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Peripheral NK cell count predicts
response and prognosis in breast
cancer patients underwent
neoadjuvant chemotherapy
Chao Zhang1†, Fengjia Wu1†, Xiuqing Lu1†, Sifen Wang1,
Minqing Wu1, Nian Chen2*, Shanji Fan2* and Weidong Wei1*

1State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for
Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China, 2The First Affiliated Hospital,
Hengyang Medical School, University of South China, Hengyang, China
Purpose: The count of lymphocyte subsets in blood can reflect the immune

status of the body which is closely related to the tumor immune

microenvironment and the efficacy of NAT. This study aims to explore the

relationship between peripheral blood lymphocyte subsets and the efficacy

and prognosis of NAT in breast cancer.

Methods: We retrospectively analyzed clinicopathological information and

peripheral blood lymphocyte subpopulation counts of patients receiving NAT

from January 2015 to November 2021 at Sun Yat-sen University Cancer Center.

Kaplan-Meier curves were used to estimate the survival probability. The

independent predictors of NAT response and survival prognosis were

respectively analyzed by multivariate logistic regression and Cox regression,

and nomograms were constructed accordingly. The prediction efficiency of

three nomograms was validated separately in the training cohort and the

testing cohort.

Results: 230 patients were included in the study, consisting of 161 in the training

cohort and 69 in the testing cohort. After a median follow-up of 1238 days,

patients with higher NK cell value showed higher pCR rates and higher OS and

RFS after NAT (all P < 0.001). Multivariate analyses suggested NK cell count was an

independent predictor of NAT response, OS and RFS. We then built nomograms

accordingly and validated the prediction performance in the testing cohort (C

index for NAT response: 0.786; for OS: 0.877, for RFS: 0.794).

Conclusion: Peripheral blood NK cell count is a potential predictive marker for

BC patients receiving NAT. Nomograms based on it might help predict NAT

response and prognosis in BC.
KEYWORDS

peripheral NK cel l count, breast cancer , neoadjuvant chemotherapy,
nomograms, survival
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Introduction

Breast cancer (BC) has become the world’s highest incidence of

malignant tumors (1). Among the more than two million new cases

each year, almost half of patients eligible for recommended

neoadjuvant chemotherapy (NAT) included advanced patients who

missed the optimal time for surgery, HER2-positive breast cancer,

triple-negative breast cancer, and patients who desired maximum

breast preservation during surgery (2, 3). For these patients, NAT is

currently widely accepted as the preferred treatment.

NAT is a breakthrough achievement in cancer treatment and

has been proven to benefit patients in the middle and advanced

stages of a variety of malignancies (4–7). Through NAT, the stage

and grading of patients can be reduced, and the probability of

complete surgical resection can be significantly improved. When

patients show a good response or even achieve a pathological

complete response (pCR) in NAT, it often predicts a good

prognosis (8, 9). Conversely, for some patients who are

insensitive to NAT, NAT may pose a risk of further tumor

progression and chemotherapy-related side effects (10). At

present, NAT has been more and more widely used in BC

patients (9, 11), so it is of great significance to find factors that

can predict NAT response to improve patient benefit.

In recent years, an increasing number of diseases have been

screened or diagnosed by means of “liquid biopsies” (12, 13). By

using easily accessible body fluids such as blood, urine, saliva rich in

cells or substances as detection indicators, to obtain disease

occurrence, development, outcome and other information.

Compared with traditional methods such as histopathology, it is

inexpensive, non-invasive and has good repeatability (12). Of note,

liquid biopsy has made great progress in the early diagnosis,

auxiliary typing, prognosis prediction and treatment response

prediction of various malignant tumors (13, 14). However, the

prognostic indicators of NAT response in BC are still limited.

Previous studies have confirmed that the state of tumor local

immune microenvironment is a key factor affecting the tolerance

and efficacy of chemotherapy and radiotherapy for malignant

tumors (15, 16). However, there is significant spatial

heterogeneity of tumor-infiltrating lymphocytes (TILs) (17, 18),

which makes direct analysis of intratumor immune cells too

complicated. Lymphocyte is one of the most important cell

groups in blood. It has many subgroups and widely participates

in the immune process (19). It has been reported that lymphocytes

in blood can reflect the immune state of the body to a certain extent

and are correlated with infiltrated lymphocytes in tumor tissues (20,

21). At the same time, studies have shown that the total number of

peripheral blood lymphocytes is related to the efficacy and

prognosis of the primary chemotherapy for breast cancer (22, 23).

Therefore, we want to further analyze the relationship between

different subsets of lymphocytes in peripheral blood and the NAT

efficacy and prognosis in BC.

