogen, Carlsbad, CA, United States) as the transfection

reagent. Following the manufacturer’s instructions, we transfected

the pancreatic cancer cells with negative control (NC) and MGAT1-

overexpression (MGAT1-OE) constructs. Typically, the

transfection process was carried out according to the

manufacturer’s protocol within the recommended time frame. By

using Lipofectamine 3000, we aimed to efficiently introduce the NC

and MGAT1-OE RNA into the pancreatic cancer cells for

subsequent analysis and to study the effects of gene

overexpression on cellular processes and molecular pathways.
2.7 CCK-8 assay

We used the Cell Counting Kit-8 (CCK-8) assay to assess cell

viability. Twenty-four hours after transfection, pancreatic cancer

cells were seeded into 96-well plates at a density of 1500 cells per

well in 200 mL of complete culture medium. The cells were then

incubated at 37°C. For the CCK-8 assay, we added 10 mL of CCK-8

solution (Beyotime, Shanghai, China) to each well containing cells.

After incubating at 37°C for 4 hours, the reagent reacted with the

cells, producing a colorimetric change related to cell viability.

After the incubation period, we measured the optical density

(OD450) using a microplate reader. The OD450 value reflects the

absorbance of the formazan product generated by CCK-8, which is

proportional to the metabolic activity and viability of the cells. By

quantifying the OD450 values, we could evaluate the relative

survival rate of the cells and compare different experimental

conditions or treatment groups.
2.8 Transwell assay

The invasive capability of pancreatic cancer cells was assessed

using the well-established Transwell assay. In this experiment, a

specific number of pancreatic cancer cells (approximately 1 × 10^5)

were seeded into specialized chambers. To evaluate invasive
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potential, chambers coated with Matrigel were used. The upper

chamber contained serum-free medium to establish a chemotactic

gradient, while the lower chamber contained complete DMEM

medium to provide a favorable environment for cell movement.

After 24 hours of incubation, cells that had successfully traversed

the membrane were fixed with 4% paraformaldehyde solution. To

visualize and quantify the invading cells, they were stained with

0.1% crystal violet. Stained cells were then observed and counted

under a light microscope, allowing for the assessment of cell

numbers and invasive capability.
2.9 Wound healing experiment

To evaluate the migratory ability of pancreatic cancer cells, we

employed the wound healing assay. Transfected cells were cultured

in six-well plates and incubated at 37°C until they reached

approximately 80% confluence. A uniform wound was introduced

into the cell monolayer using a sterile 200 mL pipette tip. After

wounding, cells were rinsed twice with PBS to remove debris and

then supplemented with serum-free medium. The migration of cells

towards the wound area was recorded using an Olympus inverted

microscope at 0 hours and 24 hours.
2.10 Statistical analysis

Statistical analyses were performed using R version 4.2.2 (64-

bit) and its support packages. In addition, Python version 3.8 was

used. Non-parametric Wilcoxon rank sum test was used to assess

the relationship between two groups of continuous variables.

Spearman correlation analysis was used to test the correlation

coefficients. All statistical investigations were considered

statistically significant at a significance level of P<0.05.
3 Results

3.1 Cell type identification and
glycosylation scoring of PDAC single cell
sequencing data

We obtained single-cell sequencing data of pancreatic ductal

adenocarcinoma (PDAC) tumor tissue and adjacent normal tissue

from the GSE197177 dataset for analysis. The tumor samples

selected were primary, untreated PDAC tumor tissues. The Seurat

software package was used for initial processing and analysis of the

single-cell data. After reading the single-cell data from the tumor

and normal groups, we created a SeuratObject containing

28,166 cells.

