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With the COVID-19 pandemic, the importance of vaccines has been widely

recognized and has led to increased research and development efforts. Vaccines

also play a crucial role in cancer treatment by activating the immune system to

target and destroy cancer cells. However, enhancing the efficacy of cancer

vaccines remains a challenge. Adjuvants, which enhance the immune response

to antigens and improve vaccine effectiveness, have faced limitations in recent

years, resulting in few novel adjuvants being identified. The advancement of

artificial intelligence (AI) technology in drug development has provided a

foundation for adjuvant screening and application, leading to a diversification

of adjuvants. This article reviews the significant role of tumor vaccines in basic

research and clinical treatment and explores the use of AI technology to screen

novel adjuvants from databases. The findings of this review offer valuable insights

for the development of new adjuvants for next-generation vaccines.
KEYWORDS
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1 Introduction

In the field of drug discovery and screening, artificial intelligence (AI) has become a

dominant method in the community due to its unique advantages (1). Firstly, the AI-based

process significantly reduces the time and resources required for the research because it can

quickly screen, design, and optimize millions of compound structures with enhanced

prediction accuracy (2, 3). Moreover, AI facilitates studying specific targets and discovering
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suitable target compounds, often called the “automation” process

(4). Cancer vaccines that use tumor antigens and adjuvants to

identify and eliminate cancer cells are becoming a promising

approach (5, 6). As the main component of cancer vaccines,

adjuvants mainly enhance the vaccine’s immune response speed,

intensity, and persistence (7). At present, a variety of proteins/

receptors are being studied as potential targets for vaccine adjuvant

design, including Toll-like receptor (TLR) (8, 9), Stimulator of

interferon genes (STING) (10, 11), Indoleamine 2, 3-dioxygenase

(IDO) (12), Programmed Cell Death Protein 1 (PD-1)/

Programmed Cell Death Ligand 1 (PD-L1) (13) and so on.

Although many potential adjuvants have been evaluated in

preclinical studies, the number of adjuvants successfully

converted to approved vaccines is still minimal (14). With the

researchers’mastery of the immune system and vaccine technology,

it has been found that the classical licensed adjuvants have limited

applicability to cancer antigens, especially nucleic acid antigens,

because of their inefficiency. It can no longer meet the requirements

of current cancer immunotherapy. Therefore, the integration of AI

technology and tools to promote the generation of novel adjuvants

is required. The limitations of adjuvants have many causes,

including the small number of currently approved adjuvants for

clinical use and the significant barriers to translating new adjuvants

from the laboratory to clinical applications. The high cost of clinical

approval for new adjuvants and the preference of developers for

existing adjuvants due to their lower regulatory risk are also

contributing factors (15). To address this issue, the Adjuvant

Development Program of the National Institutes of Health (NIH)

has provided crucial funding and support for the development and

application of new adjuvants in recent years (16, 17). Another

pressing issue is the low response rate of adjuvants. Specifically, why

do adjuvants added to vaccines fail to work effectively or meet

expectations? In our literature review, we found that this problem is

mainly because many adjuvants do not translate well from animal

studies to clinical studies. For example, there are significant

differences in TLRs (Toll-like receptors) between different species

(18). Therefore, it is crucial to screen potential TLR agonists in

appropriate animal models while considering species differences. AI

and machine learning are transforming multiple fields, including

vaccine adjuvant development. For instance, in the study of new

human TLR9 ligands, A. Ahuja et al. developed a customized

software program called the ‘Synthetic Chemist.’ Specifically, 1016

synthetic oligonucleotides were generated using a computer, and a

second machine learning program, ‘Search Algorithms for Ligands,’

was used to screen these ligands to find the best pan-species TLR9

ligand (CPG55.2) (19, 20). Subsequently, CPG55.2 was shown to be

active across multiple species and successfully used in the

development of vaccines for influenza (21), malaria (22), herpes

simplex virus type 2 infection (23), poliovirus (24), and COVID-19

(25, 26). This example illustrates the advantages of using AI to

screen adjuvants and demonstrates how the developed software has

played an important role in advancing new adjuvants in practical

applications. This article summarizes prospective tactics and
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technology for generating cancer vaccine adjuvants, which can be

helpful in the development of cancer vaccines.
2 Status and challenges of cancer
vaccine adjuvants

Cancer vaccine adjuvants are substances used in cancer vaccines

to enhance the immune system’s response to antigens. They play a

crucial role in improving the efficacy of cancer vaccines by enhancing

the body’s immune response to cancer cells. Like an experienced

coach, they are gradually rewriting the rules of immunotherapy (27).

Adjuvants can help present antigens to the immune system, stimulate

the production of cytokines, and activate various immune cells,

making them an essential component in the development of

effective cancer vaccines (28).In recent years, scientists have been

continuously exploring how to best utilize these “coaches” to enhance

patients’ immune responses through precise immunological data and

personalized treatment plans. To ensure safety and efficacy, ideal

cancer vaccine adjuvants should possess several key characteristics:

low or no toxicity, minimal side effects, the ability to enhance the

immune response to vaccine antigens, specificity, stability, and ease of

large-scale production. In a groundbreaking study, researchers

developed a nanoparticle-based adjuvant that showed remarkable

results in clinical trials, achieving unprecedented therapeutic

outcomes by enhancing antigen presentation and stimulating

immune cells (29, 30). Cancer vaccine adjuvants can be broadly

classified based on their mechanisms and sources into the following

categories: biological adjuvants, chemical adjuvants, particulate

adjuvants, and combination adjuvants.
2.1 Biological adjuvants

Biological adjuvants are natural or synthetic biological molecules

that enhance vaccine efficacy by modulating the immune system.

These adjuvants can enhance immune responses through various

mechanisms, including enhancing antigen presentation, activating

immune cells, and promoting cytokine production.

2.1.1 Cytokines
GM-CSF (Granulocyte-Macrophage Colony-Stimulating

Factor) is an important cytokine that enhances immune responses

by promoting the maturation and function of dendritic cells and

macrophages. It is widely used in cancer vaccines to enhance

antigen presentation and T cell activation (31). Provenge

(Sipuleucel-T), the first FDA-approved therapeutic cancer

vaccine, uses GM-CSF as an adjuvant to enhance antigen

presentation by dendritic cells, used for treating prostate cancer

(32). DCVax®-L, a personalized dendritic cell vaccine for

glioblastoma, combines the patient’s own tumor antigens with

GM-CSF, significantly extending patient survival (33).
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IL-12 (Interleukin-12) is another key cytokine that induces Th1

immune responses, promoting the activation of cytotoxic T cells

and NK cells, thereby enhancing immune attacks on tumor cells.

NKTR-214 (Bempegaldesleukin) is an IL-2 pathway agonist that

enhances T cell and NK cell activity. It is used in combination with

immune checkpoint inhibitors to treat various solid tumors and can

provide long-lasting immune responses to prevent tumor

recurrence when combined with anti-CTLA-4 antibodies (34).

2.1.2 Microbial components
BCG (Bacillus Calmette-Guérin) is an attenuated live vaccine

derived from Mycobacterium bovis, widely used for bladder cancer

immunotherapy (35). Initially developed to prevent tuberculosis,

BCG is used as an immunoadjuvant in cancer immunotherapy due

to its ability to stimulate the innate immune system, activate

macrophages and dendritic cells, and promote antigen

presentation and specific T cell responses (36).

CpG (Cytosine-phosphate-Guanine) oligodeoxynucleotides are

synthetic molecules that activate TLR9, inducing strong Th1

immune responses, promoting dendritic cell maturation, and

enhancing antigen presentation. Several new adjuvants, including

TLR3, TLR7, and TLR9 agonists, are undergoing clinical trials to

enhance the efficacy of immune checkpoint inhibitors and improve

cancer vaccine responses (37).