In this study, we explored the correlation between counts of

different lymphocyte subsets in peripheral blood and NAT response

in breast cancer. Based on these results, we aimed to construct

prediction models to predict NAT response and prognosis.
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Methods

Study design and patient eligibility

This study retrospectively analyzed the relationship between the

values of peripheral blood lymphocyte subsets and the efficacy and

prognosis of NAT in breast cancer patients receiving neoadjuvant

chemotherapy between January 2015 and November 2021 at Sun

Yat-sen University Cancer Center (SYSUCC) in Guangzhou, China.

The study was approved by the ethics committee of SYSUCC

(B2022-039-01). Due to the retrospective nature of the current

study and the anonymous processing of patient information,

patients’ written informed consent was waived. We kept all

personal data confidential and conducted this study in accordance

with the Declaration of Helsinki.

The inclusion criteria were as follows. (I) Female patients older

than 18 years; (II) Pathologically confirmed invasive breast cancer;

(III) Underwent all cycles of NAT; (IV) Lymphocyte subsets were

examined before NAT; (V) Available complete clinicopathological

data and specific follow-up data. Patients were excluded when they

met the following criteria: (I) Previous antitumor therapy including

radiotherapy, chemotherapy, surgery, etc; (II) Second tumor or

multisystem tumor; (III) Active or chronic infections, blood system

diseases, and autoimmune diseases; (IV) Previous use of drugs or

health care products that affect immune function.
Data collection and patients grouping

Clinicopathological information for all patients was obtained

from the electronic medical record system of SYSUCC. General

information included age, BMI, molecular subtype, TNM stage, Ki-

67 and the lymphocyte subsets test results before NAT.

Molecular subtype was classified according to puncture

histopathological reports. ER or PR positivity was defined as an

immunohistochemical positive rate > 1% (24), and HER2 positivity

was determined when the immunohistochemical positive rate was

greater than 3+ or 2+ but ERBB2 gene amplification was detected

with fluorescence in situ hybridization (FISH).

Lymphocyte subsets test is a peripheral blood test in our

hospital based on flow cytometry (#NAVIOS, Beckman) which

can be used to evaluate the immune status of patients. It is non-

invasive, inexpensive and reproducible. All patients received the test

within two weeks prior to the first course of NAT, and all patients

had their blood taken between 8 a.m. and 12 a.m. It contains counts

in the peripheral blood of CD3+ cells (total T cells), CD3+CD4+

cells (CD4+T cells), CD3+CD8+ cells (CD8+T cells), CD19+ cells

(total B cells), CD3-CD16+CD56+ cells (NK cells), CD4+CD25+

cells (CD4+ Treg cells) and CD8+CD25+ cells (CD8+ Treg cells).

Based on the range of normal reference values given for each

subitem of the test, we found that the number of patients below

or above the reference value was small, so we chose the median as

the cutoff value for the lymphocyte subsets in each group. Age, Ki-

67 (25), and TNM staging (26) we referred to the grouping methods

and cut-off values of previous studies. As for BMI, considering the
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height and weight characteristics of the Chinese female population,

we refer to the truncation values reported in some Chinese studies

(27). Finally, the training cohort and validation cohort were

randomly split using R software in a 7:3 ratio.
Follow and endpoints

Follow-up data were obtained by electronic outpatient records

or telephone interviews of SYSUCC. Patients were evaluated every 3

months during NAT, then every 6 months until 5 years, and then

annually thereafter. Routine evaluation includes usual hematology

and laboratory tests, ultrasound (breast and axillary and neck

lymph nodes), or computed tomography. Total body bone

imaging is performed annually.

The primary endpoints were overall survival (OS) and relapse-

free survival (RFS) which were obtained from the follow-up system.

RFS was defined as the time from the end of treatment to the first

recurrence of local or regional draining lymph nodes and OS was

defined as the time from the start of treatment to death from any

cause. Response of NAT was also particularly concerned and it was

identified by the postoperative pathological data. Pathological

complete response (pCR) was defined as pathological Miller-

payne 5 level together with no lymph nodes metastasis after NAT.
Statistical analysis

The results of lymphocyte subsets were numerical in the

preliminary comparative statistics, and were subsequently

converted into categorical variables together with age, Ki-67,

TNM stage and other variables for subsequent Cox univariate and

multivariate regression analysis. The method of converting

numerical variables to categorical variables and the cutoff values

were described above. The comparison of the means between the

two groups was reasonably conducted by using Student’s t-test or

Wilcoxon rank sum test according to its normality and

homogeneity of variance. The Chi-squared test was used to

compare the proportions between the two groups. ROC curve was

used to judge the predictive ability of a single indicator to NAT

response Survival curves including OS and RFS were estimated

using the Kaplan-Meier method and compared with the log-rank

test between different groups. Univariate and multivariate Logistic

regression analysis of NAT treatment response was performed.

Likewise, Univariate and multivariate Cox regression analyses were

conducted to explore independent predictors of OS and RFS.

