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Single-cell RNA sequencing
reveals that MYBL2 in malignant
epithelial cells is involved in the
development and progression of
ovarian cancer
Wenwen Shao1†, Zhiheng Lin1†, Zhikai Xiahou2†, Fu Zhao1,
Jue Xu1, Xinqi Liu1 and Pingping Cai3*

1Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China, 2China Institute of
Sport and Health Science, Beijing Sport University, Beijing, China, 3Department of Traditional Chinese
Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan,
Shandong, China
Background: Ovarian carcinoma (OC) is a prevalent gynecological malignancy

associated with high recurrence rates andmortality, often diagnosed at advanced

stages. Despite advances in immunotherapy, immune exhaustion remains a

significant challenge in achieving optimal tumor control. However, the

exploration of intratumoral heterogeneity of malignant epithelial cells and the

ovarian cancer tumor microenvironment is still limited, hindering our

comprehensive understanding of the disease.

Materials and methods: Utilizing single-cell RNA sequencing (scRNA-seq), we

comprehensively investigated the cellular composition across six ovarian cancer

patients with omental metastasis. Our focus centered on analysis of the

malignant epithelial cells. Employing CytoTRACE and slingshot pseudotime

analyses, we identified critical subpopulations and explored associated

transcription factors (TFs) influencing ovarian cancer progression. Furthermore,

by integrating clinical factors from a large cohort of bulk RNA sequencing data,

we have established a novel prognostic model to investigate the impact of the

tumor immune microenvironment on ovarian cancer patients. Furthermore, we

have investigated the condition of immunological exhaustion.

Results: Our study identified a distinct and highly proliferative subgroup of

malignant epithelial cells, known as C2 TOP2A+ TCs. This subgroup primarily

consisted of patients who hadn’t received neoadjuvant chemotherapy. Ovarian

cancer patients with elevated TOP2A expression exhibited heightened sensitivity

to neoadjuvant chemotherapy (NACT). Moreover, the transcription factor MYBL2

in this subgroup played a critical role in ovarian cancer development.

Additionally, we developed an independent prognostic indicator, the TOP2A

TCs Risk Score (TTRS), which revealed a correlation between the High TTRS

Group and unfavorable outcomes. Furthermore, immune infiltration and drug

sensitivity analyses demonstrated increased responsiveness to Paclitaxel,

Cisplatin, and Gemcitabine in the Low TTRS Group.
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Conclusion: This research deepens our understanding of malignant epithelial

cells in ovarian cancer and enhances our knowledge of the ovarian cancer

immune microenvironment and immune exhaustion. We have revealed the

heightened susceptibility of the C2 TOP2A+ TCs subgroup to neoadjuvant

chemotherapy and emphasized the role of MYBL2 within the C2 subgroup in

promoting the occurrence and progression of ovarian cancer. These insights

provide valuable guidance for the management of ovarian cancer treatment.
KEYWORDS

ovarian cancer, neoadjuvant chemotherapy, omentum, epithelial cells, immune
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Introduction

Ovarian cancer is one of the deadliest gynecological malignancies,

often diagnosed at advanced stages, resulting in poor outcomes (1).

Furthermore, around one-third of OC patients experience the

development of ascites (2). This disease is characterized by

significant heterogeneity, encompassing distinct histological

subtypes, molecular profi les , and microenvironmental

characteristics that profoundly influence treatment response and

clinical outcomes (3). The standard approach in OC management

involves surgical intervention combined with platinum-based

chemotherapy. In cases of advanced ovarian cancer accompanied

by ascites, the combination of surgery and chemotherapy yields a

median survival period of 16-22 months (http://seer.cancer.gov/csr/

1975_2009_pops09/). However, a subset of ovarian cancer patients

develop platinum resistance after initial treatment, and nearly all

patients with recurrent disease eventually progress to platinum-

resistant ovarian cancer (PROC). Currently, the primary treatment

for platinum-resistant ovarian cancer involves non-platinum

chemotherapy, which can be used either as a monotherapy or in

combination with bevacizumab (4). With advancements in the

medical field and pharmaceutical innovation, there has been a

gradual reduction in ovarian cancer mortality rates (5). Neoadjuvant

chemotherapy (NACT) has emerged as a viable therapeutic option for

patients with advanced ovarian cancer who are ineligible for

immediate primary tumor debulking surgery (6). NACT provides

significant relief from advanced ovarian cancer in terms of optimal

debulking surgery (7). However, recent studies have identified a

potential risk of platinum resistance associated with NACT (8).

Investigating the impact of neoadjuvant chemotherapy on the

immune microenvironment of ovarian cancer is crucial for gaining a

deeper understanding of tumorigenesis and proliferation mechanisms.

Despite advancements in treatment, the overall prognosis remains

poor due to the development of chemotherapy resistance and delayed

detection, which lead to high recurrence rates. Therefore, it is urgent to

further explore and refine therapeutic strategies.

Beyond the primary tumor, omental metastasis assumes

comparable importance in the realm of ovarian cancer
02
investigation. Sunila Pradeep and Anil K. Sood, among others,

have demonstrated the significance of hematogenous metastasis as a

prominent mechanism in ovarian cancer metastasis. Their findings

indicate the ability of epithelial ovarian cancer (EOC) cells to

undergo hematogenous metastasis to the omentum (9). Epithelial

ovarian cancers (EOCs) are recognized as “immunogenic tumors,”

as non-spontaneous antitumor immune responses can be observed

within tumors, peripheral blood, and ascites of EOC patients (10).

Additionally, immune cells from both the tumor and ascites play a

crucial role in ovarian cancer.

Over the past two decades, the rapid advancement of

immunotherapy has brought about revolutionary changes in the

field of cancer treatment. Cancer is associated with immune cell

depletion, especially T-cell depletion, which is a state of hypofunction.

T cells that remain “un-exhausted” within the tumor

microenvironment are often considered key mechanisms targeted

by immune checkpoint inhibitors. Previous studies have indicated

that T cell exhaustion may be a contributing factor to suboptimal

tumor control (11). However, the tumor immune microenvironment

of ovarian cancer has not been extensively studied.

Although immune checkpoint inhibition and immunomodulation

have shown promise in treating ovarian cancer, their efficacy still lags

behind that of numerous other immunogenic tumor types, such as

non-small cell lung cancer and melanoma (12, 13). Therefore, it is

imperative to explore shared immunological characteristics among

ovarian cancer patients to identify optimal indicators.

Single-cell sequencing techniques offer valuable insights into

various diseases, including cancer biology (14). Single-cell RNA

sequencing (scRNA-seq) has gained traction in exploring cellular

heterogeneity in multiple tumor tissues, such as melanoma (15, 16),

glioblastoma (17), and clear cell renal cell carcinomas (18), and

non-neoplastic diseases like central nervous system (CNS) diseases

(19). However, the application of scRNA-seq in ovarian cancer

clinical samples remains limited.