The preprocessing step was performed for quality control of the

cells, and after normalization and identification of highly variable

genes, downscaling and clustering were performed. After PCA

downscaling, the top 10 principal components were selected for

further analysis. MAP was used to visualize the clustering of the 27
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cell clusters obtained (Figure 1A). Marker genes for pancreatic

tissue cells were retrieved from the CellMarker database for cell type

identification. After identifying the cell types, UMAP was again

used to visualize the distribution and number of different cell types
Frontiers in Immunology 05
(Figure 1B). The expression of marker genes in different cell types

was also demonstrated by UMAP (Figure 1C).

We conducted metabolic enrichment analysis of single-cell data

using the scMetabolism package (Figure 1D). We focused on the
A B
C
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E F
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I J

FIGURE 1

Dimensionality reduction, clustering and glycosylation scores. (A) UMAP visualization of single-cell data after dimensionality reduction and clustering,
with colors representing different cell clusters, totaling 27 clusters. (B) UMAP plot of identified cell types, revealing 9 cell types. (C) Feature plot of 8
marker genes, showing their expression in different cell types. (D) Analysis of metabolic levels in various cell types within the tumor
microenvironment. (E) UMAP display of N-Glycan biosynthesis metabolic scores in cells. (F) Box plot of glycosylation-related metabolic scores in
different cell types. (G) Bubble plot of glycosyltransferase-related gene scores in various cell types using five different gene set scoring methods.
(H) Violin plot showing the differences in scores between tumor and normal cells. (I) Heatmap of glycosyltransferase-related gene scores. (J) Violin
plot of differentially expressed glycosyltransferase-related genes in macrophages between tumor and normal groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1438935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1438935
glycosylation levels of various cell types, including N-linked and O-

linked glycosylation (Figures 1E, F). To further explore the

differences in glycosylation levels between tumor and normal

tissues, we scored 185 glycosyltransferase-associated genes using

five tools for calculating gene-set expression scores, including

AUCell, UCell, singscore, GSVA, and addModuleScore. With

these five gene-set scoring methods, the quantification of tumor

and normal tissue glycosylation levels in different cell types in the

tumor (Figure 1G). This combination of scoring methods also

ensures the stability of the scoring results.

Statistical tests on the scoring results of tumor group cells and

normal control group cells revealed that macrophages in the tumor

group had significantly higher glycosyltransferase-related gene

scores than those in the normal control group, with statistical

significance (Figure 1H). Therefore, we focused on macrophages

to study the impact of glycosylation on tumor cells and the tumor

microenvironment. The results of glycosyltransferase-related gene

scoring were also displayed on UMAP plots, showing consistency

with the results from scMetabolism (Figure 1I). We conducted

differential analysis between tumor group macrophages and normal

group macrophages, identifying differentially expressed

glycosyltransferase-related genes. These differentially expressed

genes may play a significant role in influencing macrophage

function and activity. The expression levels of the top eight genes

were shown using violin plots (Figure 1J).
3.2 Macrophages with high and low
glycosylation levels

Macrophages in tumor tissues were classified into two groups of

high and low levels (based on median scores) according to

glycosylation scores. To explore the differences in the functional

activities of macrophages at different glycosylation levels, we

performed cell communication analysis and enrichment analysis.

Cell communication analysis by CellChat showed that the

communication strength of macrophages in the high-glycosylation

level group was higher than that of the low-level group, and it was

higher in both sending and receiving signals (Figures 2A, B). There

were also differences in the communication patterns between the high

and low levels of cells (Figure 2C). The results of CellCall analyses

also demonstrated the differences in communication pathways

between the high and low level groups (Figures 2D, E). GSVA

enrichment analysis was performed on macrophages from both

high and low level groups, and high glycosylation level

macrophages were enriched for a large number of up-regulated

pathways (Figure 2F). GO enrichment analysis was similarly used

in macrophages from both high and low level groups (Figure 2G).
3.3 Processing and metabolic analysis of
spatial transcriptomics data

We downloaded two spatial transcriptomics datasets from the

GEO database (GSE224422). One dataset was from a pancreatic

intraepithelial neoplasia (PanIN) tissue (GSM7021871) and the other
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from a PDAC lymph node tissue (GSM7021872). After dimensionality

reduction and clustering of the spatial transcriptomics data, we

visualized the data using UMAP, resulting in 13 and 5 cell clusters

for the two datasets, respectively (Figures 3A, G).

