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Introduction: Self-antigens abnormally expressed on tumors, such as MUC1,

have been targeted by therapeutic cancer vaccines. We recently assessed in two

clinical trials in a preventative setting whether immunity induced with a MUC1

peptide vaccine could reduce high colon cancer risk in individuals with a history

of premalignant colon adenomas. In both trials, there were immune responders

and non-responders to the vaccine.

Methods: Here we used PBMC pre-vaccination and 2 weeks after the first

vaccine of responders and non-responders selected from both trials to identify

early biomarkers of immune response involved in long-termmemory generation

and prevention of adenoma recurrence. We performed flow cytometry,

phosflow, and differential gene expression analyses on PBMCs collected from

MUC1 vaccine responders and non-responders pre-vaccination and two weeks

after the first of three vaccine doses.

Results: MUC1 vaccine responders had higher frequencies of CD4 cells pre-

vaccination, increased expression of CD40L on CD8 and CD4 T-cells, and a

greater increase in ICOS expression on CD8 T-cells. Differential gene expression

analysis revealed that iCOSL, PI3K AKT MTOR, and B-cell signaling pathways are

activated early in response to the MUC1 vaccine. We identified six specific

transcripts involved in elevated antigen presentation, B-cell activation, and NF-

kB1 activation that were directly linked to finding antibody response at week 12.

Finally, a model using these transcripts was able to predict non-responders

with accuracy.
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Discussion: These findings suggest that individuals who can be predicted to

respond to the MUC1 vaccine, and potentially other vaccines, have greater

readiness in all immune compartments to present and respond to antigens.

Predictive biomarkers of MUC1 vaccine response may lead to more effective

vaccines tailored to individuals with high risk for cancer but with varying

immune fitness.
KEYWORDS

colon cancer, colorectal adenoma, cancer vaccine, transcriptomics, MUC1,
serological response
Introduction

Self-antigens abnormally expressed in tumors, known as non-

viral cancer-associated antigens, have been extensively tested over the

last three decades as antigens in therapeutic cancer vaccines (1–3). In

preclinical studies, an immune response to these antigens can prevent

cancer growth without causing toxicity. In humans, preexisting

immunity to some such antigens correlates with better disease

outcome or reduced risk of cancer recurrence (4). Nevertheless,

therapeutic vaccines utilizing these antigens have had low

immunogenicity and no clinical efficacy. This has been attributed

to the presence of many immunosuppressive factors in the tumor

microenvironment, such as regulatory T cells (Tregs), myeloid-

derived suppressor cells (MDSCs), and tumor associated

macrophages (TAMs), all of which actively suppress the activity of

cytotoxic T cells and other immune effector cells. Additionally, the

secretion of immunosuppressive cytokines like IL-10 and TGF-b,
along with expression of immune checkpoint molecules such as PD-

L1, further exacerbates immune suppression leading to an

antagonistic environment for antitumor immune responses (5–7).

MUC1 is a cancer-associated antigen that has been effective as a

vaccine in preclinical animal models but showed limited

immunogenicity and efficacy as a therapeutic vaccine in clinical

trials in colon, breast, pancreas, prostate and lung cancer (8–12).

Hypothesizing that the major difference between the outcome of the

vaccine in preclinical models and clinical trials is the high level of

immune suppression in cancer patients, we began to develop

models and MUC1 vaccines for cancer prevention in patients at

risk; before immune suppression develops. As MUC1 is expressed

on early premalignant lesions as well as cancer, we chose to study

immunogenicity, safety and potential efficacy of this vaccine in the

preventative setting in individuals with a history of colonic polyps

that increases their risk of colon cancer (13).

From 2008 to 2012, we conducted a single arm trial (NCT-

007773097) in 41 individuals (14). Participants received a vaccine

comprised of a 100-amino acid synthetic MUC1 protein (100µg),

admixed with the adjuvant polyinosinic-polycytidylic acid (Poly

ICLC – Hiltonol), a synthetic dsRNA analog and Toll-like receptor
02
3 (TLR3) agonist (14). The vaccine was administered subcutaneously