In this study, we employed single-cell sequencing to investigate

cells obtained from the omentum of six individuals with ovarian

cancer. Specifically, our focus was on examining malignant

epithelial cells characterized by heightened copy number variation
frontiersin.org
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(CNV) levels. We aimed to unravel the intricacies within diverse cell

populations, explore their developmental trajectories, identify

functional enrichments, and analyze the associated transcription

factors. Novel prognostic models were constructed using

sophisticated bioinformatics tools like ESTIMATE, CIBERSORT,

and Xcell to uncover the immune microenvironment of ovarian

cancer. Our primary objective was to discover fresh biomarkers and

gain a deeper understanding of the complex interplay between

epithelial cells in peritoneal metastases and ovarian cancer,

ultimately providing novel insights for the treatment of this disease.
Method

Acquisition of ovarian cancer data

Ovarian cancer data obtained through single-cell RNA sequencing

(scRNA-seq) was retrieved from the NCBI Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The dataset

used for single-cell analysis consisted of omentum samples from

six ovarian cancer patients, with the accession number GSE147082

(GSM4416534, GSM4416535, GSM4416536, GSM4416537,

GSM4416538 and GSM4416539). The database provided detailed

data on 6 ovarian cancer patients with metastatic omental tumors,

including their age, race, origin of disease, histologic type,

histological grade, and neoadjuvant therapy. For further details,

refer to Supplementary Table 1. Bulk RNA-seq data sets and clinical

data were obtained from the Cancer Genome Atlas (TCGA)

(https://portal.gdc.cancer.gov/). Genetic mutation data and

clinical information, such as survival details, were obtainable from

this database for ovarian cancer patients.
Quality control and dimensionality
reduction clustering

The raw data underwent processing using the “Seurat” package

(version 4.3.0) (20). The “DoubletFinder” package (21) was applied

to iden t i f y and e l imina te doub l e peaks , wh i l e the

“PercentageFeatureSet” function was used to enhance cellular

quality and exclude cells of low quality based on the following

criteria (1): 300 < total number of genes detected in a single cell

(nFeature) < 8000, (2) 500 < total transcriptomic count in a single

cell (nCount) < 50,000. (3) The percentage of mitochondrial genes

expressed in a single cell was less than 20%, and (4) the expression

of erythrocyte genes in a single cell was below 5%.

The data was normalized using the “NormalizeData” function.

After obtaining high-quality cells, we selected the top 2,000 genes

exhibiting significant variability (22), and gene expression was

processed using ScaleData. Dimensionality reduction was

performed by extracting the first 30 principal components (PCs),

and a corresponding Uniform Manifold Approximation and

Projection (UMAP) was generated (23–25). And the data

followed by the application of the “harmony” R package (version

0.1.0) to mitigate batch effects. Cell clusters were identified based on

the expression of established classical cell marker genes.
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Screening and subgroup identification of
malignant epithelial cells in ovarian cancer

To distinguish between non-malignant and malignant cells within

the ovarian cancer epithelial cell context, we utilized the “InferCNV”

tool (https://github.com/broadinstitute/inferCNV/wiki) to infer copy

number variation (CNV) in distinct cell subsets. Specifically,

epithelial cells (ECs) were used as the reference group for

inferCNV, with elevated CNV levels indicating tumor-derived

epithelial cells.

Epithelial cells from ovarian cancer tumors were analyzed, the

data was normalized and scaled using “NormalizeData”, selecting

the top 2000 genes with high variability and performing similar

steps as before, and further processed the data using “ScaleData”

(15, 16). PCA was then conducted on the initial 30 PCs of the

single-cell data, followed by batch effect removal using the

‘harmony’ R package (version 0.1.0). Cluster analysis was

performed using “FindNeighbors” and “FindClusters” in Seurat,

and subgroups were annotated based on characteristic marker

genes. Finally, UMAP plots were generated to visualize the

distinct cell subgroups (17, 18).
Heterogeneity of ovarian cancer subsets

The “FindAllMarkers” function was employed to identify genes

with differential expression (DEGs) in each subset, which were

subsequently analyzed for enrichment in Gene Ontology Biological

Processes (GO-BP) using the “ClusterProfiler” R package (version

0.1.1) for GO-BP enrichment analysis (26–28). Gene functions in

various subgroups were examined and ranked using Gene Set

Enrichment Analysis (GSEA) (29) with the c2.cp.kegg.v7.5.1.

symbols.gmt dataset.
Stemness analysis and trajectory analysis
of subpopulations

To explore the varying degrees of differentiation among distinct

subgroups of ovarian cancer, we employed CytoTRACE analysis

(30) to obtain the CytoTRACE score for each subgroup, allowing us

to infer their respective differentiation states. The “Slingshot”

package (version 2.6.0) (31) was utilized to infer the

developmental trajectory of each subpopulation, while the

“getlineage” and “getCurves” functions facilitated the inference of

differentiation trajectory and evaluation of expression levels over

time for each ovarian cancer subpopulation.
Transcription factor analysis

We employed the pySCENIC algorithm to explore the

transcription factors and regulators (TFs) within each subgroup.

Initially, GRNBoost was applied to establish the relationships

between transcription factors (TFs) and target genes, followed by

DNAmotif analysis to identify potential direct binding targets. AUcell
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was then utilized to evaluate the activity of each regulator within the

cells, and the top 5 TFs with the most elevated scores were selected.
Cellchat analysis

To investigate the intricate cell-to-cell communication among the

various subgroups, we employed the “cellchat” package (version 1.6.1)

(32) to assess intercellular interactions between the subgroups, focusing

on signal pathways and receptor-ligand interactions.
Construction of a novel prognostic risk
model and its validation

Key subgroups were subjected to univariate Cox analysis and

LASSO Cox regression (33–36) in the TCGA cohort. Subsequently,

prognostic genes were identified to construct a prognostic risk model,

and the Risk score was determined throughmultivariate Cox analysis.

The specific formula used was: Risk Score=o
n

i
Xi� Yi (X: coefficient,

Y: gene expression level). Samples were then divided into high-risk

score and low-risk score groups based on the median. Kaplan-Meier

(K-M) curves and Receiver Operating Characteristic (ROC) curves

(37–39) were generated to validate the prognostic value of the model.

Furthermore, a nomogram was constructed to predict patient

prognosis by incorporating the Risk Score and clinical factors (40).

The performance of the nomogram was assessed using ROC curves

and the concordance index (C-index). Additionally, the correlation

between prognosis-related genes and the Risk Score was investigated.
Immune infiltration analysis and functional
enrichment analysis

We utilized CIBERSORT and the Xcell algorithm to analyze

immune infiltration in the high and low scoring groups, uncovering

correlations between immune infiltrating cells and prognosis-

related genes (41–43). Furthermore, we evaluated the Tumor

Immune Dysfunction and Exclusion (TIDE) scores for both high-

and low-scoring groups, and compared the expression levels of

genes associated with immune checkpoints between the high- and

low-risk groups using the Wilcoxon test (44).

To explore the heterogeneity of the high and low scoring groups, we

used the “DESeq2” package to identify differentially expressed genes

(DEGs). Next, we employed the “clusterProfiler” R package (version

4.6.2) (45) to analyze Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways and perform enrichment analyses onGeneOntology

Biological Processes (GOBP), Gene Ontology Cellular Components

(GOCC), and Gene Ontology Molecular Functions (GOMF) (46–48).
Gene mutation data

Ovarian cancer mutation data was obtained from the TCGA

database, and different Tumor Mutation Burden (TMB) groups were

assessed using the “maftools” R package (49, 50). The relationship
Frontiers in Immunology 04
between the score and TMBwas analyzed using a Spearman correlation

test. Based on the median TMB, specimens were categorized into high

and low TMB groups, and Kaplan-Meier survival analysis was

conducted to examine prognostic differences between the groups.
Assessment of drug sensitivity

The half-maximum inhibitory concentration (IC50) of different

chemotherapy drug groups was evaluated using the “pRRophetic” R

package (version 0.5) (51).
Cell lines and cultures

The SK-OV-3 and A2780 cell lines were obtained from the

American Type Culture Collection (ATCC). SK-OV-3 cells were

cultured in McCoy’s 5A medium, while A2780 cells were cultured in

PRMI 1640 medium, both supplemented with 10% fetal bovine

serum (Gibco BRL, USA) and 1% streptomycin/penicillin. Cultures

were maintained at 37°C with 5% CO2 and 95% humidity.
Transfection

MYBL2 knockdown was achieved using siRNA constructs

obtained from GenePharma in Suzhou, China. Transfection

followed the specific instructions of Lipofectamine 3000RNAiMAX

(Invitrogen, USA), including the introduction of negative control (si-

NC) and knockdown (si-MYBL2-1 and si-MYBL2-2).
Colony formation

Transfected cells (1×103 per well) were plated in 6-well plates

for colony formation assays and incubated for 2 weeks.