We first examined the expression of glycosyltransferase-related

genes in the spatial transcriptomics data. In the PanIN dataset,

glycosyltransferase-related genes showed significant expression in

cell cluster 12 (Figures 3B, H). In the PanIN slice, cells in the

ductal region and adjacent tissues mainly belonged to clusters 2, 6,

7, and 12. We performed pseudotime analysis on these four clusters

to construct developmental trajectories. The pseudotime analysis

showed distinct distribution ranges for the four clusters, with

periductal tissue cells (cluster 2) appearing early in pseudotime and

ductal epithelial cells (cluster 12) appearing at the latest stage

(Figure 3C). The correlation between H&E-stained tissue slices and

the spatial distribution of cell clusters helped us better understand the

pseudotime analysis results. Pathology experts identified that the

green area in the H&E-stained slice represented cancerous ductal

epithelial cells, corresponding to cell cluster 12 (Figure 3D). Cell

clusters 2 and 7 were the regions closest to the ductal epithelial cells

and were most influenced by the cancerous cells (Figure 3E).

Pseudotime analysis was also conducted on the lymph node

tissue slice, incorporating all cell clusters (Figure 3I). The results

clearly showed that cell cluster 3 emerged at a later pseudotime

stage, and comparative analysis with the H&E-stained slice

indicated that cluster 3 represented the germinal center in the

lymph node (Figures 3J, K). Metabolic enrichment analysis was

performed on both tissue slices, identifying cell clusters with higher

metabolic activity (Figures 3F, L). The N-Glycan biosynthesis and

oxidative phosphorylation pathways were separately visualized on

the tissue slice maps (Figures 3M–P).
3.4 Revealing developmental trajectories
with spatial transcriptomics data

Spatial transcriptomics data provide transcriptional information

with precise cellular locations within tissues. We utilized the stLearn

package for in-depth analysis of spatial transcriptomics data to explore

tumor development processes, including invasion and metastasis.

Using NumPy for data quality control and dimensionality

reduction, and the Louvain method in stLearn for clustering, we

identified 12 and 5 cell clusters in the pancreatic samples, respectively

(Figures 4A, C). Focusing on cell clusters in the ductal regions of tissue

slices, we reconstructed developmental trajectories using the Diffusion

Pseudotime (DPT) algorithm and combined this with spatial

coordinate information to reveal the progressive invasion and

metastasis of tumor cells in pseudotime (Figures 4B, D).
3.5 Deconvolution and cell interaction
analysis with combined spatial and single-
cell data

Due to the resolution limitations of current spatial

transcriptomics sequencing technologies, spatial transcriptomics
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A B C

D E

F G

FIGURE 2

Cell communication analysis and enrichment analysis of macrophages with high and low glycosylation levels. (A) Cellular communication strength,
demonstrating the strength of communication between different cell types, including highly glycosylated macrophages and lowly glycosylated
macrophages. The thickness of the line represents the communication strength. (B) Scatter plot of communication, the horizontal axis represents
the strength of emitting reciprocal signals and the vertical axis represents the strength of receiving reciprocal signals. (C) Diagram of communication
structure with macrophages with high and low glycosylation levels on the left and other cell types on the right. (D) Scatter plot of signaling pathway
strength. (E) Heatmap of signaling pathway constitutive ligand receptor intensities. (F) Scatter plot of the results of GSVA enrichment analysis, with
blue bands on the right side for high glycosylation level macrophage enrichment pathway and green on the left side for low glycosylation level
macrophage enrichment pathway. (G) Bar graph of GO enrichment analysis from both groups of macrophages at high and low glycosylation levels.
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data do not yet achieve the single-cell resolution of single-cell

sequencing data. To address this limitation, we applied the

SPOTlight deconvolution method, which infers the possible cell

types and proportions at each location in the spatial transcriptomics
Frontiers in Immunology 08
data based on gene expression patterns of various cell types from

pancreatic cancer single-cell sequencing data. This step allowed us

to gain a deeper understanding of the spatial structure and function

of tissues or cells, revealing interactions and communication
A B C
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FIGURE 3