2.1.3 Other biological molecules
Mitogens, such as superantigens and bacterial toxins, can

strongly activate T cells and enhance immune responses. For

example, Tetanus Toxoid Fragment C (TTFC) is used as an

effective adjuvant to enhance the efficacy of various vaccines (38).
2.2 Chemical adjuvants

Chemical adjuvants are synthetically designed substances aimed

at enhancing immune responses. They improve vaccine efficacy

through various mechanisms, including enhancing antigen uptake,

activating immune cells, and promoting inflammatory responses.

The in-depth study and application of chemical adjuvants have

significantly improved vaccine efficacy, providing more options and

possibilities, especially in cancer vaccine development.

2.2.1 Aluminum salts (Alum)
Aluminum salts are among the earliest and most widely used

vaccine adjuvants. They enhance immune responses by forming an

antigen depot, prolonging antigen presence in the body, and

promoting uptake by antigen-presenting cells (APCs) (39).

Aluminum salts are widely used in various vaccines, including

DTP (Diphtheria, Tetanus, Pertussis) vaccines (40), hepatitis B

vaccines (41), and human papillomavirus (HPV) vaccines (42). In

some cancer vaccines, aluminum salts are used as adjuvants to

enhance immune responses. For instance, aluminum adjuvants in

HPV vaccines such as Gardasil and Cervarix improve vaccine

immunogenicity and effectively prevent HPV-related cancers (43).
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2.2.2 Saponins
Saponins, such as Quillaja saponaria extract QS-21, are the only

saponin adjuvant approved for clinical use in humans and have

demonstrated strong immunostimulatory activity. Traditional

extraction methods for QS-21 are time-consuming and yield low

amounts (44). Recently, Liu et al. developed a novel method to

synthesize QS-21 analogs, laying a rational foundation for effective

vaccine adjuvants (45).
2.3 Particulate adjuvants

2.3.1 PLGA nanoparticles
PLGA (Polylactic-co-glycolic acid)) is a biodegradable polymer

commonly used to prepare nanoparticles. PLGA nanoparticles

enhance immune responses by controlling antigen release rates,

increasing antigen stability, and promoting uptake by antigen-

presenting cells (46). PLGA nanoparticles have been studied in

various vaccines, including rabies and tuberculosis vaccines,

showing significant immune-enhancing effects (47, 48).

Additionally, PLGA is often used as a stabilizer for solid particle-

stabilized emulsions (Pickering emulsions) (49). Due to its high

stability, biocompatibility, and large loading capacity, Pickering

emulsions have been widely used in biomedicine. PLGA-based

Pickering emulsions can adhere to cell membranes, increasing

contact areas (50).
2.3.2 Liposomes
Liposomes are tiny vesicles formed by phospholipid bilayers

that can effectively encapsulate and deliver antigens and adjuvants.

Liposomes enhance immune responses by improving antigen

delivery, promoting uptake by antigen-presenting cells, and

providing antigen protection (51). Liposomes are widely used in

various vaccines, including influenza and COVID-19 vaccines. For

example, mRNA vaccines (such as Pfizer-BioNTech’s COVID-19

vaccine) use liposomes as delivery systems, significantly improving

vaccine immunogenicity and protective efficacy (52). Liposome

adjuvants show promising applications in vaccine development.

For instance, a study indicated that using liposomes as adjuvants in

influenza vaccines significantly improved immune responses in

elderly populations (53).
2.4 Combination adjuvants

Combination adjuvants use multiple adjuvants together to

achieve synergistic effects and enhance vaccine immune

responses. This strategy aims to utilize complementary

mechanisms of different adjuvants to provide stronger and

longer-lasting immune protection compared to single adjuvants.

2.4.1 Combination of cytokines and nanoparticles
Cytokines such as GM-CSF can enhance the function of

antigen-presenting cells (APCs) and promote antigen
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presentation. Nanoparticles can efficiently deliver antigens and

adjuvants to immune cells and provide sustained immune

stimulation through controlled release mechanisms. A study

combined GM-CSF with PLGA nanoparticles for melanoma

vaccine development, showing that this combination significantly

enhanced vaccine immunogenicity and anti-tumor efficacy (54).

2.4.2 Combination of multiple nanoparticles
Different types of nanoparticles (e.g., gold nanoparticles and

PLGA nanoparticles) can enhance immune responses through

different mechanisms. Gold nanoparticles can improve antigen

stability and delivery efficiency, while PLGA nanoparticles

provide sustained immune stimulation. Research indicated that

combining gold nanoparticles and PLGA nanoparticles in liver

cancer vaccines significantly enhanced antigen-specific T cell

responses and anti-tumor activity (55).

2.4.3 Combination of TLR agonists and liposomes
TLR agonists (e.g., CpG oligodeoxynucleotides) can activate the

innate immune system, promote antigen presentation, and T cell

activation. Liposomes, as delivery systems, can effectively

encapsulate and deliver antigens and adjuvants, protecting them

from degradation. In HPV-related cancer vaccine research,

combining TLR9 agonist CpG with liposomes significantly

enhanced vaccine immune responses and protective efficacy.

MPL, a TLR4 ligand derived from LPS, enhances the ability to

prevent tuberculosis in mice and crab-eating monkeys when present

in the Ag85B-ESAT-6—DDA liposome formulation (56).

Recent research has explored various novel adjuvants and

delivery systems to enhance the efficacy of cancer vaccines. For

instance, studies have shown that using bispecific antibodies (i.e.,

antibodies that target both tumor cells and immune cells

simultaneously) can enhance immune responses against cancer.

Bispecific antibodies have demonstrated significant potential in

targeting tumor-associated antigens and activating immune cells,

thereby improving therapeutic outcomes (57).

Despite the crucial role of adjuvants in vaccine development,

their use and development still face many challenges. Safety issues

have always been paramount in drug development, as many

adjuvants can cause local or systemic reactions or autoimmune

diseases. Therefore, it is necessary to develop new adjuvants that

reduce side effects and increase safety. For example, optimizing

dosage and administration methods, as well as conducting extensive

clinical trials for validation, are important. Individual differences in

immune responses also need to be considered. Due to differences in

genetics (58), environment (59), age (60), sex (61), occupation (62),

and other factors, individuals may exhibit varying intensities and

types of immune responses when receiving the same vaccine or

being exposed to the same pathogen.

Additionally, the production processes for adjuvants are complex,

and quality control often presents significant challenges, with variations

between different batches. Thus, it is crucial to establish and adhere to

strict standardized procedures and employ advanced quality control

techniques. Besides these issues, adjuvants also face challenges such as
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insufficient immune persistence, high costs, and inadequate regulation,

all of which need to be addressed and improved.
3 Online available algorithms and
databases of AI Drug Discovery

Recently, many algorithms and databases have been rapidly

established for AIDD. For example, DeepChem, a Multi-Layer

Perceptron (MLP) model primarily using Python AI system to

search for suitable drug candidates in drug discovery (63), and

DeepTox, a software capable of predicting the toxicity of 12,000

drugs (64). For the development of small molecule drugs, there is a

database (https://smpdb.ca/) that includes 49,833 pathways that can

be found in databases that are not accessible through other routes

(65). Furthermore, Shtar and colleagues have established the

continuously updated Continuous Drug Combination Database

(CDCDB). In this database, they use various methods, including

natural language processing, to improve the drug combination

discovery process and ensure the database is applicable for

predicting drug synergies (66). In sum, we have summarized

other related databases and open-source tools in Table 1.
4 AIDD assists in the discovery of
novel adjuvants

Depending on different technical routes and functions, AIDD

could be divided into five subgroups, including De novo design,

Virtual screening, Properties and Toxicity prediction, and

Drug repurposing.
4.1 The “De novo design” in the discovery
of adjuvant

The stages of drug design have always been a focal point in AI.