Subsequently, the cells were subjected to sequential fixation (4%

paraformaldehyde) and staining (Crystal Violet), followed by

photography and counting analysis.
Cell viability assay

Transfected SK-OV-3 and A2780 cells were evaluated for

viability with the CCK-8 test. Cells were placed in 96-well plates

with a concentration of 5 × 103 cells per well and incubated for 24

hours. Next, each well received 10 mL of CCK-8 reagent (A311-01,

Vazyme) and was then incubated at 37°C in the dark for 2 hours.

OD values were measured at 450 nm on days 1, 2, 3, and 4, and a

line graph was created using the recorded data.
Transwell

Transwell chambers were utilized to assess the migration and

invasion capacities of cells. Transwell chambers were either coated
frontiersin.org
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with (for transwell invasion assay) or left uncoated (for transwell

migration assay) matrix gel (BD Biosciences, USA). The upper

chamber used with serum-free medium, and the lower chamber

contained medium supplemented with serum. Following a 48-hour

incubation period in a cell culture incubator, the cells were treated

with 4% paraformaldehyde and then stained using crystal violet.

Subsequently, cell counting was performed using a microscope to

observe the invasive and migratory capabilities.
Wound healing assay

Transfected cells were seeded and cultured in 6-well plates. At

around 95% cell density, a sterile 200- mL pipette was utilized to

make a linear scratch on the cell layer. The plate was gently rinsed

with PBS to remove non-adherent cells and debris. Then, the

culture medium was replaced to support cell growth. Images of

the scrape were captured at both 0 and 48 hours from an identical

angle, and the breadth of the scrape was assessed.
Statistical analysis

R software (version 4.3.0) and Python software (version 4.2.0)

were used for statistical analysis. The significance of variations

among different groups was assessed using the Wilcoxon test and

Pearson correlation coefficients. Significance levels were denoted as

follows: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. “ns”

was used to indicate a lack of significant difference.
Results

Identification of main cell types in
ovarian cancer

Single-cell data was collected from six patients diagnosed with

advanced ovarian cancer. After quality assessment and removal of

batch discrepancies, we obtained a total of 9,695 cells of exceptional

quality. These cells were then classified into 24 seurat groups and

visualized using the Uniform Manifold Approximation and

Projection (UMAP) chart (Figure 1A). Based on their distinctive

gene expression profiles, the groups were assigned to 10 different cell

types: T and NK Cells (T_NK), Endothelial Cells (ECs), Smooth

Muscle Cells (SMC), Mast Cells (MCs), Fibroblasts, Endothelial

Progenitor Cells (EPCs), B Cells (B), Plasmacytoid Dendritic Cells

(pDC), Plasma Cells (Plasma), and Myeloid Cells (Figure 1B).

Additionally, we categorized the cells into two tissue types,

Neoadjuvant and No−Neoadjuvant, based on whether the patients

received neoadjuvant chemotherapy (NACT). The distribution of

tissue types for each cell type was shown in Figure 1C, and the origin

of samples for each cell type was illustrated in Figure 1D. The UMAP

plot provided a comprehensive visualization of the distribution of the

10 cell types, their tissue sources, and the proportion of cell cycles

(Figure 1E). Among the six patients, samples GSM4416534 and

GSM4416538 did not receive neoadjuvant chemotherapy (Figure 1F).
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To evaluate the characteristics of individual cell types, we

computed the Cell Stemness AUC, nFeature RNA, nCount RNA,

G2M.Score, and S.Score. The findings were presented using UMAP

and violin plots (Figures 1G, H). The results indicated that ECs,

Fibroblasts, and Myeloid cells exhibited higher Cell Stemness AUC

values, while EPCs and Myeloid cells displayed higher G2M scores.

Violin plots in Figure 1I highlighted the top 5 marker genes for each

cell type. The DEGs of cell types were used to analyze Gene

Ontology Biological Processes (GOBP), and the findings were

displayed in a bubble plot (Figure 1J).
Identification and analysis of tumor
epithelial cell subsets

To distinguish malignant cells from non-malignant cells in

ovarian cancer epithelial cells, we employed InferCNV and

defined cells with high-level CNV as tumor cells (Supplementary

Figure S1). After screening and quality control, we obtained a total

of 2,272 tumor epithelial cells. Through dimensionality reduction

cluster analysis, these cells were classified into 4 seurat clusters

(Figure 2A). Based on marker genes, they were named C0 CAND2+

TCs (1044), C1 UBB+ TCs (613), C2 TOP2A+ TCs (330), and C3

TEX41+ TCs (285), with a visualization created using UMAP plots

(Figure 2B). These epithelial tumor cells originated from five

different samples (GSM4416534, GSM4416535, GSM4416536,

GSM4416537, GSM4416538). The cell cycles (G1, G2M, and S)

and tissue types (Neoadjuvant and No-Neoadjuvant) for the four

subgroups were displayed using UMAP plots combined with pie

charts. (Figures 2C, D). Most C2 TOP2A+ TCs were in the G2M

phase and did not receive neoadjuvant chemotherapy. A

comprehensive view of the subpopulation distribution, cell cycle

distribution, and tissue types was depicted in Figure 2E.

The Cell_Stemness_AUC, CNVScore, nFeature_RNA,

nCount_RNA, G2M.Score, and S.Score were calculated for each

subgroup to assess their characteristics. These results were

visualized using UMAP and violin plots (Figures 2F, G). The

findings revealed that C2 TOP2A+ TCs had higher values for

nFeature_RNA, G2M.Score, and nCount_RNA. The subgroup

proportion and tissue types of different samples were analyzed

(Figure 2H), demonstrating that the majority of C2 TOP2A+ TCs

originated from samples GSM4416534 and GSM4416538, which

did not receive neoadjuvant chemotherapy. We estimated the tissue

and cell cycle preferences of each subgroup using the Ro/e value

and presented the analysis results as heatmaps (Figures 2I, J).

Consistent with previous results, C0 CAND2+ TCs preferred

neoadjuvant treatment, while C2 TOP2A+ TCs showed a

preference for non-neoadjuvant treatment. We also analyzed the

distribution of named genes within the four subgroups (Figures 2K,

L) and observed that UBB, the named gene of the C1 subgroup, was

also expressed in the C2 subgroup, while TOP2A, the named gene

of the C2 subgroup, was almost exclusively expressed in the C2

subgroup. To showcase the top 10 marker genes in each subgroup,

bubble plots were employed and the distribution across different

tissue types (Neoadjuvant and No−Neoadjuvant) was

depicted (Figure 2M).
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DEGs and enrichment analysis of
distinct subgroups

To explore the diversity within each ovarian cancer subgroup, we

examined the differentially expressed genes (DEGs) in the four
Frontiers in Immunology 06
subgroups and visualized the top 5 up-regulated and down-regulated

genes in volcano plots (Figure 3A). To investigate the associated

biological processes for each subgroup, we conducted Gene Ontology

Biological Processes (GOBP) analysis, presenting the findings in

Figure 3B. C0 CAND2+ TCs were associated with various biological
B C D

E F

G

H

I J

A

FIGURE 1

Main cell types of ovarian cancer. (A) UMAP visualization exhibited 24 distinct seurat clusters comprising 9,695 high-quality cells from ovarian
cancer. (B) UMAP plot showcasing the distribution of 10 cell types. (C, D) UMAP plots combined with pie charts illustrating tissue types (Neoadjuvant
and No−Neoadjuvant) and sample sources for each cell type. (E) Comprehensive UMAP plot displaying the distribution of each cell type, along with
its cell cycle and tissue type ratio. (F) Bar graph demonstrating sample sources and the proportion of cell types in two tissue types (Neoadjuvant and
No−Neoadjuvant). (G, H) UMAP and violin plots revealing the Cell_Stemness_AUC, nFeature_RNA, nCount_RNA, G2M.Score, and S.Score for each
cell type, respectively. (I) Violin plot displaying the top 5 marker genes of each cell type. (J) Bubble chart presenting the results of GOBP enrichment
analysis for DEGs from diverse cell types.
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processes, including cytoplasmic translation, synaptic vesicle lumen

acidification, ribonucleoprotein complex biogenesis, synaptic vesicle

maturation, and ribonucleoprotein complex assembly, among others.