Spatial transcriptomics data on metabolic activity levels and glycosylation gene expression. (A) UMAP visualization of spatial transcriptome data after
dimensionality reduction clustering to obtain 13 cell clusters. (B) Bubble plots of the expression of glycosylation-related genes in the spatial
transcriptome data. (C) Trajectory plot of the proposed temporal analysis. (D) HE staining map of PDAC tumor tissue sections. (E) Display of the 13
cell clusters obtained by clustering in the section background. (F) Quantitative analysis of metabolic levels. (G) UMAP visualization of spatial
transcriptome data after dimensionality reduction clustering to obtain 13 cell clusters. (H) Bubble plots of expression of glycosylation-related genes
in spatial transcriptome data. (I) Trajectory plot of the proposed time series analysis. (J) HE staining map of PDAC tumor tissue sections.
(K) Clustering obtained by presentation of 13 cell clusters in the background of sections. (L) Quantitative analysis of metabolic levels. (M-P) Heatmap
of intensity of metabolic levels of N-terminal glycosylation and oxidative phosphorylation.
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between different cell types, as well as spatial heterogeneity and

state changes.

Additionally, we divided macrophages into high GT and low

GT groups based on their median GT scores for more detailed

deconvolution analysis. This analysis provided the spatial

distribution and probabilities of various cell types on tissue slices

(Figures 5A, H). Based on deconvolution analysis of the two tumor

samples, we further applied the MISTy (Multiview Intercellular

SpaTial model ing framework) framework for spat ia l

transcriptomics cell interaction analysis. MISTy is an

interpretable machine learning framework for analyzing single-

cell, highly multiplexed, and spatially resolved data, offering

insights into inter- and intra-cellular relationships.

Using MISTy, we could process a custom number of views, each

describing different spatial contexts, such as intracellular regulation

or paracrine regulation, and relationships between specific cell types.

Our analysis results displayed the contribution of three different

views to cell interactions through bar charts, revealing that intraview

and paraview15 had the greatest contributions in the two tumor

samples (Figures 5B, C, I, J). This highlighted the importance of

intracellular regulation and paracrine regulation in tumor samples.

Further heatmaps and network diagrams detailed the specific

patterns of these two views in tumor samples, emphasizing

significant interaction relationships between high and low GT

macrophages and other cell types (Figures 5D–G, K–N).
3.6 MGAT1 gene in macrophages

We observed that the glycosyltransferase-related gene MGAT1

is highly expressed in macrophages in the normal group but is lowly

expressed in the tumor group. MGAT1 encodes an enzyme that

plays a crucial role in N-linked glycosylation. In the overall single-

cell data, MGAT1 expression is primarily found in macrophages

and acinar cells, with scattered expression in epithelial cells and

other immune cells (Figure 6A). Specifically, MGAT1 expression in

macrophages is significantly lower in the tumor group compared to

the normal group (Figure 6B).
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We downloaded RNA-seq data and survival information for

pancreatic cancer from the Xena database, comprising 183 samples.

We performed differential analysis between MGAT1-positive

macrophages (MGAT1 expression > 0) and MGAT1-negative

macrophages in the single-cell data to identify marker genes for

MGAT1-positive macrophages. Using these marker genes, we

conducted ssGSEA scoring on the RNA-seq data, dividing

patients into high and low groups based on the median score for

survival analysis. The results indicated that patients with low

expression of MGAT1-positive macrophage marker genes had

better prognoses, suggesting that lower MGAT1 expression in

macrophages correlates with better tumor prognosis (Figure 6C).