Factors were tested according to Schoenfeld residuals, and only

factors with a P value < 0.05 in the univariate analysis were further

included in the multivariate regression analysis. All factors were

assessed and reported with their hazard ratios (HRs) and 95%

confidence intervals (CIs). We then included statistically significant

factors to construct Nomograms for diagnosis and prognosis

respectively. Their discriminant efficiency and prediction accuracy

were measured by the concordance index (C-index), calibration

curves, decision curve analyses (DCA) and time-dependent ROC

curves in the training set and validation set. A two-sided P value <
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0.05 was considered statistically significant. All statistical analysis

and result visualization were performed using R software (Version

4.3.1) (stats package, version 4.2.1; car package, version 3.1-0;

pROC package, version 1.18.0; ggalluvial package, version 0.12.3;

survival package, version 3.3.1; rms package, version 6.4.0;

timeROC package, version 0.4; ggplot2 package, version 3.3.6).
Results

Characteristics of patients

The process of this study was visually presented in a flowchart

(Figure 1). After excluding 8 patients, including 4 cases where

postoperative pathological examination confirmed non-primary

breast cancer, and 4 cases with incomplete prognostic follow-up

information, a total of 230 patient data were considered valid and

included in the analysis of this study. Focusing on the factors related

to the efficacy of neoadjuvant therapy in breast cancer patients

described above, we first developed a baseline data sheet showing

the clinicopathological features of non-pCR versus pCR patients

(Table 1). The results indicated that there is a statistically significant

difference between the two groups in terms of molecular subtype (P

= 0.010), CD3+CD8+ cells (P = 0.042), CD3-CD16+CD56+ cells (P

< 0.001), CD8+CD25+ cells (P = 0.042), T stage (P = 0.001), N stage

(P < 0.001), M stage (P = 0.002), recurrence status (P < 0.001), and

survival status (P = 0.001).
Examination results of the lymphocyte
subpopulations are correlated with the
efficacy of NAC

First, ROC curves were used to assess the predictive power of

different lymphocyte subsets in the baseline data table for NAT

responses. Compared with CD3+CD8+ cells (AUC = 0.580) and

CD8+CD25+ cells (AUC = 0.580), CD3-CD16+CD56+ cells had

the highest predictive power (AUC = 0.727) (Figures 2A–C). Then,

the patients were grouped with the median of the above three types

of cells as cut-off values. The proportions in the pCR and non-pCR

groups show the difference between the groups. CD3-CD16+CD56

+ cells had the most significant P value (P < 0.001) compared with

CD3+CD8+ cells (P = 0.042) and CD8+CD25+ cells (P = 0.042)

(Figures 2D–F). Taken together, value of CD3-CD16+CD56+ cells

had the greatest potential to predict NAT response.
Survival outcomes in the training cohort

We randomly allocated 230 breast cancer patients in a 7:3 ratio

into the training set (N=161) and validation sets (N=69). The

clinical and pathological characteristics of these patients were

presented in Table 2. The median follow-up time was 1238 days

(approximately 41 months) in the training cohort. There was no

significant difference in OS and RFS between the training cohort

and the testing cohort (both P > 0.05) (Figures 3A, B). Breast
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cancer patients with higher levels of CD3-CD16+CD56+ cells in

peripheral blood demonstrated significantly improved OS

(Figure 3C) and RFS compared to those with lower levels (both

P < 0.001) (Figure 3D).
Establishing and validation a predictive
model for NAC response

Initially, we conducted univariate and multivariate logistic

regression analyses. The results indicated that molecular subtype,

CD3-CD16+CD56+ cells, and T stage had statistical significance in

the univariate analysis (all P < 0.05) (Table 3). When considering

variables with P < 0.05, the multivariate analysis revealed that only

CD3-CD16+CD56+ cells remained statistically significant (P <

0.001). Considering that an individual variable often has limited

predictive power, we included all three variables with P < 0.05 in

univariate regression analysis to construct the predictive nomogram

(Figure 4A). The model was satisfactory with a C-index at 0.786

(95% CI 0.711 - 0.862). Subsequently, ROC curves, DCA plots, and

calibration curves were employed to assess the predictive

performance of the Nomogram model. The Nomogram model

exhibited superior predictive performance for NAC response

(AUC = 0.786), surpassing the univariate predictive ability of

CD3-CD16+CD56+ cells (AUC = 0.707). Furthermore, the

Nomogram model yielded greater overall net benefits for breast
Frontiers in Immunology 04
cancer patients in NAC prediction compared to CD3-CD16+CD56