The DEGs in C1 UBB+ tumor cells were enriched in cytoplasmic

translation, ATP synthesis coupled electron transport, mitochondrial
Frontiers in Immunology 07
ATP synthesis coupled electron transport, oxidative phosphorylation,

and the electron transport chain. C2 TOP2A+ TCs were associated

with chromosome segregation, mitotic nuclear division, nuclear

chromosome segregation, sister chromatid segregation, and nuclear

division. C3 TEX41+ TCs were involved in establishment of cell
B

C D

E

F

G

H I J

K

L

M

A

FIGURE 2

Subgroup identification of ovarian cancer. (A) UMAP visualization showing the arrangement of four distinct seurat clusters within ovarian cancer epithelial
cells. (B-D) UMAP plots and pie charts displaying the origins of samples, cell cycle stages (G1, G2M, and S), and various tissue categories (Neoadjuvant
and No−Neoadjuvant) within the four subgroups. (E) A comprehensive UMAP plot illustrating the distribution of each sub-cluster, along with its cell cycle
ratio and tissue type ratio. (F, G) Cell_Stemness_AUC, CNVScore, nFeature_RNA, nCount_RNA, G2M.Score, and S.Score of each subgroup displayed in
UMAP plots and violin plots. (H) Bar graphs illustrating the subgroup proportion and tissue types of different samples. (I, J) Heatmaps showing the tissue
types and cell cycle preferences of the four subgroups, respectively. (K, L) Distribution of named genes for the four subgroups visualized using UMAP
plots and violin plots for each subgroup. (M) Bubble chart displaying the top 10 marker genes for each subgroup, along with their expression levels in
various tissue types. *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001; ns indicated no significant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1438198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shao et al. 10.3389/fimmu.2024.1438198
polarity, establishment or maintenance of cell polarity, establishment of

centrosome localization, mitotic sister chromatid cohesion, centrosome

localization, and related pathways.

GSEA enrichment analysis was performed on four subgroups,

and the maximum value of NES (normalized enrichment score) in

each subgroup was selected for display (Figure 3C). The findings

indicated that the cytoplasmic translation pathway of C0 CAND2 +

TCs was cytoplasmic translation (NES = 1.877), and C1 UBB+ TCs

was enriched in the aerobic electron transport chain (NES = 3.522).
Frontiers in Immunology 08
C2 TOP2A+ TCs was closely related to the nuclear chromosome

segregation (NES = 3.206), while C3 TEX41+ TCs was enriched

regulation of sodium ion transport (NES = 2.433).

Based on the expression count of genes within each subgroup,

we conducted GOBP enrichment analysis on highly expressed genes

and visualized the results using cloud diagrams based on the

enrichment scores (Figure 3D). C0 CAND2+ TCs were associated

with ribonucleoprotein processes, C1 UBB+ TCs exhibited

significant enrichment in localization and oxidative processes, C2
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FIGURE 3

Identification and enrichment analysis of subgroup DEGs in ovarian cancer. (A) Volcano plots presenting DEGs of four cell subsets. (B) Heatmap
displaying the Gene Ontology Biological Process enrichment terms of Differentially Expressed Genes in four distinct cell populations. (C) Results of
GSEA enrichment analysis on four cell subsets. (D) Cloud charts displaying the outcomes of GO-BP enrichment analysis based on the gene count.
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TOP2A+ TCs were enriched in localization, mitotic, and transition

processes, while C3 TEX41+ TCs were linked to establishment and

localization processes.
Stemness analysis and trajectory analysis of
different subgroups

To assess the stemness properties and evaluate the developmental

trajectory of the four subgroups, we conducted CytoTRACE analysis

and slingshot pseudotime analysis. The results from CytoTRACE

analysis revealed that the C0 CAND2+ TCs and C2 TOP2A+ TCs

exhibited higher cytotrace scores, indicating their greater

differentiation potential, while the C3 TEX41+ TCs showed the

lowest cytotrace scores, suggesting they might be at the terminal

stage of differentiation (Figures 4A, B). Slingshot pseudotime analysis

was performed on the four subgroups, and the UMAP diagram

visualized the progression from C2 TOP2A+ TCs to C1 UBB+ TCs,

then to C3 TEX41+ TCs, and finally to C0 CAND2+ TCs, which

closely aligned with the CytoTRACE analysis results (Figure 4C). The

distribution trajectories of different tissue types with Lineage1 were

shown in Figure 4D, indicating that the transition paths for tissue

types were from No−Neoadjuvant to Neoadjuvant. The distribution

of differentially expressed genes (DEGs) within the four subgroups

with slingshot pseudotime analysis in Lineage1 was also analyzed

(Figure 4E), and these DEGs were further examined using gene

ontology biological processes (GOBP) enrichment analysis. The

DEGs in the C0 subgroup were enriched in segregation mitotic and

other signaling pathways, while the DEGs in the C3 subgroup were

enriched in coagulation healing wound and other pathways.

The distribution patterns of named genes within the four

subgroups along the trajectory of slingshot pseudotime analysis

were illustrated in Figure 4F. As the pseudotime progressed, the

expression of the C0 subgroup’s named gene, CAND2, gradually

increased. The named gene UBB of the C1 subgroup and the named

gene TOP2A of the C2 subgroup exhibited higher expression in

Lineage1 initially and gradually declined. In contrast, the expression

of the named gene TEX41 of the C3 subgroup showed an inclination

to increase and then decrease in the pseudotime trajectory.

Based on the above analysis, the C2 TOP2A+ TCs subgroup of

malignant epithelial cells mainly originated from patients who had

not received neoadjuvant chemotherapy. CytoTRACE and

slingshot pseudotime analyses indicated that C2 TOP2A+ TCs

was at the initial stage of differentiation with high differentiation

potential. Therefore, it was speculated that this subgroup was highly

sensitive to neoadjuvant chemotherapy, which could induce its

transition to a subgroup with lower proliferative capacity.
Analysis of gene regulatory networks in
different subgroups

We employed pySCENIC to infer the gene regulatory networks

within ovarian cancer cell subgroups. The heatmap visualized the

top 5 transcription factors (TFs) within each cell subgroup

(Figure 5A). The most active TFs in each subgroup were
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identified as PBX1 (C0 CAND2+ TCs), CEBPG (C1 UBB+ TCs),

MYBL2 (C2 TOP2A+ TCs), and FOXO1 (C3 TEX41+ TCs). Based

on whether the subgroups received neoadjuvant treatment, we

studied the relationships among various tissue types, and the

corresponding findings were displayed in Figure 5B.

The rankings of the top 5 TFs within each subgroup were shown

in Figures 5C-F, and their specific distributions were visualized using

UMAP and scatter plots. In particular, the C2 TOP2A+ TCs

subgroup had the following top 5 TFs: MYBL2, MYBL1, E2F8,

E2F7, and E2F1. The UMAP plots depicted the distribution of these

five TFs in in each subgroup (Figure 5G). The results indicated that

MYBL2, MYBL1, and E2F8 were primarily distributed within the C2

TOP2A+ TCs subgroup, while E2F7 and E2F1 were also observed in

the C1 UBB+ TCs subgroup. The density distribution of the top 1 TF

(MYBL2) within the C2 subgroup was illustrated in Figure 5H.