Using the TIDE online tool for immunotherapy analysis, we

found that patients with low expression of MGAT1-positive

macrophage marker genes responded better to immunotherapy,

further supporting the benefit of low MGAT1 expression in

macrophages for prognosis (Figure 6D). We also mapped the

correlation between the expression of MGAT1-positive

macrophage marker genes and various immune cells and

functions (Figure 6E).
3.7 Deconvolution analysis and spatial cell
communication of MGAT1-
related macrophages

Based on MGAT1 expression in macrophages from single-cell

data, we categorized macrophages into MGAT1-positive and

MGAT1-negative groups. Using the gene expression patterns of

each cell type from single-cell data, we performed deconvolution

analysis on the spatial transcriptomics data using the RCTD

method. This analysis provided the possible cell types at each

spot in the spatial transcriptomics data (Figures 7A, G).

In the spatial cell communication of PanIN tissue slices, the

INS_INSR and INS_IGF1R were the two most important ligand-

receptor pairs. However, their significantly active regions were not

near the ductal epithelial cells, i.e., not near the cancerous tissue

(Figures 7B, C). Nevertheless, there were significant differences in
A B C D

FIGURE 4

Spatial developmental trajectory analysis of PDAC tumor tissues. (A) Clustering of PDAC tumor section sequencing data using the louvain method in
the stLearn software package; the clustering map shows the spatial distribution of different cell populations. (B) Spatial developmental trajectory
maps of ductal epithelial cells and their surrounding cells in tumor tissue sections, drawn using the stLearn software package. (C) Clustering map of
the second section data. (D) Developmental trajectory map of cells in and around the central region of lymph nodes.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1438935
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1438935
A B

C

D E F G

H I

J

K L M N

FIGURE 5

Deconvolution and cell interaction analysis based on spatial transcriptomics data. (A) Analysis of PDAC tumor tissue section data using the RCTD
deconvolution method showing the spatial distribution probabilities of various cell types, including cells with high and low glycosylation levels.
(B) Histogram of cell interactions intensity. (C) Bar graph showing the contribution of different views to the cell interactions assessed by the Mistyr
software package, showing the relative importance of different views in cell interactions. (D, E) Heatmaps and network diagrams of cell interactions
in the same view (intraview), revealing interaction strengths and patterns within the same cell type. (F, G) Heatmaps and network diagrams of cellular
interactions in paraview15 view, showing interaction strengths and communication networks between cell types. (H) Results of RCTD inverse
convolution analysis of the second layer of slice data showing the probability and spatial distribution of different cell types, including cells with high
and low levels of mitochondrial autophagy. (I) Histogram of cell interactions intensity. (J) Bar graph showing the contribution of different views to
PDAC tumor cell interactions, assessing the relative contribution of each view. (K, L) Heatmaps and network diagrams (intraview) of cellular
interactions of the second layer of section data, showing the interaction relationships between the same cell types in the tumor environment.
(M, N) Heatmaps and network diagrams of cell interactions in paraview15 views of the same tissue, revealing the interaction strengths and network
structure of different cell types.
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cell communication mediated by these two ligand-receptor pairs

between MGAT1-positive and MGAT1-negative macrophages

(Figure 7D). The intensity of communication between cell types

was visualized using heatmaps and chord diagrams (Figures 7E, F).