“De novo design” is an indispensable aspect of using AI in drug

development. Since the introduction of the first “De novo design”

software, HSITE/2D Skeletons, which was developed in the 1980s

(95–97), it has gradually replaced traditional methods in drug

discovery design, encompassing scoring, assembly, and search

strategies. It has been continuously used until today (98). Based on

it, Popova et al. designed a reinforcement deep learning algorithm

called ReLeaSE (https://github.com/isayev/ReLeaSE). This algorithm

includes deep neural networks (DNN) for compound generation

and prediction of compound properties (99). Open-sourced tools

for finding the optimal pathways of target molecule synthesis were

also available, called AiZynthFinder (https://github.com/

MolecularAI/aizynthfinder) (100).

To focus on exploring small molecule adjuvants for cancer

vaccines, a practical and highly efficient tool to find specific

inhibitors or agonists is necessary. Zhavoronkov et al. designed a

tool called Generative Tensor Reinforcement Learning (GENTRL)
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TABLE 1 Databases and open-source tools.

Tools Explanation Github/website Ref

GoPubMed
A specialized search engine for PubMed articles, using text mining to find relevant

research papers
http://www.gopubmed.org (67)

BioRAT A tool for searching full-text articles to mine text data for useful information http://bioinf.cs.ucl.ac.uk/biorat/ (68)

DeepChem A machine learning tool in Python to help find potential drug candidates https://github.com/deepchem/deepchem (63)

DeepNeuralNetQSAR
Uses computational tools to predict how compounds will behave based on their

molecular structure
https://github.com/Merck/
DeepNeuralNet-QSAR

(69)

DeepTox Software that predicts the toxicity of around 12,000 drugs www.bioinf.jku.at/research/DeepTox (64)

GeneWays
Extracts information about biological pathways

from scientific texts.
http://geneways.genomeleft.columbia.edu (70)

PotentialNet
Uses neural networks to predict how well ligands (small molecules) will bind to

their targets
https://pubs.acs.org/doi/full/
10.1021/acscentsci.8b00507

(71)

ORGANIC Generates new molecules with desired properties
https://github.com/aspuru-guzik-

group/ORGANIC
(72)

CancerDR
Database of cancer drug resistance, listing the effectiveness of 148 anticancer drugs on

nearly 1,000 cancer cell lines
http://crdd.osdd.net/raghava/cancerdr/ (73)

PubChem A database of chemical information and their biological activities https://pubchem.ncbi.nlm.nih.gov (74)

BRENDA Comprehensive database of drug and drug target information http://www.brenda-enzymes.org
(75,
76)

DrugBank Comprehensive drug–target and drug data information database http://www.drugbank.ca (77)

ChEMBL
Database of bioactive molecules with drug-like properties, based on

published research
https://www.ebi.ac.uk/chembl (78)

ChEBI Database of chemical entities of biological interest http://www.ebi.ac.uk/chebi (79)

ZINC
Database containing curated chemical compounds

> 750 Million compounds
http://zinc.docking.org/ (80)

Chemputer Give detailed recipe for compound synthesis https://zenodo.org/record/1481731 (81)

Chemical VAE AUses variational autoencoders to automatically design new chemicals
https://github.com/aspuru-guzik-

group/chemical_vae
(82)

VAE Improve the chemical property prediction performance of machine learning models
https://github.com/znavoyan/

vae-embeddings
(83)

Co-VAE A tool that predicts drug-target affinity better than existing methods
https://ieeexplore.ieee.org/

document/9576631
(84)

Cloud 3D-QSAR
A web tool for building models that relate

chemical structures to their biological activities
http://agroda.gzu.edu.cn:9999/ccb/

server/cloud3dQSAR/
(85)

Neural graph fingerprint Uses convolutional neural networks to predict properties of new compounds
https://github.com/HIPS/

neural-fingerprint
(86)

BindingDB Database of experimental data on how small molecules interact with proteins http://www.bindingdb.org (87)

Therapeutic target database
Comprehensive resource on therapeutic protein and nucleic acid targets, diseases,

pathways, and drugs
https://db.idrblab.net/ttd/ (88)

Cambridge structural
database (CSD)

Repository for small molecule organic and metal-organic crystal structures
https://www.ccdc.cam.ac.uk/solutions/

software/csd/
(89,
90)

NCI open database
Database from the National Cancer Institute with a wide range of

chemical compounds
https://cactus.nci.nih.gov/download/nci/ (91)

ENAMINE database
The world’s largest collection of novel building blocks (more than 210 million)

36B Billion REAL compounds and Custom Library Synthesis
https://enamine.net/ (92)

CHEMBRIDGE Database
Database of over 1.3 million small molecules for screening, including unique

macrocycles and building blocks
https://chembridge.com/ N/A

AMTDB Open-access repository specifically for anti-tumor autophagy modulators https://amtdb.vercel.app/ (93)

(Continued)
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for small molecule “De novo design”. GENTRL optimizes synthesis

feasibility, novelty, and biological activity. Using GENTRL, they

discovered a potent inhibitor of Discoidin Domain Receptor 1

(DDR1), a kinase target associated with fibrosis and other

diseases, within 21 days (101). Chemistry42 is a platform for de

novo small molecule design and optimization. It combines AI and

medicinal chemistry to generate novel structural molecules

efficiently with in vitro and in vivo validation. These approaches

have effectively validated for DDR1 and CDK20 (102). All these

advancements provide significant assistance to AIDD or

adjuvant identification.
4.2 Virtual screening

Virtual screening technology is widely applied to facilitate the

screening of large compound libraries based on computer

simulations and molecular modeling techniques (103), thus

contributing to drug high-throughput screening (HTS) (104). It

allows for assessing the biological activity of candidate compounds

based on their chemical structures, thus predicting their

interactions with specific targets (105). Therefore, it enables the

rapid identification of potentially active compounds, saving time

and resources during the early stages of drug development (106).

Traditional HTS often faces high costs, time-consuming processes,

and limited sample quantities (107). This fast and efficient screening

provides crucial support to drug development and advances the

progress of drug discovery (108).

There are two main technical routes for virtual screening,

including Ligand-based or Structure-based virtual screening (LB/

SBVS), which are all primarily attributed to the advancements in

extensive databases of protein and chemical structures. With

improved computational power and the accumulation of large

compound libraries, virtual screening can more accurately predict

the biological activity and efficacy of candidate compounds (109).

This has led to successful discoveries of new bioactive molecules,

particularly in drug repurposing (110).

4.2.1 Ligand-based virtual screening
LBVS is a computer-assisted drug discovery method that

predicts compounds’ binding ability and affinity by simulating

their interactions with protein targets (111). This screening

approach is commonly used to identify potential drug candidates,

particularly for drug discovery targeting known protein targets. It

typically involves data preparation, ligand preprocessing, target
Frontiers in Immunology 06
preprocessing, molecular docking, and result analysis (112). For

instance, Luca et al. recently utilized LBVS to identify an effective a-
Syn amyloid formation inhibitor, MeSC-04 and demonstrated its

binding mode. This work provided new insights for developing a-
Syn amyloid inhibitors from synthetic sources (113). Zarei et al.

employed LBVS on the RON receptor homology model to screen

the ZINC database, identifying two compounds, TKI1 and TKI2,

further evaluated in vitro. This study laid the foundation for novel

RON inhibitors applicable in cancer therapy and targeting CXCL12

(114). This small pro-inflammatory chemokine plays a significant

role in tumor formation by binding to the specific receptor CXCR4.