Furthermore, violin plots were utilized to demonstrate the

expression distribution of MYBL2 in different subgroups, cell cycle

phases, and tissue types (Figures 5I-K), with statistically significant

differences observed. Notably, MYBL2 TF was predominantly

expressed in the C2 TOP2A+ TCs subgroup. It exhibited the

highest expression level during the G2M phase of the cell cycle,

and its expression was higher in tissue types without neoadjuvant

treatment compared to those that underwent neoadjuvant treatment.

In summary, based on the previous analyses, it was observed that the

expression of C2 TOP2A+ TCs and its top 1 TF (MYBL2) decreased

following neoadjuvant chemotherapy.

The top TF MYBL2 in the C2 TOP2A+ TCs subgroup is closely

linked to tumorigenesis and progression, with studies indicating its

association with poor prognosis in different tumor (52–55).
Cellchat analysis

Cell communication within large and small groups of ovarian

cancer was examined, with circle plots used to visualize the intensity

(Figure 6A) and quantity (Figure 6B) of interactions among various

cell types using circle plots.

Through cellchat analysis, we determined the corresponding

incoming communication patterns (Figure 6C) and outgoing

communication patterns (Figure 6D) to reveal the potential

communication network between C2 subgroup and other

subgroups, and speculated three incoming signal modes and

outgoing signal modes. Analysis of expected communication

patterns indicated that fibroblasts, B cells, pDCs and 4 subgroups

of malignant epithelial cells were associated with Pattern 3. The

signaling pathways related to Pattern 3 included IGF, CD45, FGF,

DESMOSOME, CDH, etc. The inferred outgoing communication

patterns showed that four subgroups, T NK, MCs, B cells, and

myeloid cells, were all characterized by Pattern 3, including MK,

PARs, SPP1, CD45, and other signal pathways.

To visualize the intensity of incoming and outgoing signals in

the interaction between all subgroups, we generated a heatmap

(Figure 6E). For the putative incoming signaling patterns, most

ovarian cancer subgroups displayed associations with the MK signal

pathway. Concerning the outgoing signaling patterns, the primary

target cells involved were the C0 and C2 subgroups.
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Examination of receptor-ligand connections between the C2

subgroup and different subgroups revealed that the association

between APP and CD74 was more pronounced when the C2

subgroup served as the target (Figure 6F). When the C2 subgroup

served as the source, MDK-NCL and APP-CD74 exhibited stronger

associations with other subpopulations (Figure 6G).
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Analysis related to the partial
exhaustion pathway

Next, we conducted an exhaustion pathway analysis on

malignant epithelial cells. Based on previous literature, we

examined the expression of Associated with Epithelial-
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FIGURE 4

CytoTRACE analysis and pseudotime analysis of cell subsets. (A) CytoTRACE analysis results of four cell subsets. In the left panel, dark green
indicated greater differentiation (low stemness), while dark red indicated less differentiation (high stemness). In the right panel, different colors
represented different ovarian cancer subgroups. (B) CytoTRACE scores for four cell subsets were displayed. (C) UMAP plot presenting the results of
slingshot pseudotime analysis of four cell subsets. The specific pseudotime trajectories of the four cell subsets were C2 TOP2A+ TCs → C1 UBB+
TCs → C3 TEX41+ TCs → C0 CAND2+ TCs, constituting one lineage in total. (D) UMAP plots showing the pseudotime trajectory of different tissue
types: No−Neoadjuvant →Neoadjuvant. (E) Heatmap displaying the changes of DEGs in each subset with pseudotime and the results of GO-BP
enrichment analysis. (F) Scatter plots exhibiting the changing trend of named genes in four subgroups with pseudotime.
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Mesenchymal-Transition Mediated T Cell Exhaustion Pathway as

well as the Immunomodulatory Interplay Pathway Involving

Exhausted Cells in malignant epithelial cells, as shown in Figure 7.

The results indicated that the C2 TOP2A+ TCs and C1 UBB+ TCs

subgroups, G2M Phase, and No−Neoadjuvant had relatively high

expression levels in the Associated with Epithelial-Mesenchymal-

Transition Mediated T Cell Exhaustion Pathway pathways
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(Figures 7A-C). In contrast, for the Immunomodulatory Interplay

Pathway Involving Exhausted Cells, the C1 UBB+ TCs subgroup, G1

Phase, and Neoadjuvant showed higher expression levels

(Figures 7D-F).

Additional ly , we explored the Immunosuppressive

Microenvironment Pathway Associated with Exhausted T Cells

and the Mediate the Crosstalk Between Tumor Intermediate State
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FIGURE 5

Transcription factor (TF) analysis of ovarian cancer subgroups. (A) Heatmap displaying the top 5 transcription factors (TFs) of the four subgroups. (B)
Heatmap illustrating the correlation between two tissue types (Neoadjuvant and No−Neoadjuvant) of the four subgroups. (C-F) UMAP plots and
scatter plots showcasing the TF ranking of each subgroup and its distribution, respectively. (G) UMAP plot displaying the distribution of the C2
subgroup’s top 5 TFs in each subgroup. (H) Density distribution of the C2 subgroup Top 1 TF (MYBL2). (I-K) Violin plots exhibiting the expression
level of MYBL2 in each subgroup (I), each cell cycle (J), and each tissue type (K), respectively.
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and the T Exhausted State pathway (Figure 8). For the

Immunosuppressive Microenvironment Pathway Associated with

Exhausted T Cells pathway, the C1 UBB+ TCs subgroup and

Neoadjuvant exhibited higher expression levels (Figures 8A-C).

However, for the Mediate the Crosstalk Between Tumor

Intermediate State and the T Exhausted State pathway, the C0

CAND2+ TCs and C3 TEX41+ TCs, G1 Phase, and Neoadjuvant

had higher expression levels (Figures 8D-F).
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Establishment of prognostic model and
correlation analysis

Among the four ovarian cancer subgroups identified, the C2

TOP2A+ TCs were potentially at the initial stage of differentiation

and had not received neoadjuvant treatment. Consequently, we

developed and validated a prognostic risk model for this subgroup.

Univariate Cox analysis was performed on the top 100 marker genes
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FIGURE 6

Subgroup interaction analysis. (A, B) Circle plots displaying the intensity (A) and number (B) of interactions between large groups and subgroups of
ovarian cancer. The thicker the line between the two cell types, the greater the strength or quantity of the interaction. (C) Sankey diagrams
presenting the deduced incoming communication patterns of target cells. (D) Sankey charts illustrating the deduced outward communication
patterns in secreting cells. (E) Heatmap revealing outgoing and incoming signaling patterns for all subgroups. (F, G) Dot plots showing the receptor-
ligand pairs of the C2 subgroup and other subgroups, along with their interaction intensity.
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within the C2 TOP2A+ TCs subgroup. To address multicollinearity,

LASSO regression analysis was conducted with the optimal

lambda.min 0.003. The results revealed that four genes were

significantly associated with prognosis in the training cohort

(Figure 9A). Subsequently, the coefficients were determined
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through multivariate Cox analysis, and the TOP2A TCs Risk

Score (TTRS) was calculated for each sample. Based on the

median TTRS, the training cohort was divided into the high

TTRS group (High TOP2A TCs Risk Score Group) and the low

TTRS group (Low TOP2A TCs Risk Score Group). Survival curves,
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FIGURE 7