In the pancreatic cancer lymph node tissue, the MIF_CD74

ligand-receptor pair played an important communication role,

primarily in the communication among acinar cells (Figures 7H–

J). The communication intensity between cell types was also

displayed using heatmaps and chord diagrams (Figures 7K, L).
Frontiers in Immunology 11
3.8 Expression of MGAT1 in
clinical subgroups

We examined the expression correlation of MGAT1 and several

other glycosyltransferase-related genes that were differentially

expressed in macrophages using TCGA data. The results showed

a weak correlation between MGAT1 and other glycosyltransferase-

related genes (Figure 8A). In tumor tissues, MGAT1 expression was

lower than in normal tissues, not only in macrophages but also in
A

B

C

D

E

FIGURE 6

Clinical prognostic value of MGAT1. (A) UMAP plot of MGAT1 expression. (B) MGAT1 expression violin plot with macrophages in normal tissue on the
left and macrophages in tumor tissue on the right. (C) K-M curve of overall survival of pancreatic cancer patients, with patients categorized into two
groups of high and low expression based on the marker gene of MGAT1-positive macrophages. (D) Box plot of TIDE immunotherapy response.
(E) Correlation of MGAT1-positive macrophages with immune-related markers.
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FIGURE 7

RCTD Inverse Convolutional Analysis and Spatial Cell Communication. (A) Cell type inference of spatial transcriptome data obtained from RCTD
reverse convolution analysis, containing eight possible cell types, in which macrophages were classified into high and low glycosylation levels.
(B) Spatial cellular communication inferred ligand receptor strength foldplot with significance in vertical coordinates and ligand receptor significance
ranking in horizontal coordinates. (C) Heatmap of the intensity of hormone-mediated cellular communication mediated by pancreatic beta-cell
secretion, with a heatmap showing scores and significance values, representing cells that maintain normal function. (D) Mate receptor activity in
different types of cellular communication. (E) Heat map of cell communication strength between different cell types. (F) Cellular communication
chord plot with each color representing a cell type. (G) Cell type inference of spatial transcriptome data obtained by RCTD reverse convolution
analysis, containing nine possible cell types, in which macrophages were classified into high and low glycosylation levels. (H) Spatial cellular
communication inferred from ligand receptor intensity fold plots. (I) Heatmap of MIF-CD74 ligand-receptor pair-mediated cellular communication
intensity. (J) Ligand-receptor activity in different types of cellular communication. (K) Heatmap of cellular communication intensity between different
cell types. (L) String diagram of cellular communication.
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RNA-seq data (Figure 8B). More importantly, the protein

expression level of MGAT1 was also lower in tumor tissues

compared to normal tissues (Figure 8C). Immunohistochemistry

results from HPA017432 staining of one pancreatic normal tissue

and one pancreatic adenocarcinoma tissue showed lighter staining

in the tumor group (Figures 8D, E). MGAT1 expression in clinical

subgroups also revealed significant results (Figure 8F).
3.9 Association of MGAT1 with immune
infiltration and prognosis

TheMGAT1 gene showed some correlation with the proportion

of stromal cells in tumor samples (Figure 9A). Immune infiltration

analysis indicated that patients with low MGAT1 expression had

lower levels of immune infiltration compared to those with high

MGAT1 expression. Given its correlation with stromal cells, we can

infer that the prognostic benefit of low MGAT1 expression in

pancreatic cancer patients is likely more related to its impact on

stromal cells rather than immune cells (Figures 9B, C). Besides its
Frontiers in Immunology 13
prognostic impact, MGAT1 is also an important tumor marker

gene, with an AUC of 0.909 from ROC testing (Figure 9D). The

progression-free survival (PFS) and overall survival (OS) of patients

with different MGAT1 expression levels were displayed using

TCGA data, showing the highest five-year predictive accuracy

with an AUC of 0.714 (Figures 9E–G). A prognostic nomogram

incorporating MGAT1 and other clinical characteristics was

constructed, and its accuracy was demonstrated using calibration

curves (Figures 9H, I).
3.10 MGAT1 inhibits proliferation and
migration of pancreatic cancer cells

To investigate the potential role of MGAT1 in pancreatic

cancer, we conducted in vitro experiments. First, we confirmed

the overexpression of the MGAT1 gene using PCR (Figures 10A, B).