Using LBVS, Haider et al. identified three potential anti-cancer

CXCL12 inhibitors (115). The above examples illustrate that LBVS

holds extensive prospects for application. Its emergence provides

researchers with an efficient, rapid, and cost-effective approach to

identifying potential candidate compounds, thus advancing the

development of computer-assisted research in this field.
4.2.2 Structure-based virtual screening
SBVS approach relies on the three-dimensional structure of the

target protein, often obtained through X-ray crystallography (116) or

nuclear magnetic resonance (NMR) spectroscopy (117). SBVS is

widely used to identify potential drug candidates and has proven to

be an effective tool in the early-stage drug discovery process (118). It

typically involves molecular docking, scoring, and filtering to

prioritize compounds with high binding affinity and potential

therapeutic activity against the target protein. Thus, SBVS

significantly accelerates the drug discovery process by reducing the

number of compounds that need to be experimentally tested (119).

Here, we have presented numerous examples of drug screening based

on SBVS, demonstrating its importance in enhancing drug screening

efficiency and improving the accuracy of candidate drug selection.

For instance, Mukherjee et al. discovered compound CID 88265020

with significant potential as a VGFR inhibitor among over 80 virtual

screening compounds, which could be used for prospective future

studies in ovarian cancer (120). Xie et al., based on the importance of

FOXM1 in ovarian cancer treatment, selected XST-119 through

SBVS and found that XST-119 exhibited apparent inhibitory

activity in a xenograft mouse model, laying the foundation for

further drug discovery (121). G9a, a lysine methyltransferase, was

investigated by Bellver-Sanchis et al., who proposed a candidate G9a

inhibitor, referred to as compound F., providing a lead for G9a

inhibitor design and demonstrating their involvement in reducing

Alzheimer’s disease (AD) (122). Guo et al. discovered novel

Tropomyosin receptor kinases A (TrkA) allosteric inhibitors
TABLE 1 Continued

Tools Explanation Github/website Ref

ChemSpider
Chemical database maintained by the Royal Society of Chemistry with extensive

chemical information.
http://www.chemspider.com/ (94)

GRAC Database focused on compounds related to G Protein-Coupled Receptors (GPCRs)
http://

www.guidetopharmacology.org/about.jsp
N/A
frontier
N/A, Not Available.
sin.org
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through SBVS and identified a promising hit (D5261, TrkA cell IC50

= 3.32 mM). Their results suggest that D5261 could be a starting point

for developing TrkA allosteric inhibitors (123). Lin et al. reported a

novel non-covalent Bruton tyrosine kinase (BTK) inhibitor that could

potentially target malignant tumors, laying the foundation for

developing effective BTK inhibitors for solid tumors (124). Luo

et al. performed PD-L1 screening on 52,765 marine natural

products and identified compound 51320 as a PD-L1 small

molecule inhibitor through SBVS and other methods (125).

Similarly, Ge et al. identified two compounds through SBVS that

could serve as scaffolds for IDO1 inhibitors (126).

Furthermore, the SBVS process involves the interaction

between molecules and proteins, making it indispensable for

studying molecular mechanisms within living organisms. It

contributes to uncovering the foundations of diseases and

potential therapeutic pathways. In summary, with the continuous

expansion of computer model training, SBVS is poised to become

one of the critical tools in drug discovery.
4.3 Predicting the physicochemical
properties and biological activities
of compound

4.3.1 Quantitative Structure-Activity Relationship
QSAR modeling is one of the most popular computer-aided

tools in drug chemistry for drug discovery and lead compound

optimization. It involves four main steps: selecting appropriate

molecules, model construction, model validation, and model

application (127). Since its introduction in the 1960s, QSAR

modeling has been continuously refined and updated (128). One

of the most representative 3D QSAR models is Comparative

Molecular Field Analysis (CoMFA), considered the most classical

and widely used. However, its development has been limited by

certain drawbacks (129, 130). To address these limitations, Wang

and colleagues created the Cloud 3D-QSAR server, which can

facilitate the development of robust QSAR models in drug

discovery (131). With the advancement of QSAR techniques,

applying 4D, 5D, 6D, and 7D models is becoming more

prominent, as these methods can provide additional information

on small molecules beyond traditional 3D-QSAR (132).

4.3.2 Predicting physical and chemical properties
and biological activity

The physical and chemical properties of compounds determine

their binding efficiency with targets, and predicting the

physicochemical properties and biological activities of drugs can

expedite the decision-making process.

Currently, numerous software programs are utilized for

predicting the physicochemical properties and biological activities

of drugs. JunctionTree VAE (Variational Autoencoder) is an open-

source tool capable of predicting compound properties (133).

Conv_qsar_fast is another open-source toolkit that uses CNN

(Convolutional Neural Network) methods to predict molecular

properties (134). Additionally, InnerOuterRNN utilizes internal and
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external recursive neural networks to predict physical, chemical, and

biological properties (135). In conclusion, predicting the

physicochemical properties and biological activities of drugs by

AIDD can significantly enhance the efficiency and success rate of

research and provide valuable tools and resources for scientists,

accelerating the discovery and development of new medicines.
4.4 Prediction of compound toxicity

Toxicity testing is an essential but resource-consuming task for

drug discovery (136), and utilizing AIDD in toxicity prediction can

reduce the need for animal experiments (137, 138). To address this

challenge, various tools have been developed. One of the most

classic tools is Deep Tox, which employs deep learning methods to

predict compound toxicity (139). Furthermore, eToxPred is a

software capable of evaluating candidate compound toxicity based

on machine learning methods (140). TargeTox can also predict

drug safety related to toxicity (141). Therefore, compound toxicity

prediction is crucial in drug development, contributing to improved

research efficiency and risk reduction and providing robust support

for drug safety assessment.
4.5 Drug repurposing

Drug repurposing, also known as drug repositioning (142), is

categorized into early-stage and late-stage repurposing. The former

involves the identification of potential lead compounds through

large-scale screening of compound libraries (143); the latter is used

to complete the preparation of lead compounds. For clinical testing

and evaluation (144).

Drug repurposing has shown many successful examples:

Aspirin was initially introduced by Bayer in 1899 as an analgesic

and was first repositioned in the 1980s as an antiplatelet aggregation

drug using low doses (145). With further research, scientists have

revealed the therapeutic role of aspirin in the field of cancer,

especially in colorectal cancer (146), where its anticancer effect is

believed to result from the inhibition of COX-2, thereby blocking

the anti-apoptotic effect of COX-2 in malignant cells and promoting

their apoptosis (147). The second is Propranolol, originally a classic

drug for treating angina and hypertension, which has recently been

discovered to be effective in the treatment of osteoporosis and

melanoma (148). As is well known, the chiral drug Sildenafil was

once withdrawn from the market due to its teratogenic effects.