Exhaustion pathway analysis. (A) The UMAP and violin plots respectively displayed the expression of different subtypes of malignant ovarian cancer
epithelial cells in the Associated with Epithelial-Mesenchymal-Transition Mediated T Cell Exhaustion Pathway. (B) The UMAP and violin plots
respectively displayed the expression of different phases of malignant ovarian cancer epithelial cells in the Associated with Epithelial-Mesenchymal-
Transition Mediated T Cell Exhaustion Pathway. (C) The UMAP and violin plots respectively displayed the expression of different groups of malignant
ovarian cancer epithelial cells in the Associated with Epithelial-Mesenchymal-Transition Mediated T Cell Exhaustion Pathway. (D–F) The UMAP and
violin plots respectively displayed the expression of different subtypes (D), different phases (E), and different groups (F) of malignant ovarian cancer
epithelial cells in the Immunomodulatory Interplay Pathway Involving Exhausted Cells. *P < 0.05; **P < 0.01; ***P < 0.001; and ****P < 0.0001; ns
indicated no significant difference.
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utilizing the Kaplan-Meier method, were plotted for these groups

(Figure 9B). As anticipated, the high TTRS group exhibited worse

prognosis (P < 0.0001). The ROC curve demonstrated that the

established prognostic risk model displayed elevated sensitivity and

specificity, with corresponding AUC values of 0.595 for 1 year,

0.595 for 3 years, and 0.648 for 5 years (Figure 9C). The high and

low TTRS groups, as well as the survival and mortality status over

time, were depicted in (Figure 9D, left). Furthermore, the
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expression levels of the four prognostic-related genes (UBB,

SNRPD1, HSPE1, and HMGB3) in the high TTRS and low TTRS

groups were shown (Figure 9D, right).

Multivariate Cox analysis was conducted to assess the

independent predictive ability of TTRS for overall survival (OS)

in the TCGA database (Figure 9E). A nomogram was generated,

incorporating the TOP2A TCs Risk Score (TTRS), age categories

(high and low), race (American Indian or Alaska native, Asian,
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FIGURE 8

Further analysis of the exhaustion pathway. (A-C) UMAP plots and violin plots respectively showed the expression of the Immunosuppressive
Microenvironment Pathway Associated with Exhausted T Cells pathway in different subtypes (A), phases (B), and groups (C) of malignant ovarian
epithelial cells. (D–F) UMAP plots and violin plots respectively showed the expression of the pathway Mediate the Crosstalk Between Tumor
Intermediate State and the T Exhausted State in different subtypes (D), phases (E), and groups (F) of malignant ovarian epithelial cells. *P < 0.05 and
****P < 0.0001; ns indicated no significant difference.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1438198
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shao et al. 10.3389/fimmu.2024.1438198
black or African American, and white), and tumor grades (G2, G3,

GB, and GX), to forecast the overall survival rate at 1, 3, and 5 years

for the training cohort (Figure 9F). The sensitivity and specificity of

the nomogram model were evaluated, resulting in AUC values of

0.62, 0.64, and 0.66 for 1 year, 3 years, and 5 years, respectively
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(Figure 9G). The concordance index (c-index) results indicated that

the nomogram model exhibited strong predictive capabilities

(Figure 9H). The correlation between the four prognostic-related

genes and OS, as well as TTRS, was analyzed and visualized using

scatter plots and heatmaps (Figure 9I).
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FIGURE 9

Development and correlation analysis of the TOP2A TCs Risk Score (TTRS). (A) LASSO regression analysis yielding optimal results with a lambda.min
value of 0.003. (B) Kaplan-Meier survival curve of the high TOP2A TCs Risk Score (TTRS) group and the low TTRS group. (C) ROC curves displaying the
AUCs for 1, 3, and 5-year intervals. (D) Scatter plots and curve plots illustrating the survival state of high and low TTRS groups over time and the situation
of TOP2A TCs Risk Score (TTRS) (left). Heatmap displaying the distribution of prognosis-related genes in the high TTRS group and the low TTRS group
(right). (E) Forest plot presenting the outcomes of multivariate Cox analysis for clinical factors and risk scores in the training cohort. (F) Nomogram
model constructed based on the TOP2A TCs Risk Score (TTRS), incorporating race, age, and grade. (G) ROC curves evaluating the prediction sensitivity
of the nomogram model through the analysis of AUC scores. (H) Boxplot displaying the C-index of the AUC at 1, 3, and 5 years. (I) Scatter plots and
heatmaps showing the pairwise correlations among four prognosis-related genes, OS, and TOP2A TCs Risk Score (TTRS). (J) Ridge plots and boxplots
illustrating the expression levels of four prognosis-associated genes in groups with high and low TTRS. (K) Boxplots displaying the expression levels of
four predictive genes in high and low Age groups. **P < 0.01 and ***P < 0.001; ns indicated no significant difference.
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Furthermore, we examined the distribution of the four genes

among high and low TTRS categories, as illustrated in Figure 9J.

Additionally, the expression differences of the four prognostic-

related genes in different age groups were analyzed and presented

using boxplots. There were no statistical differences observed for the

SNRPD1 and HSPE1 genes, but the UBB and HMGB3 genes

exhibited higher expression in the Low Age Group (Figure 9K).
Immune infiltration analysis

In order to investigate the heterogeneity between the high TTRS

group and the low TTRS group in more depth, we conducted a

comprehensive analysis of their tumor immune microenvironment.

The distribution of 22 distinct immune-infiltrating cell types in both

groups was graphically represented in Figure 10A. Subsequently,

the CIBERSORT and Xcell algorithms were employed to estimate

the proportions of immune infiltrating cells in the high TTRS and

low TTRS groups, as shown in Figure 10B. Significant disparities

were observed in the distribution of immune infiltrating cells

between the two groups. Notably, the low TTRS group exhibited

elevated levels of macrophage M1 and T cells follicular helper, while

the high TTRS group demonstrated higher expression of T cells

CD4 memory resting (Figure 10C).

The relationship between immune infiltrating cells and the Risk

Score of TOP2A TCs (TTRS) was depicted in Figure 10D. T cells

follicular helper and macrophages M1 exhibited an inverse

correlation with TTRS, whereas mast cells resting and T cells

CD4 memory resting showed a positive correlation. Moreover, we

examined the relationship between immune infiltrating cells and

the four prognosis-related genes, as well as their association with

overall survival (OS) and TTRS. Gene HSPE1 demonstrated a

negative correlation with B cells naïve, macrophages M2, and

plasma cells, while gene HMGB3 exhibited a negative correlation

with macrophages M2, mast cells resting, and monocytes

(Figure 10E). To assess the potential tumor immune evasion, we

evaluated the Tumor Immune Dysfunction and Exclusion (TIDE)

score in both groups, revealing significant differences between them

(Figure 10F). The high TTRS group exhibited a higher TIDE score,

suggesting a greater likelihood of immune escape and potentially

poorer response to immune checkpoint inhibitors (ICIs).

Furthermore, we conducted an in-depth analysis of immune

checkpoint-associated genes correlation with the four modeling

genes, and their relationship with OS and TTRS. The results

displayed in Figure 10G indicated that gene HSPE1 displayed a

negative correlation with most immune checkpoint-related genes,

while gene UBB exhibited a positive correlation with a larger subset

of immune checkpoint-related genes.
Enrichment analysis

To further explore the differences between the high TTRS group

and the low TTRS group, we examined the differentially expressed

genes (DEGs) between the two groups and explored their enrichment

pathways. Figure 11A presented the two sets of DEGs identified, and
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their distribution across the two groups was visualized using a

heatmap in Figure 11B. Subsequently, we performed enrichment

analysis to gain insights into the functional implications of these genes.