at week 0, 2, and 10, with a booster dose given at week 52. Forty-three

percent (43%) of vaccinated participants responded to the vaccine as

measured by production of anti-MUC1 IgG at week 12 post

vaccination (vaccine responders), and 57% did not respond

(vaccine non-responders). From 2015-2020, we conducted the

second study, a randomized, double-blind placebo-controlled

multi-center efficacy trial of the same MUC1 vaccine in the setting

of newly diagnosed advanced adenomas in 110 individuals (NCT-

02134925) (15). Twenty-seven percent (27%) of the vaccinated

participants responded to the vaccine. In addition to the immune

response, in this trial we evaluated adenoma recurrence by follow-up

colonoscopy ≥1 year from the start of vaccination. In vaccine

responders, adenoma recurrence was reduced by 38% compared to

non-responders and placebo controls. Predictable factors such as

gender, age, and HLA-type were not significantly different between

vaccine responders and non-responders. It became important to

understand why some individuals mounted a potentially protective

immune response, while others did not, having the same diagnosis.

In this study, we analyzed PBMC samples collected from both

trials at baseline (pre-vaccination) and 2 weeks post-first of 3

vaccines (week 0, week 2 and week 10) from vaccine responders

and non-responders and identified comprehensive gene and

pathway biomarkers related to vaccine response. We discovered

that several key T- and B-cell cellular proliferation and stress

pathways were enriched in responders, while oxidative

phosphorylation and DNA damage response and repair

pathways were enriched in non-responders. Responders

had higher frequencies of CD4 cells at baseline, with higher

activation and/or costimulatory signaling in CD8 and CD4 T-cells

from baseline to week 2 in CD8 T-cells. Phosflow analysis

revealed enhanced phosphorylation of B-cell signaling molecules

and T-cell help targets in responders at baseline and a

significant increase in NFkB phosphorylation in B-cells at week 2.

Lastly, we applied graphical modeling approaches (16–18) to this

data and built a regression model to discriminate future responders

and non-responders via their predicted and actual IgG response

at week 12.
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Materials and methods

Cohort and sample collection

PBMC samples from 69 individuals with a history of, or with

newly diagnosed, advanced colonic adenoma and at high risk for

colon cancer were collected for this study as part of two clinical

trials of a MUC1 vaccine registered at clinicaltrials.gov (NCT-

007773097, NCT-02134925) (14, 15). The vaccine, composed of

100µg of MUC1 peptide plus the polyICLC adjuvant Hiltonol®, was

administered at week 0, 2, 10 and 52. The ethics committee/IRB of

the following institutions gave ethical approval for this work: Mayo

Clinic, Rochester MN; Kansas City Veterans Affairs Medical Center,

Kansas City, KS; University of Pittsburgh Medical Center,

Pittsburgh PA; University of Puerto Rico, San Juan PR; Thomas

Jefferson University Hospital, Philadelphia PA; and Massachusetts

General Hospital, Boston MA. All participants provided written

informed consent. Blood samples were processed within 24 hours

by the same individual, using the same protocol. Heparinized blood

was layered on lymphocyte separation medium (MPbio) and

centrifuged at 800 g for 10 min with lowest acceleration and

deceleration speed. PBMC were collected from the interphase,

washed twice, resuspended in 80% human serum and 20%

DMSO, and stored in liquid nitrogen.
RNA-Seq

PBMC samples were thawed, pelleted, and lysed in 350 mL of

RLT with beta-mercaptoethanol. RNA was isolated using the

RNeasy Mini kit (Qiagen). RNA quality was assessed with the

Fragment Analyzer (Agilent) and its Standard Sensitivity RNA kit.

Total RNA was normalized to 100 ng prior to random hexamer

priming and libraries generated by the TruSeq Stranded Total RNA

– Globin kit (Illumina). The resulting libraries were assessed on the

Fragment Analyzer (Agilent) with the High Sense Large Fragment

kit and quantified using a Qubit 3.0 fluorometer (Life Technologies.

Medium depth sequencing (>30 million reads per sample) was

performed with a HiSeq 2500 (Illumina) on a high output, 125 base

pair, paired end run.
Bioinformatic analysis

Raw demultiplexed fastq paired end read files were trimmed of

adapters and filtered using the program skewer (19), discarding those

with an average phred quality score <30 or a length <36. Trimmed

reads were aligned to human reference genome GRCh38 using

HISAT2 (20) and sorted using SAMtools (21). Aligned reads were

counted and assigned to gene meta-features using the program

featureCounts (22) as part of the Subread package. Quality control,

normalization and analysis were performed in R, using an in-house

pipeline utilizing the limma-trend method for differential gene

expression testing and the GSVA (23) library for gene set sample

enrichment. Biological sex and clinical trial batches were corrected for

as blocking factors during modeling. Final differential gene expression
Frontiers in Immunology 03
lists were filtered to remove non-coding RNAs as well as LOC features.