+ cell prediction (Figures 4B–D). Consistent findings were obtained

in the testing cohort (Nomogram AUC = 0.834, CD3-CD16+CD56

+ AUC = 0.798) (Figures 4E, F).
Establishment of prognostic
prediction models

We performed the univariate Cox regression analysis for OS and

RFS in the training cohort and presented the results in the table

(Table 4). The results indicated that molecular subtypes, CD3-CD16

+CD56+ cells, T stage, N stage, and M stage were significantly

associated with OS in breast cancer patients after neoadjuvant

chemotherapy. Furthermore, Ki-67, molecular subtypes, NAC

response, CD3-CD16+CD56+ cells, N stage and M stage were

significantly associated with RFS. Variables with p-values less than

0.1 in the univariate Cox regression analysis were included in the

multivariate Cox regression analysis. CD3-CD16+CD56+ cells, N

stage, and M stage were identified as independent prognostic factors

for OS, while molecular subtypes, CD3-CD16+CD56+ cells, and N

stage were confirmed as independent prognostic factors for RFS

(Figure 5). Based on the independent prognostic factors obtained

from the multivariate Cox regression, nomogram models were

constructed to predict Overall Survival (OS) and Recurrence-Free

Survival (RFS) respectively (Figures 6A, 7A).
FIGURE 1

Flowchart of design in this study.
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Assessment of the prognostic performance
of the predictive models

The prognostic nomogram exhibited favorable discriminative

accuracy and predictive capacity for OS with a C-index at 0.877

(95%CI 0.845-0.908). In the prognostic calibration curves for the

training and validation cohorts, the predicted outcomes for 1-, 3-,

and 5-year prognosis closely aligned with the ideal line (Figures 6B,

E). The time-dependent ROC curve demonstrated that the model

exhibited high accuracy in predicting patient prognosis, particularly

in terms of 1- and 3-year survival rates (1-year, AUC = 0.981 and

0.882; 3-years, AUC = 0.897 and 0.847; 5-years, AUC = 0.829 and

0.647) (Figures 6C, F). The time-dependent AUC curve was

employed to compare the predictive accuracy of the nomogram

model, CD3-CD16+CD56+ cells, N stage, and M stage in terms of

prognosis. The results indicated that for the majority of time points

within the 0-5 years period, the nomogram exhibits a valuable

predictive performance for OS (at any time AUC > 0.65)

(Figures 6D, G).

As for RFS, the nomogram model demonstrates a more

satisfactory predictive accuracy and performance with a C-index at

0.794 (95% CI 0.754-0.833). The calibration plot documented a good

agreement between the observed 1-, 3-, and 5-year RFS rates and the

nomogram-predicted 1-, 3-, and 5-year OS rates (Figures 7B, E). Both

the training and testing cohorts demonstrated time-dependent ROC

curves with AUC exceeding 0.8 at 1-, 3-, and 5-year intervals (training
TABLE 1 Characteristics of patients in this study.

Characteristics (n%) non-pCR pCR P value

N 177 (77.0%) 53 (23%)

Age, (years) 49 (41-57) 49 (43-55) 0.857

<50 96 (41.7%) 28 (12.2%)

≥50 81 (35.2%) 25 (10.9%)

BMI, (kg/m²) 0.853

<24 116 (50.4%) 34 (14.8%)

≥24 61 (26.5%) 19 (8.3%)

Ki-67 a 0.482

<30% 73 (31.7%) 19 (8.3%)

≥30% 104 (45.2%) 34 (14.8%)

Molecular subtype b 0.010

LumA 40 (17.4%) 14 (6.1%)

LumB 33 (14.3%) 1 (0.4%)

Her2 63 (27.4%) 28 (12.2%)

Basal 41 (17.8%) 10 (4.3%)

CD3+ c 0.159

<71.5 93 (40.4%) 22 (9.6%)

≥71.5 84 (36.5%) 31 (13.5%)

CD3+CD4+ c 0.273

<37.7 92 (40%) 23 (10%)

≥37.7 85 (37%) 30 (13%)

CD3+CD8+ c 0.042

<26.85 95 (41.3%) 20 (8.7%)

≥26.85 82 (35.7%) 33 (14.3%)

CD19+ c 0.434

<9.25 91 (39.6%) 24 (10.4%)

≥9.25 86 (37.4%) 29 (12.6%)

CD3-CD16+CD56+ c < 0.001

<16.15 107 (46.5%) 8 (3.5%)

≥16.15 70 (30.4%) 45 (19.6%)

CD4+CD25+ c 0.434

<19.2 91 (39.6%) 24 (10.4%)

≥19.2 86 (37.4%) 29 (12.6%)

CD8+CD25+ c 0.042

<9.1 95 (41.3%) 20 (8.7%)

≥9.1 82 (35.7%) 33 (14.3%)

T stage d 0.001

0/1 76 (33%) 39 (17%)

2 70 (30.4%) 11 (4.8%)

(Continued)
TABLE 1 Continued

Characteristics (n%) non-pCR pCR P value

3 16 (7%) 2 (0.9%)