In terms of KEGG enrichment analysis, the DEGs were found to

be enriched in various pathways, including Nicotine addiction,

Synaptic vesicle cycle, Glutamatergic synapse, Retrograde

endocannabinoid signaling, and Axon guidance, among others

(Figure 11C). Additionally, enrichment analysis of DEGs using Gene

Ontology Biological Process (GOBP), Cellular Component (GOCC),

and Molecular Function (GOMF) revealed intriguing associations.

The GOCC enrichment pathway primarily involved the cornified

envelope and the cell division site (Figure 11D). Furthermore, the

GOBP analysis indicated associations with skin development and

amide transport (Figure 11E), while the GOMF findings suggested a

connection to DNA binding transcription activator function,

specifically RNA polymerase II, among others (Figure 11F).

Moreover, we investigated the frequency of somatic genetic

mutations in the training cohort and identified the top 20 genes with

the highest mutation rates (Figure 11G). TP53 was found to have the

highest mutation rate among all genes. Furthermore, we analyzed the

chromosome copy number variation (CNV) of the four prognosis-

related genes, revealing frequent CNV gain and CNV loss events across

all genes, particularly for HMGB3 and HSPE1 (Figure 11H).

Furthermore, we computed the Tumor Mutation Burden (TMB)

values for both groups, and a violin plot visualized the distribution of

these values (Figure 11I). Notably, the low TTRS group demonstrated

a higher TMB value. Additionally, there was a negative correlation

observed between TMB value and TTRS (Figure 11J), suggesting a

potential relationship between these variables. Based on the median

TMB value, the training cohort was stratified into high TMB group

and low TMB group. Combining the TTRS groups with the TMB

groups, the overall survival analyses revealed statistically significant

differences among the groups (Figures 11K, L). Interestingly, a higher

tumor mutational burden (TMB) was associated with a more

favorable prognosis (P = 0.0024) (Figure 11K), and the High Risk-

High TMB group exhibited the lowest survival rate compared to the

other three groups (Figure 11L).
Drug sensitivity analysis of high and low
TTRS groups

We assessed the sensitivity of the high TTRS group and the low

TTRS group to various chemotherapeutic drugs by calculating their

half-maximal inhibitory concentration (IC50) values (Figure 11M).

The estimated IC50 levels for Paclitaxel, Cisplatin, and Gemcitabine

were higher in the high TTRS group, while Lapatinib showed no

significant difference between the groups. These findings may

inform the selection of more suitable treatment measures based

on the differences in drug sensitivity among different groups.
Experimental result

MYBL2 wielded a momentous influence on the proliferation

and migration of ovarian cancer cell lines. To delve deeper into the
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functional significance of MYBL2 in ovarian cancer cell lines, we

delved into the repercussions of MYBL2 knockdown on two

particular cell lines, namely SK-OV-3 and A2780. The outcomes

of the CCK-8 experiment highlighted a noteworthy reduction in the

proliferation prowess of both cell lines within the MYBL2

knockdown group, when juxtaposed with the control group.

(Figure 12A). The plate cloning experiment revealed a significant
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reduction in the growth potential of SK-OV-3 and A2780 cells upon

MYBL2 knockdown (Figure 12B). The transwell experiment

corroborated the inhibitory impact of MYBL2 knockdown on

cellular migration and invasion. This was substantiated by the

notable reduction in the abundance of cells traversing the lower

chamber (Figure 12C). The wound healing assay results indicated a

statistically significant decrease in cell migration rate in the MYBL2
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FIGURE 10

Analysis of immune infiltration in high and low TTRS groups. (A) Stacked bar chart displaying the distribution of 22 types of immune infiltrating cells
in the high TTRS group and the low TTRS group. (B) Heatmap showing the expression of immune infiltrating cells in the high TTRS group and the
low TTRS group. (C) Boxplot illustrating variations in the levels of Macrophages M1, T cells follicular helper, and T cells CD4 memory resting between
the high TTRS group and the low TTRS group. (D) Lollipop chart displaying the results of the correlation analysis between immune-infiltrating cells
and the TTRS (TOP2A TCs Risk Score). (E) Heatmap displaying the relationship between immune cell infiltration, prognosis-related genes, overall
survival (OS), and the risk score of TOP2A tumor cells (TTRS). (F) Violin showing the difference in the TIDE value between the high TTRS group and
the low TTRS group. (G) Bubble chart illustrating the relationship between immune checkpoint genes, prognosis-related genes, OS, and the TTRS. *P
< 0.05; **P < 0.01; and ***P < 0.001; ns indicated no significant difference.
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FIGURE 11

Enrichment analysis. (A) Volcano plot presenting DEGs in high and low TTRS groups. (B) Heatmap displaying the differential distribution of DEGs in
the high TTRS group and the low TTRS group. (C) KEGG enrichment analysis results of DEGs. (D-F) GOCC, GOBP and GOMF enrichment analysis
results of DEGs. (G) Mutation waterfall plot depicting the occurrence of mutations in the high and low TTRS groups within the training cohort. The
top row illustrated the mutation burden for each sample, while the side column showed the overall percentage of genes in these samples. (H) Bar
graph showing chromosome copy number variation (CNV) for four genes. Red represented chromosome losses, blue represented chromosome
gains, and green represented no chromosome losses or gains. (I) Violin plot displaying Tumor Mutation Burden (TMB) values for high and low TTRS
groups (P = 0.00013). (J) Scatter plot illustrating the relationship between TMB and the risk score of TOP2A TCs, known as TTRS. (K, L) Kaplan-Meier
survival curves for the high TMB group and the low TMB group, the high TTRS-high TMB group, the high TTRS-low TMB group, the low TTRS-high
TMB group, and the low TTRS-low TMB group. (M) Violin plots showing the difference in drug sensitivity between high and low TTRS groups. *P <
0.05 and **P < 0.01; ns indicated no significant difference.
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knockdown group compared to the control group (Figure 12D).

Therefore, it can be concluded that MYBL2 knockdown

significantly suppresses the proliferation and migration abilities of

ovarian cancer cells.
Discussion

Ovarian cancer, a prevalent malignancy of the female

reproductive system, often presents with ascites, the accumulation

of fluid in the abdomen (2). Late detection and limited treatment

options contribute to the high mortality rates associated with this

disease. The standard treatment modalities for ovarian cancer include

surgery and chemotherapy, while neoadjuvant chemotherapy

(NACT) has emerged as a promising therapeutic approach for
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advanced cases (6). Recently, single-cell multi-omics technologies

have provided powerful tools for studying tumor immunology (56).

In this study, we utilized single-cell RNA sequencing to investigate

malignant epithelial cells associated with omental metastasis in

ovarian cancer patients and examined the impact of neoadjuvant

therapy on distinct subgroups of malignant epithelial cells.

To unravel the intratumoral heterogeneity of malignant

epithelial cells in omental metastasis, we further categorized the

acquired cells into four subtypes: C0 CAND2+ TCs, C1 UBB+ TCs,

C2 TOP2A+ TCs, and C3 TEX41+ TCs, based on their respective

marker genes. The analysis of these subgroups revealed that C2

TOP2A+ TCs exhibited a significantly higher proportion of cells in

the G2M phase, indicating their robust proliferative capacity.

Notably, the majority of C2 TOP2A+ TCs originated from

patients who did not receive neoadjuvant therapy, suggesting a
B C

D

A

FIGURE 12

In Vitro Experimental Validation. (A) CCK-8 assay showing a notable reduction in cell viability in the SK-OV-3 and A2780 cell lines after MYBL2
knockdown. (B) Plate cloning assay demonstrating a significant decrease in cell colony counts following MYBL2 knockdown compared to the
negative control group. (C) Transwell assay displaying a significant reduction in cell migration and invasion in both SK-OV-3 and A2780 cell lines
after MYBL2 knockdown. (D) The wound healing assay revealed a significant decrease in the migration rate of SK-OV-3 and A2780 cells with MYBL2
knockdown. **P < 0.01 and ***P < 0.001.
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potential interplay between this subgroup and therapeutic

intervention. Moreover, integrated CytoTRACE analysis revealed

a higher cytotrace score for the C2 subgroup, and slingshot

pseudotime analysis indicated an early stage of differentiation.