However, a serendipitous discovery revealed that Sildenafil has a

significant therapeutic impact on erythema nodosum leprosum (a

type of autoimmune complication of leprosy) by inhibiting the

synthesis of the pro-inflammatory cytokine tumor necrosis factor-

alpha (TNF-a). Therefore, in 1998, it was repositioned by Celgene

as an orphan drug for treating leprosy complications of leprosy

(149). However, these cases are often based on serendipitous clinical

discoveries and lack systematic patterns. Therefore, it is essential to

utilize network-based approaches to discover the potential

molecular mechanisms of drug actions (150).
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Currently, there are several databases available for drug

repurposing. For instance, the NCGC Pharmaceutical Collection

(NPC) (http://tripod.nih.gov/npc/) is suitable for screening and

research on numerous diseases, and it minimizes false negatives

and false positives (151). DrugBank (www.drugbank.ca) is a

network-based database that provides comprehensive molecular

information about drugs, drug mechanisms, drug interactions,

and their targets. It can offer crucial clues for drug repurposing

(77). Moreover, Drugs@FDA and ClinicalTrial.gov provide the

latest updates on drugs in clinical development, presenting new

research directions and systematic applications in AIDD.
5 Big data improves the efficiency of
adjuvant identification

The precision of AI-based drug screening is crucial to reduce

the use of animal models. Big data technology and machine

algorithms provide us with significant advantages. Optimizing AI

models’ algorithms and parameters can improve predictive

accuracy. Specifically, data preprocessing and standardization are

essential (152). Standardizing and unifying data formats ensure

comparability across different data sources. Additionally,

addressing noise and missing values in the data can enhance its

quality (153). On this foundation, model selection and extensive

training are indispensable steps. Cross-validation and

hyperparameter methods can improve model prediction accuracy

(154, 155). Once we obtain raw data, converting it into features

suitable for supervised learning, known as feature engineering, is

necessary. This process includes feature creation, transformation,

extraction, exploratory data analysis, and benchmarking, aimed at

simplifying and accelerating data transformation while improving

model accuracy (156). Finally, small-scale experimental validation

of adjuvants generated by AI screening, followed by model

adjustments based on the prediction results, can enhance

screening precision. Currently, machine learning-based predictive

models can leverage existing experimental and clinical data for

training, thereby reducing the need for animal experiments (157).
6 Successful examples of
different targets

AI has aided researchers in streamlining the intricate process of

identifying candidate compounds on various targets. Leveraging AI,

novel adjuvants have been developed for several diverse functional

targets (Figure 1). We will highlight the research progress of

adjuvants in some of the most valuable target categories. The

upper part of the figure, from left to right, describes how

adjuvants are designed, screened, quantitatively structured, and

eventually repurposed and added to vaccines. When a vaccine

containing AI-screened adjuvants is injected into a patient, it

triggers a series of immune responses, stimulating immune cells

to produce and release cytokines or target and attack tumors.
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6.1 Toll-like receptor family

The TLR family plays a crucial role in the innate immune

system, typically serving as a class of pattern recognition receptors

(PRRs) capable of recognizing specific molecular patterns

associated with pathogens such as bacteria, viruses, and fungi

(158). Specifically, when TLRs recognize one of these patterns,

they trigger an immune response to protect the body from

infection (159).

Due to these characteristics of TLRs, their agonists are widely

used as adjuvants in cancer vaccines to enhance the immune

response (14). We have summarized some of the relevant clinical

advancements of TLRs in Table 2. Depending on the recognized

molecular patterns, they can be categorized into four classes:

Recognizing Bacterial Molecules: TLR1, TLR2, TLR4, TLR5,

TLR6; Recognizing Double-Stranded RNA (dsRNA): TLR3;

Recognizing Single-Stranded RNA (ssRNA) from Viruses: TLR7,

TLR8; Recognizing Unmethylated CpG DNA Motifs from Viral

DNA: TLR9. Some representative agents are examined below.

6.1.1 TLR 3 agonist
TLR 3 is a critical recognition receptor primarily identifying

dsRNA, a hallmark of viral infection. It aids in combating viral

infections mainly by activating the host’s innate immune response

and is widely expressed in dendritic cells, macrophages, and some

epithelial cells (160). TLR 3 adjuvants have been extensively studied

for their ability to induce robust type I interferon responses, thereby

enhancing vaccine efficacy. Numerous studies have reported the

application of TLR3 agonists. For instance, some research suggests

that polyinosinic polycytidylic acid (Poly (I:C)) as a vaccine

adjuvant significantly enhances immune responses and shows

promising anti-tumor effects in preclinical studies (161).

RECEPTOR.AI offers a TLR 3 custom library predicted by

Alphafold for on-demand applications, leveraging state-of-the-art

virtual screening and parameter assessment technologies. They

maintain a large virtual library with over 600 billion molecules to

provide compounds with increased potency, selectivity, and safety.

[RECEPTOR.AI Platform] (https://www.receptor.ai/platform).

6.1.2 TLR 7/8 agonist
TLR7/8, expressed intracellularly, was first proposed in 2000

(162). They jointly recognize ssRNA, triggering the immune

response to identify pathogens. TLR7 is primarily expressed in

plasmacytoid dendritic cells (pDC), while TLR8 is mainly expressed

in myeloid dendritic cells (163, 164). In recent years, TLR7/8 has

gained popularity as an up-and-coming class of vaccine adjuvants

due to their ability to directly activate antigen-presenting cells

(APCs) and enhance cellular immunity.

Recent studies have utilized molecular dynamics simulations to

investigate the selective mechanisms of structurally similar TLR7/8,

which can be regarded as an advanced computational method

(165). The integration of automation and data-driven design has

further expanded the research parameters. By employing a

combinatorial approach, TLR-7/8a binders that induce the

desired T-cell immune responses and exhibit sufficient efficacy
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can be identified (166, 167). The Rapid Overlay of Chemical

Structures software (vROCS version 3.1.1. OpenEye Scientific

Software, Santa Fe, NM. [http://www.eyesopen.com]) is a tool

used in computational chemistry and drug discovery. By

comparing the shapes of millions of compounds, researchers can

quickly narrow down potential candidates. Urban Švajger et al.

employed the LVBS method to search for potential TLR7 ligands

and discovered six new compounds, addressing the gap where only

imidazoquinolines had been used as TLR7 modulators (168). To

enhance the accuracy of flexible site binding, Duan et al. conducted
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enrichment evaluations of various virtual methods and proposed

that a combination strategy can improve the effectiveness of virtual

screening for TLR8 agonists (169).

However, a common drawback of TLR7/8 agonists is their

reactogenicity. In recent years, many researchers have aimed to

overcome this issue by encapsulating these small molecules in

nanoparticles or covalently binding them to polymers. This

approach can prevent harmful systemic reactions (170, 171). AI is

also used to design nanomedicines that effectively deliver TLR7/8

agonists. Nanoparticle-based delivery systems can enhance the
FIGURE 1

The framework of AIDD of adjuvants and typical examples of cancer vaccine adjuvants based on the clinical trials.
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stability and targeting of these compounds, improving their efficacy

and reducing side effects. This approach is particularly valuable in

cancer therapy, where precise targeting of tumor cells is crucial.

Research by Hyunjoon and colleagues reported that subcutaneous

injection of biodegradable polymer, poly(d,l-lactide-co-glycolide)

(PLGA), and nanoparticles containing TLR7/8 agonists resulted in a

potent antigen-specific immune response. Their experiments

validated these effects in various tumor models, demonstrating

the potential of TLR7/8 as effective vaccine adjuvants for cancer

immunotherapy (172).

Furthermore, studies have suggested that tethering small

molecule TLR-7/8a to polymer scaffolds can enhance the

immunogenicity of vaccines. The formed polymer-TLR-7/8a

complexes can restrict the distribution of adjuvants and prolong

their retention in lymph nodes, providing new insights for

optimizing adjuvant design (172). All these findings underscore

the potential therapeutic benefits of TLR7/8 as vaccine adjuvants.