4 15 (6.5%) 1 (0.4%)

N stage d < 0.001

0 45 (19.6%) 40 (17.4%)

1 40 (17.4%) 11 (4.8%)

2 47 (20.4%) 2 (0.9%)

3 45 (19.6%) 0 (0%)

M stage d 0.002

0 149 (64.8%) 53 (23%)

1 28 (12.2%) 0 (0%)

Relapse status e < 0.001

0 124 (53.9%) 52 (22.6%)

1 53 (23%) 1 (0.4%)

OS status e 0.001

0 141 (61.3%) 52 (22.6%)

1 36 (15.7%) 1 (0.4%)
aThe Ki-67 index at the diagnosis indicates DNA synthetic activity as measured
using immunocytochemistry.
bMolecular subtypes were determined by the expression of ER, PR and HER2.
cThe cut-off values were determined as the median for each group.
dDiagnosed based on the AJCC, 2016 criteria (the eighth edition).
e0 and 1 indicated that the outcome event did not occur and occurred, respectively.
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FIGURE 2

The peripheral lymphocyte subsets correlated with NAT response. ROC curves of CD3+CD8+ cells (A), CD3-CD16+CD56+ cells (B) and CD8+CD25
+ cells (C) in predicting NAT response. Proportion of pCR and non-pCR patients in the high and low group of CD3+ CD8+cells (D), CD3-CD16
+CD56+ cells (E) and CD8+CD25+ cells (F).
TABLE 2 Characteristics of patients in different cohorts.

Characteristic (%)
All Training cohort Testing cohort

N = 230 N = 161 N = 69

Age at diagnosis (years) 49 (43-57) 47 (41-56)

<50 124 (53.9) 84 (52.2) 40 (58.0)

≥50 106 (46.1) 77 (47.8) 29 (42.0)

BMI (kg/m²)

<24 150 (65.2) 102 (63.4) 48 (69.6)

≥24 80 (34.8) 59 (36.6) 21 (30.4)

Ki-67 a

<30% 92 (40.0) 63 (39.1) 29 (42.0)

≥30% 138 (60.0) 98 (60.9) 40 (58.0)

Molecular subtype b

LumA 54 (23.5) 37 (23.0) 17 (24.6)

LumB 34 (14.8) 26 (16.1) 8 (11.6)

Her2 91 (39.6) 67 (41.6) 24 (34.8)

Basal 51 (22.2) 31 (19.3) 20 (29.0)

NAT response

non-pCR 177 (77.0) 120 (74.5) 57 (82.6)

pCR 53 (23.0) 41 (25.5) 12 (17.4)

(Continued)
F
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TABLE 2 Continued

Characteristic (%)
All Training cohort Testing cohort

N = 230 N = 161 N = 69

CD3+ (median) c

<71.5 115 (50.0) 75 (46.6) 40 (58.0)

≥71.5 115 (50.0) 86 (53.4) 29 (42.0)

CD3+CD4+ (median) c

<37.7 115 (50.0) 74 (46.0) 41 (59.4)

≥37.7 115 (50.0) 87 (54.0) 28 (40.6)

CD3+CD8+ (median) c

<26.85 115 (50.0) 79 (49.0) 36 (52.2)

≥26.85 115 (50.0) 82 (51.0) 33 (47.8)

CD19+ (median) c

<9.25 115 (50.0) 81 (50.0) 34 (49.3)

≥9.25 115 (50.0) 80 (50.0) 35 (50.7)

CD3-CD16+CD56+ (median) c

<16.15 115 (50.0) 81 (50.0) 34 (49.3)

≥16.15 115 (50.0) 80 (50.0) 35 (50.7)

CD4+CD25+ (median) c

<19.2 115 (50.0) 78 (48.4) 37 (53.6)

≥19.2 115 (50.0) 83 (51.6) 32 (46.4)

CD8+CD25+ (median) c

<9.1 115 (50.0) 85 (52.8) 30 (43.5)

≥9.1 115 (50.0) 76 (47.2) 39 (56.5)

T staged

T0&T1 115 (50.0) 82 (50.9) 33 (47.8)

T2 81 (35.2) 54 (33.5) 27 (39.1)

T3 18 (7.8) 14 (8.7) 4 (5.8)

T4 16 (7.0) 11 (6.8) 5 (7.2)

N staged

N0 85 (37.0) 60 (37.3) 25 (36.2)

N1 51 (22.2) 33 (20.5) 18 (26.1)

N2 49 (21.3) 35 (21.7) 14 (20.3)

N3 45 (19.6) 33 (20.5) 12 (17.4)

M staged

M0 202 (87.8) 142 (88.2) 60 (87.0)

M1 28 (12.2) 19 (11.8) 9 (13.0)
F
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aThe Ki-67 index at the diagnosis indicates DNA synthetic activity as measured using immunocytochemistry.
bMolecular subtypes were determined by the expression of ER, PR and HER2.
cThe cut-off values were determined as the median for each group.
dDiagnosed based on the AJCC, 2016 criteria (the eighth edition).
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FIGURE 3

Kaplan-Meier survival curves of BC patients receiving NAT. OS (A) and RFS (B) curves of patients in the training cohort and the testing cohort. OS (C)
and RFS (D) curves of patients in the high and low NK cell groups.
TABLE 3 Univariate and multivariate logistic regression analysis of NAT response.