The datasets for this study can be found in the Gene Expression

Omnibus (GEO) public database with the accession number pending.
Flow cytometric analysis

For immune cell phenotyping and assessment of intracellular

levels of bcl2, and phosphorylation of STAT3, erk1/2, NF-kB and

MTORC targets, cells were first stained with Live/Dead Aqua

(Invitrogen) followed by cocktails of monoclonal antibodies

recognizing the following cell surface markers: CD4, CD8,

CD45RA, CD27, CCR7, CD152, CD86, CD275, CD11c, CD56,

CD16, CD19, CD3, HLA-DR, CD14, CD40, and CD11b. Cells were

washed, fixed and permeabilized, then stained with antibodies

specific for the following intracellular proteins: NFkB p65, erk1/2

(pT202/pY204), STAT3 (pY705), Akt1, pS6 (S235/236 & S240) and

p4E-BP1 (T36/46). Cells were washed and fixed and events were

collected on a BD ARIA-SORP instrument. A 15-minute incubation

at 37C with recombinant human IL-6 (100ng/mL) (BD Pharmingen)

was performed to induce NFkB signaling. After washing, cells were

resuspended in staining buffer and sorted on an ARIA-SORP.

Additional information on the panel of antibodies used for flow

cytometric analysis can be found in Supplementary Table 1. Data was

analyzed using FlowJo software (TreeStar).
Predictive model for post-vaccination
immune response

A detailed explanation of computational model development and

evaluation can be found in the Supplementary Materials. Briefly, a

LASSO logistic regression (24) was used to develop a prediction

model for a binary outcome of response defined by the clinical trial

endpoint (≥2-fold increase in IgG from baseline to week 12), using

transcriptomic data measured two-weeks post-vaccination (Week 2

data). A Mixed Graphical Models (MGM) algorithm was used to

infer a unidirectional graphical model followed by FCI-MAX to

determine direction. All statistical analysis was performed in R.
Statistics

Unless otherwise indicated, the Student’s t-test was used with p

≤ 0.05 chosen as the level of significance. Adjusted p-values are

shown in Figures 1–5 at p ≤ 0.2 and p ≤ 0.1 levels but were not used

in tests for significance.
Results

Vaccine responders and non-responders
show differential gene expression in
PBMCs pre-vaccination

Next-generation RNA-seq analysis was performed on PBMCs

from vaccinees. We assayed PBMC samples collected prior to the
frontiersin.org
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first injection (baseline) and 2 weeks later, at the time of the second

injection to be able to define preexisting (at baseline) and early post-

vaccination (week 2) signatures of later response to MUC1

vaccination. Vaccine responders (R, n=24) in both trials were

defined as having anti-MUC1 IgG levels at week 12 (after all

three injections) at least two-fold higher than baseline, while non-

responders (NR, n=45) showed no difference from baseline.

Responder and non-responder donor numbers varied at each
Frontiers in Immunology 04
time point due to sample collection limitations within the clinical

trials. For some of our analyses we also classified responders by

antibody levels into high responders (HR, anti-MUC1 IgG OD450

at 1:80 plasma dilution ≥0.4) and low responders (LR, OD450 at

1:80 plasma dilution <0.4).

RNA-seq performed on PBMCs collected immediately pre-

vaccination (baseline) revealed a total of 2,321 genes that were

differentially expressed between all responders and all non-
FIGURE 1

Differential gene expression pre- and post-MUC1 vaccination in responders and non-responders. All differentially expressed genes (DEGs) are shown
in two-way hierarchical heatmaps for each time point and contrast in the left column and top 50 DEGs by p-value are shown in the right column.
Group status is indicated in the row above the heatmap with responders (R) in dark blue, and non-responders (NR) in light blue. Z-scored
normalized gene expression for each gene is displayed horizontally across all samples (diverging color scale legend on the upper right of each
heatmap). Log2 fold-change, p-values (all p ≤ 0.05) and adjusted p-values are indicated in labelled vertical columns. Hierarchical clustering of the
samples is indicated by the dendrogram at the top of heatmap, while clustering of the genes is indicated at the far left. Heatmaps showing all DEGs
pre-vaccination (Baseline/Week 0) (A) top 50 DEGs pre-vaccination (Baseline/Week 0) (B), DEGs at Week 2 post-vaccination (C), top 50 DEGs at
Week 2 post-vaccination (D), all genes demonstrating longitudinal changes at Week 2 vs. Week 0 (Delta Wk2-Wk0) (E), top 50 genes demonstrating
longitudinal changes at Week 2 vs. Week 0 (Delta Wk2-Wk0) (F) in PBMCs from responders versus non-responders. Available samples from
responders and non-responders for analysis were n=13 and 33, respectively, in (A, B), n=24 and 19, respectively, in (C, D), and n=13 and 7,
respectively, for the paired analysis in (E, F).
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responders at baseline (see two-way hierarchical clustering overview