6.1.3 TLR9
The innate immune system in humans can be activated by

bacterial DNA (173). This discrimination is attributed to

mammalian DNA having a low frequency of CpG dinucleotides,
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most of which are methylated (174). Recent research has shown that

unmethylated CpG sequences with two purines at the 5’ end and

two pyrimidines at the 3’ end are necessary for immune activation

(175, 176). TLR9 was discovered to specifically recognize the

unmethylated CpG and initiated host immunity (177). Based on

their immune-stimulatory functions, CpGs can be divided into

CpG-A, CpG-B, and CpG-C. CpG-A mainly exists in double-

stranded aggregates and comprises single CpG motifs with partial

phosphorothioate (PS modification) and phosphodiester main

chain bases. It is primarily responsible for activating the STING

pathway, inducing the production of IFN-a and IFN-b by

stimulating pDC, and can indirectly activate NK cells (178). CpG-

B is composed of multiple CpG motifs entirely modified with PS. It

can activate the TLR9 pathway to generate pro-inflammatory

cytokines. Unlike class A, class B contains B cell activators and

stimulates pDC maturation. CpG-C typically consists of fully PS-

modified double-stranded palindromic motifs, exhibiting

immunostimulatory effects similar to the first two classes; it can

induce robust IFN-a production, pDC maturation, and effective B

cell stimulation (179).

Many studies have shown that CpG Oligodeoxynucleotides

(ODNs) can expedite vaccine responses. For example, the
TABLE 2 TLR-based cancer vaccines adjuvant in clinical application.

Category Biological Status Conditions
NCT
code

Reasons for use as an adjuvant AI tool

TLR3 agonist Poly I: Poly C
Phase
I/II

Melanoma, Ocular Melanoma,
Uveal Melanoma

NCT04364230
Activates the TLR3 signaling pathway in the immune
system and enhances anti-tumor immune responses

DeepChem

TLR3 agonist Poly I: Poly C
Phase
I/II

Melanoma, Metastatic
Melanoma,

Mucosal Melanoma
NCT02126579

Deep Neural
Net QSAR

TLR3 agonist Poly I: Poly C
Phase
I/II

Melanoma NCT01079741
DeepChem

TLR3 agonist Poly I: Poly C
Phase
I/II

Influenza, Human NCT01591473
DeepChem

TLR4
Agonist

GLA-SE
Early
Phase I

Skin Melanoma NCT02320305
Stimulates the TLR4 signaling pathway and promotes

anti-tumor immune responses
GeneWays

TLR4 agonist MPL
Phase
I/II

Melanoma, Ovarian Cancer,
Lung Cancer

NCT01584115

TLR7 agonist R848 gel Phase II Melanoma NCT00960752 Activates TLR7 signaling pathway and promotes
antiviral immune response

PotentialNet

TLR7 agonist GS-9620 Phase II HIV/AIDS NCT04364035

TLR7 agonist imiquimod Phase I
Melanoma (Skin),
Metastatic Cancer

NCT00453050
GeneWays

TLR7 agonist R848 Phase I
Influenza, Vaccination

in Seniors
NCT01737580

PotentialNet

TLR9 agonist
DUK-

CPG-001
Phase II

Hodgkin Lymphoma, Non-
Hodgkin Lymphoma

NCT02115126
Stimulate the TLR9 signaling pathway, enhances B-cell

and dendritic cell activity
DeepTox

TLR9 agonist CpG-7909
Phase
I/II

Esophageal Cancer NCT00669292

TLR9 agonist CpG Phase I Hepatitis B NCT04843852
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hepatitis B vaccine HEPLISAV-B, approved by the FDA in 2017,

was the first vaccine to use CpG-ODN 1018 as an adjuvant.

Compared to the traditional aluminum hydroxide adjuvant in

Engerix-B®, HEPLISAV-B induced a faster and more sustained

response and significantly improved immunogenicity (180).

Furthermore, CpG-ODNs can induce Th1 responses, promote the

generation of cytotoxic T lymphocytes (CTLs), and enhance the

secretion of IFN-g (181). Sayami et al. found that K3 (CpG-ODN)

generated more antigen-specific antibodies than other TLR ligands

and induced Th1 polarization. Their report on Transcutaneous

immunization also indicated that K3 could promote B cell

activation and differentiation, demonstrating the promising

potential of K3 as a vaccine adjuvant (182).

In sum, with the continuous advancements in the PRR field, the

strategic design of PRR-targeted adjuvants has emerged as a

prominent area of research. This encompasses the combination and

fine-tuning of methods. Such efforts hold promise for advancing the

development of both preventive and therapeutic vaccines.
6.2 STING agonists

In recent years, Stimulator of interferon genes (STING) agonist

stimulators have garnered significant interest as potential vaccine

adjuvants and cancer therapeutics. The STING pathway is critical

for immune responses against viruses and bacteria and contributes

to antitumor immunity (183). It is an endoplasmic reticulum

adapter that plays an essential role in the immune system (184).

Cytoplasmic DNA activates the cyclic GMP-AMP synthase (cGAS)-

STING pathway in this mechanism, triggering an immune response

(185). DNA binding to cGAS activates its enzymatic activity,

creating conditions for the formation of cyclic dinucleotide, 2’3’-

cGAMP (186). This cyclic dinucleotide (CDN) can indirectly

activate transcription factors in the STING pathway, including

interferon regulatory factor 3 (IRF3) and nuclear factor-kappa B

(NF-kB) (187).
Most STING agonists are CDN compounds, widely proposed as

adjuvants in vaccine administration and cancer therapy (188).

Leveraging the characteristics of STING agonists, Fu et al.

combined CDNs with a cancer vaccine called STINGVAX,

finding it effective in multiple mouse tumor models (189). CDNs

as adjuvants for developing infectious disease vaccines were initially

validated in pneumococcus and Staphylococcus aureus infections

(190, 191). Since then, many teams have explored CDN applications

in contagious diseases (192). Furthermore, nano adjuvants and

nanomaterials have demonstrated significant advantages in

vaccine design. For instance, CDN chemical modifications, such

as fluorination and thiophosphorylation on the same side, have

been found to activate STING with higher stability, cellular uptake,

and immunostimulatory capacity for antitumor therapy (193).

Additionally, combinations of nanoscale adjuvants have shown

promise in enhancing innate immunity. For example, combining

TLR7/8 and STING agonists as vaccine adjuvants encapsulated in
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polymer nanoparticles can further improve their effectiveness,

demonstrating additive effects of adjuvant combinations (194).

However, clinical outcomes of STING agonists, whether used as

monotherapy or combined with immune checkpoint inhibitors,

have been disappointing (195–197). This indicates the presence of

unknown mechanisms leading to adverse reactions. To go further,

James J’s team revealed that reversing the methylation silencing of

STING in mouse melanoma cell lines using clinically available DNA

methylation inhibitors can enhance agonist-induced STING

activation and type I IFN induction. This, in turn, can induce

tumor regression in syngeneic mice through a CD8+ T cell-

dependent immune response. These findings shed light on the

mechanisms of how functional impairments in STING signaling

within tumor cells lead to compromised responses to STING

agonist therapy (198). Moreover, the clinical application of CDN-

like compounds still faces a series of inescapable challenges. Due to

their damaging charge property, strong water solubility, and high

polar surface area, these compounds exhibit poor membrane

permeability, potentially diminishing the effectiveness of vaccines

when used as adjuvants (199). In Table 3 we have also summarized

the current clinical progress of STING as a vaccine adjuvant in

clinical practice.

AI has made great progress in predicting and screening STING

agonists as adjuvants. Ramanjulu et al. utilized high-throughput

screening methods to discover ABZI (amidobenzimidazole).

Intravenous injection of the STING agonist diABZI in

immunocompetent mice with established syngeneic colon tumors

resulted in complete tumor regression (200). Additionally,

screening has shown that formulating STING agonists as

nanoparticles can enhance drug stability and bioavailability (201).
6.3 Programmed Cell Death Protein 1/
Programmed Death-Ligand 1 inhibitor

PD-1 and PD-L1 immune checkpoint molecules play a role in

balancing immune responses in the immune system (202, 203).