Therefore, the C2 TOP2A+ TCs subgroup appears to be

intricately involved in the progression of ovarian cancer. The

gene TOP2A, after which this subgroup is named, has been

significantly associated with tumor occurrence, invasiveness,

therapeutic response, and prognosis (57). Its crucial role in cell

division, particularly in the condensation and separation of

chromosomes during mitosis (58), makes it a promising target.

Prior studies have shown that mutations in the TOP2A gene have a

significant effect on the outlook for individuals with ovarian cancer

(59), with increased levels of TOP2A protein expression observed in

ovarian cancer tissues (55). It was speculated that neoadjuvant

chemotherapy (NACT) could promote the transition of the highly

proliferative C2 TOP2A+ TCs subgroup to those with lower

proliferative capacity. Therefore, NACT could potentially yield

better outcomes in ovarian cancer patients exhibiting high

TOP2A expression.

Enrichment analysis of the C2 TOP2A+ TCs subgroup revealed

a strong correlation with processes such as chromosome

segregation, mitotic nuclear division, nuclear chromosome

segregation, sister chromatid segregation, and nuclear division.

These findings underscore the connection between this subgroup

and the genetic material and division processes of ovarian cancer

cells, highlighting the importance of investigating the C2 TOP2A+

TCs subgroup as a distinct research entity.

Further analysis of transcription factors across different

subgroups identified key transcription factors for each subgroup:

PBX1 for C0 CAND2+ TCs, CEBPG for C1 UBB+ TCs, MYBL2 for

C2 TOP2A+ TCs, and FOXO1 for C3 TEX41+ TCs. Remarkably,

MYBL2 emerged as the top transcription factor in the critical C2

subgroup, which exhibited a higher proportion of cells in the G2M

phase and predominantly originated from patients who did not

receive neoadjuvant therapy. These findings suggest the potential

influence of neoadjuvant therapy on MYBL2 expression. MYBL2, a

proto-oncogene belonging to the MYB family, plays a crucial role in

tumor development and progression, being commonly upregulated

in various cancer types and associated with poor patient outcomes

(52). Previous studies have shown that the transcription factor

MYBL plays a role in the growth and spread of bladder cancer,

while reducingMYBL2 levels effectively inhibits the proliferation and

spread of bladder cancer cells, resulting in a halt in the G2 phase (53).

However, the specific biological functions of MYBL2 in ovarian

cancer remain to be elucidated. Prior studies have shown the

presence of the MYBL2-ATAD2 signaling pathway in individuals

with OC, emphasizing its importance in regulating the growth of

ovarian cancer cells (54). MYBL2 activated CCL2 transcription,

inducing TAM recruitment and M2-like polarization in vitro. The

MYBL2-CCL2 axis promoted tumor progression in ovarian cancer

by inducing immunosuppressive macrophages (60). This study

provided experimental evidence that the inhibition of MYBL2

through knockdown significantly suppresses the proliferation and

migratory capacity of ovarian cancer cells. Therefore, MYBL2 could

be a promising focus in relation to ovarian cancer.
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To assess the impact of the C2 TOP2A+ TCs subgroup on the

progression of ovarian cancer and patient outcomes, we developed a

novel predictive model, the TOP2A TCs Risk Score (TTRS),

through multivariate Cox analysis. This score allows the division

of the training cohort into the High TTRS Group and the Low TTRS

Group based on the median TTRS value, with the High TTRS

Group exhibiting a poorer prognosis. Immune checkpoints play a

vital role in regulating immune responses to prevent excessive

reactions. Tumor cells often upregulate immune checkpoints as a

mechanism to dampen local immune responses and evade immune

surveillance (61).The presence of inhibitory immune checkpoints

may contribute to the immunosuppressive nature of the tumor

immune microenvironment (TME). The TME exerts a significant

influence on tumor progression and treatment efficacy (62,

63).Examining the tumor immune environment of the High and

Low TTRS Groups, we found that the High TTRS Group showed a

higher presence of resting CD4 memory T cells, while the Low

TTRS Group had elevated levels of M1 macrophages and follicular

helper T cells. Cancer cells can activate immune checkpoint

mechanisms to evade immune recognition. In the high TTRS

group, the tumor immune dysfunction and exclusion (TIDE)

score was higher, indicating an increased potential for immune

evasion in the high TTRS ovarian cancer group, which may lead to a

diminished effectiveness of immunotherapy. Additionally, drug

sensitivity analysis revealed lower estimated IC50 values for

Paclitaxel, Cisplatin, and Gemcitabine in the Low TTRS Group,

indicating higher sensitivity to these drugs. However, previous

studies have shown that NACT can lead to platinum resistance

(8). Therefore, while individuals in the Low TTRS Group may

initially respond well to NACT, the potential for developing

resistance to platinum-based therapies like Cisplatin should be

carefully considered.

It is important to acknowledge the limitations of this study.

Firstly, the sample size was relatively small, focusing specifically on

the single-cell data of a subgroup of ovarian cancer patients. This

limited sample size may affect the statistical power of the findings and

their generalizability. Secondly, the study solely relied on single-cell

sequencing and transcriptomic analysis. This reliance excludes other

layers of biological information that might be crucial for a

comprehensive understanding of the disease. Future investigations

should involve multicenter studies with larger sample sizes to validate

the roles of MYBL2 and the TOP2A TCs Risk Score in ovarian

cancer. Additionally, expanding the study to include proteomics and

metabolomics approaches could provide a more holistic view of the

functional characteristics of specific subgroups and key molecules.

This integration could yield deeper insights into the mechanisms

underlying ovarian cancer and enhance the potential for developing

targeted diagnostic and therapeutic strategies.

Our research focused on the diversity within malignant

epithelial cells in metastatic ovarian cancer at the individual cell

level, revealing the significance of TOP2A and MYBL2 in this type

of cancer. Additionally, we identified prognostically relevant genes,

with a higher TOP2A TCs Risk Score (TTRS) indicating a poorer

prognosis. The studies help improve comprehension of the

development to medication in OC, providing new opportunities

for predicting and diagnosing the cancers.
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Conclusion

This study delved deeply into the intratumoral diversity within

malignant epithelial cells in ovarian cancer at the single-cell level.

The highly proliferative C2 TOP2A+ TCs subgroup likely played a

key role in regulating ovarian cancer cell proliferation through

related biological processes. This subgroup was highly sensitive to

neoadjuvant chemotherapy, which promoted its transition to other

subgroups with lower proliferative capacity. The results showed that

MYBL2 in C2 TOP2A + TC subgroup was involved in the

development and progression of ovarian cancer. The TOP2A TCs

Risk Score (TTRS) offers a promising prognostic model that can

guide future therapeutic strategies and prognostic assessments.

Further research efforts should focus on validating the roles of

MYBL2 and the TTRS in larger cohort studies while integrating

complementary proteomic and metabolomic approaches to gain a

more comprehensive understanding of ovarian cancer biology.

These findings offer new insights for future therapeutic strategies

and prognostic assessments in ovarian cancer.
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SUPPLEMENTARY FIGURE 1

Malignant cell identification. (A) Hierarchical heatmap displaying the extent of

copy number variation (CNV) in epithelial cells, identifying high-level CNV as

indicative of malignancy. Red represented gain, and blue represented loss. (B)
Hierarchical heatmap illustrating the differences in copy number variation

(CNV) among subgroups and assessing the variability within subgroups. Using
ECs as a reference, red represented gain, and blue represented loss.
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