We performed transfection experiments to overexpress MGAT1 in

tumor cells and confirmed it using PCR. The CCK-8 assay showed

that MGAT1 overexpression significantly inhibited cell
A B C

D

E

F

FIGURE 8

MGAT1 expression. (A) Correlation chord plot of the expression of nine important macrophage glycosylation-related genes. (B) Box plot of MGAT1
gene expression from TCGA pancreatic cancer data. (C) Box plot of MGAT1 protein expression. (D) Immunohistochemical staining images of MGAT1
in normal pancreatic tissues. (E) Immunohistochemical staining images of MGAT1 in pancreatic cancer tumor tissues. (F) Expression of MGAT1 in
different clinical groups of patients.
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proliferation (Figure 10C). The Transwell assay indicated that

MGAT1 overexpression significantly reduced cell invasion and

migration (Figures 10D, E). The wound healing assay also

demonstrated that MGAT1 overexpression significantly inhibited

cell migration (Figures 10F, G).
4 Discussion

PDAC is one of the most aggressive malignancies with a poor

prognosis. Key characteristics of it include rapid disease progression

and resistance to conventional therapies. The TME of PDAC is

complex, comprising cancer cells, stromal cells, immune cells, and an
Frontiers in Immunology 14
extensive extracellular matrix. These components collectively promote

tumor growth, metastasis, and therapeutic resistance (3, 18, 19).

Glycosylation, a post-translational modification process where

glycans are enzymatically attached to proteins or lipids, plays a

critical role in various biological processes, including cell signaling,

immune r e s pon s e , and p ro t e i n s t a b i l i t y ( 2 0–23 ) .

Glycosyltransferases are crucial enzymes in the glycosylation

process, adding glycans to proteins or lipids. Aberrant

glycosylation is a hallmark of cancer, influencing tumor

progression, metastasis, and immune evasion (24, 25).

Dysregulation of glycosyltransferases in tumors can lead to the

expression of unique glycan structures not present in normal

tissues, affecting cell-cell interactions, signal transduction, and
A B C

D E F

G H I

FIGURE 9

Clinically relevant studies of the MGAT1 gene. (A) Correlation between MGAT1 expression and stromal score and immunization score. (B) Correlation
between MGAT1 expression and immune-infiltrating cells. (C) Box plots of immune infiltration in patients with high and low MGAT1 expression.
(D) ROC curve of diagnostic potency of MGAT1 tumors. (E) K-M curves of MGAT1 expression groupings. (F) K-M curves of MGAT1 expression
grouping. (G) ROC curves for prognostic modeling predicting 1-, 3- and 5-year survival probabilities. (H) Prognostic model nomogram composed of
MGAT1 gene and clinically relevant shapes. (I) Prognostic model calibration curve.
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immune recognition. Therefore, the importance of glycosylation in

tumor progression cannot be overlooked, especially the critical role

of glycosyltransferases in regulating tumor cell behavior and

immune evasion (7, 26, 27).

Our study found that the glycosylation levels in macrophages in

the PDAC tumor group were significantly higher than in the normal

group. This finding underscores the crucial role of glycosylation in

the tumor microenvironment (28, 29). Using single-cell RNA

sequencing and spatial transcriptomics data, we identified several

important glycosylation-related genes and focused on the

glycosylation patterns of macrophages. We observed the

expression characteristics of these genes in different cell types,

revealing the complexity of cell interactions within the tumor

microenvironment. Notably, the expression of glycosyltransferase-

related genes significantly impacted the function and activity of

macrophages. Among these genes, MGAT1 was particularly

important. Our research showed that the expression level of
Frontiers in Immunology 15
MGAT1 in macrophages was significantly correlated with PDAC

prognosis. Aberrant expression of MGAT1 not only affected

macrophage function and activity but also played a key role in

cell communication and immune response (30). Overall, these

findings provide new insights into the role of glycosylation in

PDAC and offer crucial experimental evidence for MGAT1 as a

potential therapeutic target. Future studies should further explore

the role of MGAT1 in other cancer types and develop innovative

therapeutic strategies targeting glycosylation pathways.