in Figure 1A). Within these genes, 1,337 showed increased

transcript levels and 984 showed decreased levels. Among the top

50 differentially expressed genes by p-value (Figure 1B), 47 genes

were upregulated in responder relative to non-responder

subgroups . The upregulated genes were involved in

transcriptional and epigenetic regulation, including multiple

subunits of the SWI/SNF chromatin remodeling complex

(ARID1A, ARID1B, and SMARCC2), as well as NCOA6, a
Frontiers in Immunology 05
multifunctional transcriptional coactivator and component of the

Set1-like H3K4-methyltransferase complex ASCOM, all of which

have been shown to play a role in the pathogenesis of cancer (25).

Additional cancer-relevant transcriptional regulators higher in

responders before vaccination include SP2, NFYC, AKNA,

MYPOP, and ZNF652. CUX1 is a subunit of the NF-muNR

repressor that binds to the matrix attachment regions of the

immunoglobulin heavy chain enhancer and the TCR enhancer.

The epigenetic regulator HCFC1 tethers Set and Sin3 histone
FIGURE 2

Differentially expressed T-cell fitness signatures in PBMCs from responders and non-responders to MUC1 vaccination is associated with CD4
frequencies and expression of multiple regulators of T-cell help. (A, B) iCOSL signaling pathway-related genes are associated with response to MUC1
vaccination at Baseline (A) and Week 2 post-vaccination (B) in MUC1 vaccine responders and non-responders. Heatmaps are organized as in
Figure 1. Violin plots of CD4+ T-cell frequencies as determined by flow cytometry. (C) Violin plots of CD40L expression on CD4 T-cells (D), CD8 T-
cells (E), and the change in ICOS levels on CD8 T-cells (Delta Week 2 vs. Week 0/Baseline) (F) measured by geometric mean fluorescence intensity
(MFI). Samples from responders and non-responders were n=13 and 33, respectively, in (A), n=24 and 19, respectively, in (B), and n=13 and 7,
respectively, in (C-F).
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modifying complexes together and was also higher in responders at

baseline (26). We observed an increase in TRAPPC9, an activator of

NFkB, and FAM168A, which is involved in the PI3K/AKT/NFkB
signaling pathway. RRAGA was one of 3 downregulated genes

among the top differentially expressed genes in responders and

plays a role in regulating the mTORC1 complex (27). The presence

of transcriptional and epigenetic regulators within the list of

upregulated genes could explain the large number of significant

changes in steady-state RNA levels we observed and suggests a

differing global transcriptional program between responders and

non-responders before vaccination. As these upstream regulators

have the potential to broadly remodel the transcriptome, they may

represent potent therapeutic targets.
Frontiers in Immunology 06
Vaccine responders and non-responders
show differences in gene expression in
PBMCs at week 2 post-vaccination