When excess PD-L1 is bound to PD-1 on T cells, it inhibits T cell

activity, leading to a weakened immune response and immune

escape (204, 205).

Typically, cancer vaccines stimulate the immune system to

generate a specific response against the tumor (206). By

introducing tumor-associated antigens, the vaccine can identify

and target tumor cells. However, once a tumor has formed, the

immune system is suppressed, limiting the therapeutic effectiveness

of vaccines (207). In clinical practice, combining PD-1/PD-L1

inhibitors with tumor vaccines aims to enhance immunotherapy.

PD-1/PD-L1 inhibitors as adjuvants relieve immune suppression,

thereby strengthening the attack on tumors (208). There are

examples in clinical trials that its antibodies and tumor vaccines

have shown synergistic effects. For instance, Patrick A. et al.

reported the first Phase Ib clinical trial (Clinicaltrials.gov:

NCT02897765) using a neoantigen-based personalized vaccine
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called NEO-PV-01 in combination with PD-1 inhibitor Nivolumab

to treat advanced melanoma non-small cell lung cancer, or bladder

cancer (209). Compared to monoclonal antibodies, small molecules

are cost-effective, have a shorter half-life, and can reduce sustained

systemic side effects (210). Thus, they have become candidates for

adjuvants. The design of small molecules targeting PD-1/PD-L1

typically involves disrupting protein-protein interactions (PPI)

(211). Due to the lack of a prominent binding pocket, researchers

have developed a series of biphenyl derivatives based on the

mechanism of PD-1/PD-L1 interaction, including BMS-8, BMS-

37, BMS-202, BMS-200, BMS-1001, BMS-1166 (212). PD-L1

dimerization is also a hot research area for small molecule PD-1/

PD-L1 studies (213). For example, BMS’s small molecules tend to

form stable dimers with PD-L1 monomers. BMS-1166 can

specifically inhibit partial glycosylation of PD-L1, thereby
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blocking PD-L1 from moving to the Golgi apparatus from the

endoplasmic reticulum, rendering it inactive (214). The first oral

small molecule PD-L1 inhibitor that entered clinical trials is CA-

170 (215). Its clinical trials have been conducted in lung cancer,

head and neck cancer, and Hodgkin’s lymphoma (NCT02812875,

clinicaltrials.gov) (CTRI/2017/12/011026, ctri.nic.in), which may

mark a new era for small molecule vaccine adjuvants. In Table 4,

we have summarized the clinical advancements of other PD-1/PD-

L1 as small molecule adjuvants.
6.4 Indoleamine 2,3-dioxygenase inhibitor

IDO is an enzyme responsible for converting tryptophan into

kynurenine. Within the immune system, the primary role of IDO is
TABLE 3 STING-based cancer vaccines adjuvant in clinical application.

Category Biological Status Conditions NCT code
Reasons for use as

an adjuvant
AI tool

CDNs

TAK-676 Phase I
Advanced or
Metastatic

Solid Tumors
NCT04420884

Anti-tumor immune response

DeepChem

IMSA-101 Phase II Solid Tumor NCT04020185 PotentialNet

BI1387446 Phase I Solid Tumors NCT04147234 DeepNeuralNetQSAR

BMS-986301 Phase I

In participants
with cancers

that have failed
to respond to T
cell checkpoint-

inhibiting
antibodies

NCT03956680

DeepTox

SB11285 Phase I
Advanced

solid tumors
NCT04096638

PotentialNet

Non-CDNs
Small

Molecules

GSK3745417 Phase I
Advanced

Solid Tumors
NCT03843359

Anti-tumor immune response

DeepChem

SNX281 Phase I
Advanced Solid

Tumors
and Lymphoma

NCT04609579
GeneWays

HG381 Phase I
Advanced

Solid Tumor
NCT04998422

DeepTox

KL340399 Phase I
Advanced

Solid Tumors
NCT05549804

PotentialNet

AZD6738 Phase II
Breast

Neoplasm
NCT03740893

Anti-breast tumor
immune response

DeepChem

Other

STAV Phase I

Increase the
body’s ability to
fight aggressive
relapsed or
refractory
leukemias.

NCT05321940
Respond to GeneWays

zrelapsed or
refractory leukemia

GeneWays

SYNB1891 Phase I

Advanced/
metastatic solid

tumors
and lymphoma

NCT04167137
Anti-tumor and anti-

lymphoma immune responses

DeepTox
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to suppress T-cell activity, helping to maintain immune balance and

prevent excessive immune responses. In recent years, IDO

inhibitors have drawn significant attention in tumor

immunotherapy. As reported, it can delay tumor growth and

enhance the effect of dendritic cell vaccines (216). They are often

used with other immunotherapies, such as PD-1/PD-L1 inhibitors,

to bolster the immune response. Yao et al. introduced an in situ

multifunctional vaccine utilizing bacterial outer membrane vesicles

(OMVs, 1-MT@OMV-Mal) designed to encapsulate IDO inhibitors

internally. The in situ injection of 1-MT@OMV-Mal effectively

overcomes the immune suppression induced by IDO on effector T

cells infiltrating the tumor, resulting in significant inhibition of both

primary and distant tumors (217). Su et al. used polymer-lipid

hybrid nanovesicle (P/LNV)–based liposomes to deliver IDO

inhibitors and TLR9, enhancing antigen immunogenicity and

simultaneously blocking immune checkpoints. Mechanistically,

this approach significantly increases the infiltration of CD8+ T

cells in tumors and drains lymph nodes. Cationic liposomes

delivered with tumor vaccines and IDO inhibitors provide a

promising platform for cancer immunotherapy by provoking

antitumor T-cell immunity and reversing the immunosuppressive

tumor microenvironment (218). Troitskaya et al. demonstrated that

IDO can enhance the efficacy of recombinant human milk peptide

lactating (RL2) —treated cell vaccination. Their experimental

results showed that additional IDO chemical inhibition exhibits

better long-term antitumor responses than vaccination with RL2-

treated cells alone (219).

Moreover, IDO as a cancer vaccine adjuvant also finds

applications in the Human Papillomavirus (HPV) field. Recently,

Pagni et al. developed a vaccine based on the genetic fusion of HSV-

1 glycoprotein D (gD) with the HPV-16 E7 oncoprotein (gDE7

vaccine) for treating HPV-related tumors. They aimed to enhance

the existing efficacy by incorporating an IDO inhibitor (206). In vivo

experimental results showed that multitarget therapy improved the

antitumor efficacy of the gDE7 protein vaccine, providing evidence

for IDO as a therapeutic vaccine adjuvant for HPV tumors (220).

Their earlier studies also indicated the significant role of IDO in

HPV vaccines. They added two immune metabolic adjuvants, an
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IDO1 inhibitor, to the gDE7 vaccine and found that they enhanced

the in vivo antitumor effect. In simple terms, combining IDO

inhibitors with immunotherapy and reducing the negative impact

of IDO1 expression on vaccine-induced protective immunity

significantly increased the anticancer effect (221). Their

experiments demonstrated that IDO1-targeted therapy could

improve antitumor treatment by reprogramming inflammatory

cells. These series of studies revealed a novel and promising

approach to control HPV-related tumors and potentially other

cancer types, providing substantial evidence to support

further research.

Finally, a few IDO inhibitor has been tested in clinical. For

example, Indoximod has been widely used in clinical settings. A

phase I/II clinical trial (NCT01042535) combining indoximod with

adenovirus p53-Dendritic Cells (DC) vaccine in the treatment of

invasive breast cancer showed a maximum tolerated dose (MTD) of

1600 mg BID, and the two drugs demonstrated significant

synergistic effects. This proves that IDO inhibitors can effectively

enhance the efficacy of vaccines (222). Therefore, the strategy of

using indoximod as an adjuvant for tumor vaccines to enhance anti-

tumor treatment is worthy of further exploration in subsequent

clinical trials. In sum, we summarized the clinical trials of potential

IDO inhibitors as adjuvants for tumor vaccines currently underway

and presented them in Table 5.
7 Conclusion

The development of new drugs is a lengthy and expensive process.