Characteristics Total (N)
Univariate Multivariate

Odds Radio (95%CI) P value Odds Radio (95%CI) P value

Age (years) 161

<50 84 Reference

≥50 77 1.562 (0.765 - 3.189) 0.221

BMI (kg/m²) 161

<24 102 Reference

≥24 59 0.997 (0.477 - 2.080) 0.993

Ki-67 a 161

<30% 63 Reference

≥30% 98 0.878 (0.426 - 1.807) 0.723

Molecular subtype b 161

LumA 37 Reference

LumB 26 0.074 (0.009 - 0.609) 0.015 * 0.130 (0.015 - 1.136) 0.065

Her2 67 0.965 (0.416 - 2.241) 0.934 1.076 (0.432 - 2.679) 0.875

Basal 31 0.274 (0.078 - 0.953) 0.042 * 0.372 (0.098 - 1.407) 0.145

CD3+ c 161

<71.5 75 Reference

≥71.5 86 1.511 (0.734 - 3.112) 0.263

(Continued)
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set 0.948, 0.832, 0.829, testing cohort 0.918, 0.820, 0.843) (Figures 7C,

F). Furthermore, in the time-dependent AUC curves, the Nomogram

exhibited excellent predictive accuracy for RFS at any given time

point (AUC > 0.8), surpassing other variables such as molecular

subtypes, CD3-CD16+CD56+ cells, and N stage (Figures 7D, G). In

short, these two nomograms exhibited good efficacy in predicting OS

and RFS for patients undergoing NAT.
Discussion

As the concept of NAT has been gradually accepted, more and

more patients with middle and advanced BC have adopted

neoadjuvant therapy (2, 28). However, some patients who are not

sensitive to chemotherapy do not benefit from NAT and are even at

risk for disease progression (29). The response of NAT is closely

related to patient prognosis and can even be used as an alternative

prognostic endpoint in some clinical studies (9, 30). Therefore, it is

of great clinical significance to predict the efficacy of NAT by

developing new and easily available indicators.

In this study, we first retrospectively analyzed the correlation

between various lymphocyte subsets in peripheral blood and NAT

response. We found that T cells, NK cells and CD8+ Treg were

higher in the pCR group than in the non-pCR group, and the

difference between NK cells was most significant. In addition,

patients in the high NK cells group had higher OS and RFS than

those in the low NK cells group. Multivariate logistic and Cox

regression indicated that peripheral blood NK cell count was an
Frontiers in Immunology 09
independent predictor of NAT response, OS and RFS. Subsequently,

NK cell counts combined with other clinicopathological factors such

as molecular typing and TNM staging were incorporated to construct

predictive nomograms, which were used to predict NAT response,

OS, and RFS, respectively.

Paclitaxel, doxorubicin and cyclophosphamide, which are

frequently included in NAT regimens for breast cancer, have been

reported to have a synergistic killing effect with anti-tumor immunity

(31–33). The immune state of the body and the tumor immune

microenvironment greatly affect the efficacy of chemotherapy in

diverse ways (34–36). As professional immune cells, lymphocytes

play an important role in the innate and cellular immune pathways

involved in tumor clearance. Previous studies have shown that

lymphocytes can be divided into many subgroups, which usually

express different surface markers and perform their specific immune-

related functions (37, 38). NK cells, for example, often express CD16

and CD56 surface markers, with their strong immune clearance

ability, play a synergistic anti-tumor role in tumor radiotherapy and

chemotherapy (39). While common regulatory T cells (Treg), known

as CD4+CD25+CD127-/low, are prone to mediate immune

suppression by secreting cytokines such as TGF-b (40).