At two weeks post-first injection, we found 1,887 genes

differentially expressed in responders vs. non-responders, 934 genes

upregulated and 953 genes downregulated (see two-way hierarchical

clustering overview in Figure 1C). The top 50 genes arranged by p-

value are shown in Figure 1D. Among the upregulated genes are several

cancer-related transcriptional regulators including PPARD (28) and

HMGA1 (29), key regulators of lipid pathways (30), transcription

elongation factor SPT6 (SUPT6H), SOAT2, an enzyme involved in

lipoprotein and cholesterol regulation, and GPD1, an enzyme that
FIGURE 3

The mTOR signaling pathway is upregulated in the highest response to MUC1 vaccination. (A) Heatmap showing top differentially enriched pathways
from the Hallmark Gene Set (MSigDB) in the PBMCs from high responders (HR, n=9) vs. non-responders (NR, n=33) at Baseline. Group status is
indicated in the row above the heatmap as follows: high responders (HR) - pink, while non-responders (NR) - light blue. Z-scored normalized
pathway enrichment log 2 fold-change and p values are displayed as in Figure 1. Unsupervised clustering of the samples is indicated at the top of the
heatmap, while clustering of the pathways is displayed on the far left. (B) Violin plots showing the level of S6 ribosomal protein phosphorylation in
the indicated cell subsets (CD4, CD8, CD19/B-cells and CD14/monocytes). (C) Violin plots showing the level of AKT1 phosphorylation in the
indicated cell subsets (CD4, CD8, CD19/B-cells and CD14/monocytes). For all violin plots, geometric mean fluorescence intensity (MFI) is shown on
the y-axis. Responders (R, n=13) and non-responders (NR, n=7) are designated by dark blue and light blue respectively in the violin plots.
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plays a key role in lipid metabolism, are also upregulated in responders.

Among the downregulated cancer-related genes we found five involved

in mitosis and G2/M DNA replication checkpoint, the kinesin-like

proteins KIF11 and KIF15 (31), centromere/centrosome proteins

CENPF and CEP55 (32), and the cell cycle regulator protein

DLGAP5 (33). Importantly, CEP55 and DLGAP5 are key predictors

of antibody response in our graphical model discussed below.

We then performed double contrast analysis to identify

genes that were significantly differentially changed from baseline
Frontiers in Immunology 07
in paired samples from the same responders and non-responders

at 2 weeks (Figure 1E). The top 50 genes by p-value (Figure 1F)

are enriched in immune-related genes. IFNL1 is upregulated in

contrast to CD38 and IL12RB2, which are downregulated in

responders. Again, selective upregulation of transcriptional and

epigenetic regulators in responders is evident; examples include

PRDM5, ZNF230, ZCCHC9, ZKSCAN4, and the epigenetic

regulator ALKBH3, which demethylates DNA and RNA in cancer

cells (34).
FIGURE 4

B-cell signaling and NFkB signaling signatures are associated with response to MUC1 vaccination. (A, B) Heatmaps showing enrichment of B-Cell
Receptor Signaling pathways in the PBMCs from Responders (R) vs. non-responders (NR) at Baseline (A) and high responders (HR, n=9) vs. non-
responders (NR) at Baseline (B). (C, D) Differential gene expression from the CD40 Signaling pathway from PBMCs from R vs. NR at Baseline (C) and
Week 2 (D). Heat maps are organized as in Figure 1. (E) Violin plots showing expression levels of CD40 and HLA-DR on B-cells (CD19+). (F) Violin plots
of NFkB complex p65 subunit phosphorylation in T-cells (CD3+), non-DC/non-B antigen presenting cells (CD11C-HLADR+), and B-cells (CD19+). For
violin plots, geometric mean fluorescence intensity (MFI) is shown on the y-axis. Samples from responders and non-responders were n=13 and 33,
respectively, in (A, C), n=24 and 19, respectively, in (D). Responders (R, n=13) and non-responders (NR, n=7) are designated by dark blue and light blue
respectively in the violin plots.
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ICOS/ICOSL signaling is differentially
associated with response to the
MUC1 vaccine

We performed gene set variation analysis (GSVA) on baseline

gene expression data to identify biological pathways regulating

the response to vaccination. Vaccine responders displayed

significant upregulation of genes involved in the ICOS-ICOSL

pathway in T-helper Cells signaling pathway, with increased

expression of multiple genes both at baseline and week 2 post-

vaccination (Figures 2A, B, respectively). At baseline, responders

expressed higher levels of ICOSL, IL2RB, and CD4 coreceptor

genes, while at week 2 post-vaccination higher levels of the
Frontiers in Immunology 08
downstream NFKB pathway genes including NFKB2, RELB and

RELA were evident.

By flow cytometry, we detected significant differences in the

expression of key proteins involved in ICOS/ICOSL signaling. We

determined that higher frequencies of CD4 T-cells were present in

responders at baseline (Figure 2C). Notably, CD4 and CD8 T-cells in

responders had higher levels of CD40L expression prior to vaccination

(Figures 2D, E respectively). Greater increases in ICOS expression were

detected post-vaccination in CD8 T-cells of responders (Figure 2F).