Our research indicates that glycosyltransferase-related genes

play a significant role in the prognosis of PDAC. Specifically, the

expression level of MGAT1 in macrophages was significantly

correlated with patient prognosis. Combining TCGA data with

survival analysis results, we found that patients with high MGAT1

expression had a significantly better prognosis than those with low

MGAT1 expression. Our survival analysis showed that the survival

rate of patients in the high MGAT1 expression group was
A B C
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FIGURE 10

Cellular experiments. (A) Histogram of PCR analysis of MGAT1 expression in normal group versus MGAT1 overexpression group in SW1990 cell line.
(B) Histogram of PCR analysis of MGAT1 expression in normal group versus MGAT1 overexpression group in PANC-1 cell line. (C) Line graph of the
results of CCK-8 cell proliferation assay. (D) Histogram of cell migration assay results analysis. (E) Histogram of cell invasion assay results analysis.
(F) Micrograph of cell scratch assay. (G) Histogram for analysis of cell scratch assay results. * indicates p < 0.05, ** indicates p < 0.01, *** indicates p
< 0.001, **** indicates p < 0.0001, and ns indicates no statistical significance (p ≥ 0.05).
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significantly higher than that of the low MGAT1 expression group.

This finding suggests that high MGAT1 expression may inhibit

tumor progression and metastasis, leading to better prognosis.

CCK-8 and Transwell assays demonstrated that overexpression of

MGAT1 significantly inhibited the proliferation and migration of

pancreatic cancer cells. Furthermore, wound healing assays showed

that MGAT1 overexpression could significantly inhibit cell

migration. We also explored the relationship between MGAT1

gene expression and immune therapy response. Therefore, the

expression level of MGAT1 can serve as an important biomarker

for PDAC prognosis and a potential indicator for evaluating the

effectiveness of immune therapy (31, 32). In summary, high

MGAT1 expression in PDAC may be a key factor leading to

better prognosis. Future research should further explore the

specific mechanisms of MGAT1 in tumor progression and

develop targeted therapeutic strategies to improve the prognosis

and treatment outcomes of PDAC patients.

Despite revealing the important role of MGAT1 in PDAC, our

study has some limitations. First, the limited sample size and data

heterogeneity may affect the generalizability and reliability of the

results. Future studies should include larger sample sizes and

integrate data from different sources for comprehensive analysis.

Second, we primarily relied on single-cell RNA sequencing and

spatial transcriptomics data, which, despite providing high-

resolution information, also have limitations in sequencing depth

and coverage. Future studies should combine other high-

throughput technologies, such as mass spectrometry and multi-

omics data, to fully elucidate the function of MGAT1. Third, our

research focused on the impact of MGAT1 on macrophage function

and tumor prognos i s , wi th less emphas i s on other

glycosyltransferase genes. Future studies should expand the

research scope to comprehensively understand the mechanisms of

glycosylation in PDAC. Additionally, while our in vitro

experimental data are relatively sufficient, in vivo experimental

data are still lacking. Future research should validate the specific

role of MGAT1 in PDAC using animal models. Finally, we explored

the relationship between MGAT1 and immune therapy response,

but the specific mechanisms remain unclear. Future studies should

analyze how MGAT1 regulates the immune microenvironment and

its application in immune therapy in depth.
5 Conclusion

This study investigates the role of glycosylation and its related

genes in PDAC, particularly the glycosyltransferase MGAT1. Our

results show that the glycosylation level of macrophages in the

PDAC tumor group is significantly higher than that in the normal

group. High expression of MGAT1 is associated with better patient

prognosis, and its overexpression significantly inhibits the

proliferation and migration of pancreatic cancer cells. This study

provides important evidence for MGAT1 as a potential therapeutic

target for pancreatic cancer, and we hope that future research will

deepen these findings and promote the development and

application of clinical treatment strategies.
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