Just as the gradually widely used peripheral blood circulating

small molecules such as DNA and non-coding RNA reflect certain

characteristics of tumor cells (13), peripheral blood lymphocytes

have also been proved to be significantly correlated with

lymphocyte infiltration and immune microenvironment in tumor

tissues. In a variety of malignancies, high level lymphocytes with

immune killing activity in the peripheral blood often suggest
TABLE 3 Continued

Characteristics Total (N)
Univariate Multivariate

Odds Radio (95%CI) P value Odds Radio (95%CI) P value

CD3-CD16+CD56+ c 161

<15.6 81 Reference

≥15.6 80 6.407 (2.725 - 15.063) < 0.001 * 4.834 (1.961 - 11.915) < 0.001 *

CD8+CD25+ c 161

<9.1 85 Reference

≥9.1 76 1.615 (0.791 - 3.300) 0.188

T stage d 161

0&1 82 Reference

2 54 0.438 (0.192 - 1.000) 0.050 * 0.511 (0.208 - 1.257) 0.144

3 14 0.321 (0.067 - 1.537) 0.155 0.417 (0.078 - 2.231) 0.307

4 11 0.193 (0.023 - 1.583) 0.125 0.442 (0.046 - 4.270) 0.481

M stage d 161

0 142 Reference

1 19 0.000 (0.000 - Inf) 0.985
aThe Ki-67 index at the diagnosis indicates DNA synthetic activity as measured using immunocytochemistry.
bMolecular subtypes were determined by the expression of ER, PR and HER2.
cThe cut-off values were determined as the median for each group.
dDiagnosed based on the AJCC, 2016 criteria (the eighth edition).
*P<0.05.
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FIGURE 4

Construction and validation of a nomogram to predict NAT response. (A) A nomogram predicting response of NAT. (B) ROC curves of different
predictors in the training cohort. (C) A decision curve analysis of this nomogram in the training cohort. (D) The calibration curve of the nomogram.
(E) ROC curves of different predictors in the testing cohort. (F) A decision curve analysis of this nomogram in the testing cohort.
TABLE 4 Univariate Cox regression analysis of OS and RFS.

Characteristics
Overall survival Relapse-free survival

Hazard ratio (95%CI) P value Hazard ratio (95%CI) P value

Age (years)

<50 Reference Reference

≥50 1.181 (0.545 - 2.557) 0.673 0.529 (0.279 - 1.006) 0.052

BMI (kg/m²)

<24 Reference Reference

(Continued)
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TABLE 4 Continued

Characteristics
Overall survival Relapse-free survival

Hazard ratio (95%CI) P value Hazard ratio (95%CI) P value

BMI (kg/m²)

≥24 1.154 (0.510 - 2.611) 0.731 1.134 (0.594 - 2.167) 0.703

Ki-67 a

<30% Reference Reference

≥30% 2.324 (0.922 - 5.860) 0.074 3.040 (1.397 – 6.617) 0.005 *

Molecular subtypeb

LumA Reference Reference

LumB 5.656 (1.141 - 28.026) 0.034 * 5.316 (1.700 – 16.625) 0.004 *

Her2 2.731 (0.560 - 13.329) 0.214 1.387 (0.427 – 4.507) 0.586

Basal 8.628 (1.877 - 39.653) 0.006 * 9.039 (2.955 – 27.645) < 0.001 *

NAC response

non-pCR Reference Reference

pCR 0.169 (0.023 – 1.260) 0.083 0.069 (0.009 – 0.502) 0.008 *

CD3+ c

<71.5 Reference Reference

≥71.5 1.046 (0.483 - 2.267) 0.909 0.788 (0.420 - 1.479) 0.458

CD3+CD4+ c

<37.7 Reference Reference

≥37.7 1.516 (0.687 - 3.343) 0.303 0.642 (0.342 - 1.206) 0.169

CD3+CD8+ c

<26.9 Reference Reference

≥26.9 0.839 (0.387 - 1.821) 0.657 1.356 (0.722 - 2.548) 0.344

CD19+ c

<9.3 Reference Reference

≥9.3 1.078 (0.497 - 2.338) 0.849 0.645 (0.343 - 1.211) 0.172

CD3-CD16+CD56+ c

<15.6 Reference Reference

≥15.6 0.147 (0.044 - 0.494) 0.002 * 0.237 (0.113 - 0.501) < 0.001 *

CD4+CD25+ c

<19.2 Reference Reference

≥19.2 0.793 (0.362 - 1.734) 0.561 0.777 (0.413 - 1.461) 0.434

CD8+CD25+ c

<9.1 Reference Reference

≥9.1 0.881 (0.389 - 1.994) 0.762 1.008 (0.535 - 1.900) 0.980

T stage d

0&1 Reference Reference

2 1.391 (0.546 - 3.543) 0.489 1.286 (0.627 - 2.639) 0.492

(Continued)
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abundant immune infiltration in tumor tissue and a good

therapeutic effect, while the enrichment of immune inhibitory

cells often predicts a poor therapeutic effect and prognosis (41,

42). Joan et al. ‘s study confirmed that tumor infiltrated NK cells

(TINK) were an independent predictor of breast cancer NAT

response, and higher NK cell infiltration predicted higher pCR

probability (P < 0.0001) and higher survival (43), which was highly

consistent with the results of this study.