The baseline immune signature in responders, characterized by T cells

with increased CD40L expression, may enhance ICOS/ICOSL

signaling by promoting strong interactions with antigen presenting

cells (APCs) and facilitate T cell activation and function.
FIGURE 5

Signatures of enhanced antigen presentation are evident in participants with an enhanced response to MUC1 vaccination. Heatmaps showing
enrichment of dendritic cell (DC) specific genes in the PBMCs from Responders (R) vs. non-responders (NR) at Baseline (A) and Week 2 post-
vaccination (B). Heatmaps are organized as in Figure 1. Violin plots of HLA-DR expression on DCs at Baseline (Week 0) (C), as well relative change in
expression of CD86 (D) and CD40 (E) in these cells. For all violin plots, geometric mean fluorescence intensity (MFI) is shown on the y-axis. Samples
from responders and non-responders were n=13 and 33, respectively, in (A), n=24 and 19, respectively, in (B). Week 2 vs. baseline paired responders
(R, n=13) and non-responders (NR, n=7) are designated by dark blue and light blue respectively in the violin plots.
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mTOR signaling is upregulated in
responders to MUC1 vaccination

As many components of the ICOS/ICOSL pathway were

significantly higher in the responders vs. non-responders, we

focused on differences in the mTOR signaling pathway which lies

directly downstream of ICOS/ICOSL engagement. Top enriched

pathways in high responders vs. non-responder comparisons

included PI3K/AKT/MTOR signaling, WNT/beta-catenin

signaling and hedgehog signaling (Figure 3A). In contrast, the

Myc targets V1 pathway and DNA repair were negatively

associated in high responders.

To validate enhanced mTOR signaling in responders, we

measured the phosphorylation levels of RPS6, a commonly used

readout of mTORC1 activity, by phosflow. There was a greater

increase in RPS6 phosphorylation in CD4 and CD8 T-cells, B-cells

(CD19), and monocytes (CD14) of responders, an observation

validating our finding at the phosphoprotein level (Figure 3B).

We also performed intracellular staining targeting the

phosphorylated AKT1 kinase upstream of the MTORC1 signaling

complex. Similarly, we found a greater increase in AKT1

phosphorylation in responders compared to non-responders.
B-cell signaling and enhanced antigen
presentation signatures are positively
associated with response to
MUC1 vaccination

As ICOS/ICOSL-mediated signaling promotes fitness of the T

lymphocyte compartment, we hypothesized that signaling from the

T-cells to the B-cell and APC compartment was also differentially

induced. Pathway enrichment analysis of the transcriptomic data

revealed significant enrichment of B-Cell Receptor Signaling and

PI3K Signaling in B Lymphocytes pathways at baseline

(Figures 4A, B) and NFkB and CD40 Signaling pathways at

baseline and at week 2 post-vaccination (Figures 4C, D). CD40

receptor engagement on the surface of antigen presenting cells,

such as B-cells, leads to activation of NFkB signaling and enhanced

cellular survival and function. Notably, multiple signaling component

genes (MAP kinases and Jak3) are significantly upregulated in

responders at baseline, followed by upregulation of additional

signaling molecules at week two (TRAF1, TRAF3, NFKB1, NFKB2,

RELA and RELB).

We validated increased expression of CD40 and HLA-DR on B-

cells (CD19+) in responders (Figure 4E) using flow cytometric

analyses. We used an intracellular phosflow panel to detect

phosphorylation of the p65 subunit of NFkB. We found increased

IL6-induced NFkB signaling via phosphoryation of p65 in T-cells,

HLA-DR+ non-B/non-DC APCs and B-cells of responders

(Figure 4F), and B-cells of high responders expressing

significantly higher levels of HLADR compared to non-

responders (Figure 4E).

Finally, we performed gene set variation analysis using a

published collection of gene sets associated with immunogenicity

to influenza vaccination (35). We determined that a plasmacytoid
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dendritic cell (DC) signature was already enriched in the PBMCs of

responders at baseline (Figure 5A) and further enriched at week 2

post-vaccination (Figure 5B). Vaccine responders showed increased

HLA-DR levels on DCs (CD3-, CD19-, HLA-DR+, CD11c+) at

baseline (Figure 5C). Responders also showed a greater relative

change in CD86 and CD40 expression from baseline to two weeks

(Figures 5D, E). Altogether, these results indicate that additional

signatures of enhanced antigen presentation are associated with

enhance response to MUC1 vaccination.
Six differentially expressed transcripts 2
weeks post-vaccination predict week 12
IgG response to the MUC1 vaccine