The average cost of research and development is around $1.3 billion

per drug (223). The average duration for developing oncology drugs is

13.1 years, with only 13.8% of all drug development projects ultimately

gaining approval (224, 225). These challenges are often attributed to

inappropriate patient selection, outdated equipment, and technological

limitations. With the application of AI in drug development, it is

possible to reduce these figures (226). For example, AI can use patient

genetic exposure profiles to screen for potential drug target populations

(226). Predictive machine learning and alternative deductive methods
TABLE 4 PD-1/PD-L1-based cancer vaccines adjuvant in clinical application.

Category Biological Status Conditions
Combination

therapy
NCT code

Reasons for use
as an adjuvant

AI tool

PD-1/PD-L1
inhibitor

CA-170 Phase I/II
advanced tumors
and lymphomas

N/A NCT02812875
Anti-tumor

immune escape
DeepChem

INCB-086550 Phase II solid tumors N/A NCT04629339 Anti-tumor PotentialNet

MX-10181 Phase I solid tumors N/A NCT04122339 Enhance ICBs therapy DeepNeuralNetQSAR

GS-4224 Phase I solid tumors N/A NCT04049617
Tumor identification

and clearance
DeepTox

IMMH-010 Phase I
advanced

solid tumors
N/A NCT04343859

Anti-tumor GeneWays
N/A, Not Available.
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also contribute to forecasting lead compounds, thereby reducing

development costs (226).

To reduce the costs associated with drug development, there is

an increasingly close collaboration between pharmaceutical
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companies and the field of AI, especially in the realm of target

discovery. We have compiled a summary of projects launched in

partnership between select AI companies and pharmaceutical firms

from 2020 to the present. These initiatives aim to develop and
TABLE 5 IDO-based cancer vaccines adjuvant in clinical application.

Category Biological Status Conditions Combination therapy
NCT
code

Reasons for
use as
an adjuvant

AI tool

IDO
inhibitor

Epacadostat
(INCB024360)

Phase III

Cisplatin-
ineligible
Urothelial
Carcinoma

Pembrolizumab、
Epacadostat and
Placebo

NCT03361865

Anti-tumor
immune escape

DeepChem

IDO
inhibitor

GDC-0919 Phase I Solid tumor N/A NCT02048709
Anti-tumor PotentialNet

IDO
inhibitor

1-methyl-
D-tryptophan

Phase I Solid tumor N/A NCT00739609
Inhibits IDO and
increases T
cell activity

DeepNeuralNetQSAR

IDO
inhibitor

NLG802 Phase I Solid tumor N/A NCT03164603
Anti-tumor DeepTox

IDO
inhibitor

Docetaxel Phase II
Metastatic
Breast Cancer

Indoximod in Combination With a
Taxane Chemotherapy

NCT01792050
Anti-tumor PotentialNet

IDO
inhibitor

KHK245 Phase I

Locally Advanced
or Metastatic
Urothelial
Carcinoma

KHK2455 in combination
with avelumab

NCT03915405

Enhanced
immunotherapy

DeepChem

IDO
inhibitor

Indoximod
Phase
I/II

Temozolomide-
Refractory
Primary
Malignant
Brain Tumors

Indoximod 、 Temozolomide
and Bevacizumab

NCT02052648

Synergistic effect
of
chemotherapeutic
agents

GeneWays

IDO
inhibitor

Indoximod
Phase
I/II

Metastatic
Melanoma

Indoximod、
Ipilimumab、
Nivolumab and
Pembrolizumab

NCT02073123

Enhance
ICBs therapy

DeepTox

IDO
inhibitor

Indoximod
Phase
I/II

Metastatic
Adenocarcinoma
of the Pancreas

Indoximod in Combination With
Gemcitabine and Nab-Paclitaxel

NCT02077881
Anti-tumor DeepChem

IDO
inhibitor

Indoximod Phase I
Progressive
Primary
Brain Tumors

Indoximod and Temozolomide NCT02502708

Improving the
efficacy of
chemotherapy
drugs

PotentialNet

IDO
inhibitor

Epacadostat
(INCB024360)

Phase II
Advanced
Melanoma

Indoleamine 2,3, Dioxygenase-1
(IDO1) Inhibitor (INCB024360) Plus
a Multi-peptide Melanoma Vaccine
(MELITAC 12.1)

NCT01961115

polypeptide
vaccine

DeepNeuralNetQSAR

IDO
inhibitor

Epacadostat Phase III Metastatic Disease
Pembrolizumab、
Epacadostat

NCT03374488
Enhance
ICBs therapy

DeepTox

IDO
inhibitor

Epacadostat Phase II
Non-Small Cell
Lung Cancer

Pembrolizumab (MK-3475) Plus
Epacadostat (INCB024360)

NCT03322540
PotentialNet

IDO
inhibitor

Epacadostat Phase II
Non-Small Cell
Lung Cancer

Pembrolizumab、
Epacadostat、
Platinum-based chemotherapy

NCT03322566
DeepChem

IDO
inhibitor

Epacadostat
Phase
I/II

Solid Tumors
Epacadostat、
Pembrolizumab and
Oxaliplatin

NCT03085914
GeneWays
N/A, Not Available.
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predict viable drugs, ultimately streamlining the process of bringing

drugs into clinical trials (Figure 2). Current AI systems are mainly

based on the deep learning method, the most popular machine

learning method after the success of deep neural network (DNN)

(227). Deep learning has been widely explored in various tasks

(228–230), including drug design and molecular dynamics (MD)

development (231). The MD development plays a crucial role in the

small molecule adjuvant effect since it can explain how molecules

interact at the atomic level during drug discovery (232). However,

the MD process is known to be time-consuming and labor-

intensive. The AI-based system can solve these issues and thus

accelerate the MD process. For example, Drew Bennett et al.

proposed an MD simulation that calculates the free energy of

transferring 15,000 small molecules from water to cyclohexane

(233). The research findings show that AI technology can speed

up the MD simulations and enhance improvisation, however, at the

cost of substantial model training, which is indispensable for deep

learning-based AI systems.

The success of AI in developing adjuvants for cancer vaccines

relies heavily on the availability of extensive data and well-trained

models (2). Accessing various databases has introduced additional

costs, and screening reliable and high-quality data is essential to

ensure prediction accuracy. AI faces significant challenges in

developing adjuvants for cancer vaccines and other drugs. These

challenges include reducing the 2-3 year gap between prediction

and drug development, a shortage of skilled personnel for AI-driven
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drug screening, ensuring the credibility of generated predictions,

dealing with the “black box” phenomenon, and establishing

reasonable regulations (234). While AI has been widely used in

drug discovery and translational research over the past two decades,

its progress in clinical operations and data analysis has been

relatively slow.

While many challenges are associated with using AI in

developing adjuvants for cancer vaccines, we anticipate that AI

will become increasingly prevalent in this field, helping mitigate the

risks associated with drug development (235, 236). With the

development of personalized medicine, AI can also assist in

selecting the most suitable adjuvants for patients to achieve

personalized immunotherapy plans. This will contribute to the

advancement of precision medicine. Overall, AI has accelerated

the research process in developing tumor vaccine adjuvants,

improving the efficiency and effectiveness of adjuvant design. It

can bring more innovation and breakthroughs to the future of

global vaccine research and immunotherapy.
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