Patients with different molecular subtypes have different

responses to NAT (44). It has been reported that estrogen

receptor or progesterone receptor positive luminal subtype breast
Frontiers in Immunology 12
cancer has a lower pCR rate in NAT (45), which is also reflected in

the results of this study. From this Nomogram, we can see that

luminal B subtype corresponded to the lowest contribution score.

This suggests that the scope of application of NAT should not be

over-enlarged, and clinical practice should be based on guideline

recommendations and various clinicopathological characteristics

and needs of patients, so as to select the people who are most

likely to benefit from NAT.

TNM staging system has been proved to be one of the most

valuable prognostic indicators in previous studies (46). The results of

this study showed that higher T staging suggested poor NAT response
FIGURE 5

Multivariate Cox regression forest maps of OS (A) and RFS (B) in the training cohort.
TABLE 4 Continued

Characteristics
Overall survival Relapse-free survival

Hazard ratio (95%CI) P value Hazard ratio (95%CI) P value

T stage d

3 0.830 (0.205 - 3.361) 0.794 2.607 (1.056 – 6.437) 0.038 *

4 3.311 (1.057 - 10.376) 0.040 * 1.204 (0.341 – 4.254) 0.773

N stage d

0 Reference Reference

1 8.977 (1.095 - 73.586) 0.041 * 1.273 (0.440 - 3.678) 0.656

2 3.707 (0.413 - 33.257) 0.242 2.238 (0.910 – 5.503) 0.079

3 16.677 (2.160 - 128.773) 0.007 * 3.550 (1.469 – 8.582) 0.005 *

M stage d

0 Reference Reference

1 7.957 (3.630 - 17.443) < 0.001 * 3.013 (1.399 - 6.490) 0.005 *
aThe Ki-67 index at the diagnosis indicates DNA synthetic activity as measured using immunocytochemistry.
bMolecular subtypes were determined by the expression of ER, PR and HER2.
cThe cut-off values were determined as the median for each group.
dDiagnosed based on the AJCC, 2016 criteria (the eighth edition).
*P<0.05.
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rates and patients with higher N and M staging have worse OS and

RFS. It is consistent with the results of previous studies. Notably, NAT

response in this study was not an independent predictor of OS or RFS

(P > 0.05), suggesting that pCR did not translate into a survival

advantage during NAT in the patients included in this study. We

speculated that the sample size was too small or the follow-up time was

not long enough, so the difference in survival of people with different

responses to NAT did not reach statistical significance.

However, there are some limitations in this study. First, this

study was a single-center retrospective analysis with a small sample

size, and the results may be subject to error or bias. Moreover, all of
Frontiers in Immunology 13
the patients were from China, suggesting that current findings may

not be applicable to patients from other geographic regions. Second,

the cell count data in this study were directly derived from the

results of the lymphocyte examination program in the hospital, and

the use of the median as the cut-off value may weaken the

representativeness of this indicator. Because the low and high

subgroups in this study still include the normal range and that

are too low or too high. It is well known that patients with abnormal

lymphocyte counts may be in a state of immune abnormality and

have some prognostic factors present. Third, NK cells can still be

divided into smaller subpopulations with different functions, and
FIGURE 6

Construction and validation of a nomogram to predict OS. (A) A nomogram predicting 1-, 3- and 5-year OS. (B) The prognostic calibration curves in
the training cohort. (C) Time-dependent ROC curves of the nomogram in the training cohort. (D) Time-dependent AUC curves for different
predictors in the training cohort. (E) The prognostic calibration curves in the testing cohort. (F) Time-dependent ROC curves of the nomogram in
the testing cohort. (G) Time-dependent AUC curves for different predictors in the testing cohort.
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CD3-CD16+CD56+ labeling does not perfectly represent the

population of NK cells in vivo. Fourth, due to the small sample

size of the study, we were unable to perform further subgroup

analyses based on breast cancer subtypes or different chemotherapy

regimens. Therefore, further studies with multi-center and larger

sample size need to be conducted to confirm the conclusion of

this study.
Frontiers in Immunology 14
Conclusion

Peripheral blood NK cell count is an independent predictor of

NAT response in BC patients. On this basis, we constructed and

verified nomograms for predicting NAT responses, OS and RFS. All

three nomograms showed good predictive power and consistency

with actual clinical outcomes.
FIGURE 7

Construction and validation of a nomogram to predict RFS. (A) A nomogram predicting 1-, 3- and 5-year RFS. (B) The prognostic calibration curves
in the training cohort. (C) Time-dependent ROC curves of the nomogram in the training cohort. (D) Time-dependent AUC curves for different
predictors in the training cohort. (E) The prognostic calibration curves in the testing cohort. (F) Time-dependent ROC curves of the nomogram in
the testing cohort. (G) Time-dependent AUC curves for different predictors in the testing cohort.
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