Based on evidence of key differences in cell populations and

molecular pathways between responders and non-responders at

baseline and post-vaccination, we hypothesized that some

differentially expressed genes may be useful for patient selection

and outcome prediction. We tested this hypothesis by applying

LASSO regression and MGM-FCI-MAX (18), a graphical modeling

algorithm, to 7,968 transcripts meeting a minimal variance

threshold. We first performed a cross-validation experiment (see

Supplementary Materials) to assess the ability to predict antibody

response to the vaccine at week 12, using the transcriptomic

signatures at week 2 post-vaccination. Our model achieved an

area under the receiver operating characteristic curve (AUROC)

value of 0.741 to predict response vs. non-response (Figure 6A). At

a predicted probability threshold of 0.5, the model achieved a

sensitivity of 91.7% (22 predicted responders/24 true responders)

and a specificity of 36.8% (7 predicted non-responders/19 true non-

responders). Predicted response odds were correlated with the

magnitude of antibody titer at week 12 (R2 = 0.209, p<0.001)

(Figure 6B), and with the ratio of IgG titer at week 12 versus

baseline (R2 = 0.147, p=0.015).

Next, we used graphical models to determine the variables

directly linked to week 12 antibody titer and distinguish them

from simple correlates. We produced a full model with all genes

selected in the previous cross-validation experiments, which were

learned using the entire week 2 dataset (Figure 6C). Finally, we

identified 6 genes that are directly linked to week 12 antibody titer:

RP11.81H14.2, CEP55, and TNFSF14 (negatively associated) and

C22orf29, DDX12P, and HLA-DQA2 (positively associated)

(Figure 6D). The role of these transcripts and how they may

contribute to the induction of immune response and vaccine

efficacy (discussed below) warrants further investigation.
Discussion

Therapeutic cancer vaccines, tested in numerous clinical trials

over several decades, failed to realize the promise generated by the

discovery of tumor antigens capable of eliciting humoral and cellular

immunity. In most cases, vaccines administered after primary tumor

removal failed to boost anti-tumor immunity and prevent tumor

recurrence. Ultimately, a greater understanding of the many
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immunosuppressive forces in the tumor microenvironment helped to

explain the reduced efficacy of therapeutic vaccines. These discoveries

support preventative vaccines as an alternative approach to cancer

vaccination to reduce cancer risk and incidence as they could be

applied in the absence of cancer and cancer-induced

immunosuppression. The two clinical trials from which we derived

the PBMCs, applied this preventative approach by vaccinating

individuals without cancer but at high risk for colon cancer due to

advanced colonic adenoma diagnosis (14, 15). We expected a vaccine

response from most individuals, measured by the production of anti-

MUC1 IgG antibodies. Anti-MUC1 IgG was selected as a convenient

as well as appropriate biomarker of the vaccine immunogenicity and

potential efficacy. The switch from IgM to IgG requires MUC1

specific T cell help, indicating that both the B cell and the T cell

compartments were activated by the vaccine. Furthermore, as MUC1

is a cell surface tumor antigen, MUC1 antibodies can target tumor

cells for destruction by antibody-mediated cellular cytotoxicity

(ADCC) and antibody-mediated phagocytosis (ADCP). It came as

a surprise that only a subset of participants produced high levels of

anti-MUC1 antibodies in response to the vaccine and established a
Frontiers in Immunology 10
long-lasting memory response. These results indicate that the vaccine

was capable of inducing immunity and the response was determined

by the individuals receiving the vaccine. Mechanisms underlying this

variable response to an apparently efficacious vaccine were not clear.

To address this major knowledge gap with an unbiassed

approach, we performed RNA-seq on total PBMCs from

participants in the two MUC1 peptide vaccine trials to identify

genes and pathways differentially regulated at baseline as well as

post-vaccination in the participants that responded versus those

that failed to respond to the vaccine. The analysis revealed that

vaccine responders at baseline exhibited an enrichment of key

pathways governing survival and proliferation in immune cells,

such as mTOR and NFKB signaling, as well as increased frequencies

of CD4 and CD8 T-cells. There were more memory CD8 T-cells at

baseline and week 2 (post MUC1 vaccine) in responders

(Figures 2A, E). Responders also had more CD4 T-cells at

baseline and higher frequencies of memory CD4 T-cells at week 2

(Figures 2A, C, D). Other immune compartments appeared to differ

in favor of responders with higher levels of BCL2 expression at

baseline in CD14+ and greater increases in BCL2 expression at week
FIGURE 6

Graphical models of response from transcriptomic data measured two-weeks post-vaccination. (A) Receiver Operating Characteristic curve of
response (≥2-fold increase in IgG) using week 2 transcriptome signature. (B) Correlation of predicted response odds with the magnitude of antibody
titer at week 12 (C) Full model showing all neighbors and second neighbors of week 12 antibody titer levels (Week 12 IgG), (D) reduced model
showing only direct causes of week 12 antibody titer. Color of edge denotes a positive vs negative correlation, and size denotes edge stability.
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2 post-vaccination (data not shown). The control of DC longevity

by the regulation of BCL2 directly impacts immune responses.

Higher levels of BCL2 suggest enhanced survival in the myeloid

compartment and consequently better antigen presentation.

The differentially expressed genes and pathways that we have

identified in vaccine responders and non-responders pre-vaccination

and two weeks post-vaccination are top candidates for early biomarkers

of vaccine immunogenicity at week 12. Among the six genes directly

linked to MUC1 antibody production at week 12, some have already

been identified as diagnostic biomarkers (CEP55, TNFSF14) while the

others merit deeper investigation as they hold the potential to enhance

our understanding of vaccine response. Overexpression of CEP55 has

been observed in numerous cancer cell types, including premalignant

lesions of the colon (36), and is a known correlate of poor prognosis

(37). Notably, a CEP55 peptide vaccine was proposed for breast and

colorectal carcinoma immunotherapy as CEP55 is involved in the

PI3K/Akt signaling pathway. TNFSF14, also known as LIGHT,

functions as a co-stimulatory factor for the activation of lymphoid

cells and modulates T-cell proliferation (38, 39). HLA-DQA2 codes for

the alpha chain of the HLA-DQ complex and is primarily involved in

antigen presentation (38). Interestingly, HLA-DQ phenotypes have

been linked with non-responsiveness to hepatitis B vaccination (40).

DDX12P is an m6A-associated prognostic pseudogene, correlated with

favorable outcomes in patients with head and neck squamous cell

carcinoma (41). Furthermore, expression patterns of DDX12P were

correlated with anti-tumor response and may regulate immune-

involved genes through miRNA targeting. RP11-81H14.2

(LINC02384) is a long intergenic non-coding RNA primarily

expressed in TH1 cells (42). Little is known about the function of

LINC02384; however, it has been proposed to act as a competitive

endogenous RNA of IL2RA and IL7R by reducing available shared

regulatory miRNAs (43). C22orf29 (also known as RTL10) may have

the capacity to induce apoptosis in a BH3 domain-dependent manner,

presumably by engaging the Bcl2 family regulatory network to

modulate the intrinsic apoptotic signaling pathway (44). The

identification of known diagnostic biomarkers and immunotherapy

targets within our predictive genes lends credence to the graphical

models utilized in this study.

Given the cancer immunoprevention potential of the MUC1

peptide vaccine response, characterized by a reduction of adenoma

recurrence (15), the differentially expressed genes and regulated

pathways we identified hold promise as therapeutic targets for

vaccine non-responders. While these observations were made on

responders and non-responders to the MUC1 vaccine, it is likely

that a number of these differentially enriched genes and pathways play

a role in other vaccine responses. Many vaccines do not elicit a

response in all recipients, such as the yearly flu vaccine which varies in

effectiveness between 40% and 60% (45). The selected adjuvant for the

MUC1 vaccine, polyICLC, excels at activating dendritic cells to

promote type I (innate) immunity (46). Alternative adjuvants may

need to be considered for non-responders to the MUC1 peptide

adjuvanted with polyICLC. While efforts are often made to improve

the vaccine, it also may be important to consider an individual’s

incoming immune history to respond to the vaccine. Indeed,

numerous research studies have demonstrated a correlation between

the immune status prior to vaccination and the subsequent antibody
Frontiers in Immunology 11
response (47–49). Overall, individuals that responded to the MUC1

vaccine showed a greater readiness in all the immune compartments

to present and respond to antigen. The ability to profile individuals as

potential responders or non-responders can aid in the selection of

those who benefit most from a particular vaccine. At the same time,

understanding the barriers to response in non-responders can inform

the development of better vaccine designs suitable for specific immune

genotypes and phenotypes.
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