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Multi-transcriptomics analysis of
microvascular invasion-related
malignant cells and development
of a machine learning-based
prognostic model in
hepatocellular carcinoma
Haoran Huang †, Feifeng Wu †, Yang Yu †, Borui Xu †, Dehua Chen,
Yuwei Huo and Shaoqiang Li*

Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University,
Guangzhou, Guangdong, China
Background: Microvascular invasion (MVI) stands as a pivotal pathological

hallmark of hepatocellular carcinoma (HCC), closely linked to unfavorable

prognosis, early recurrence, and metastatic progression. However, the precise

mechanistic underpinnings governing its onset and advancement remain elusive.

Methods: In this research, we downloaded bulk RNA-seq data from the TCGA

and HCCDB repositories, single-cell RNA-seq data from the GEO database, and

spatial transcriptomics data from the CNCB database. Leveraging the Scissor

algorithm, we delineated prognosis-related cell subpopulations and discerned a

distinct MVI-related malignant cell subtype. A comprehensive exploration of

these malignant cell subpopulations was undertaken through pseudotime

analysis and cell-cell communication scrutiny. Furthermore, we engineered a

prognostic model grounded in MVI-related genes, employing 101 algorithm

combinations integrated by 10 machine-learning algorithms on the TCGA

training set. Rigorous evaluation ensued on internal testing sets and external

validation sets, employing C-index, calibration curves, and decision curve

analysis (DCA).
Abbreviations: AJCC, American Joint Commission of Cancer; C-index, concordance index; CNCB, China

National Center for Bioinformation; CNV, copy number variation; DCA, decision curve analysis; DFS,

disease-free survival; ECs, endothelial cells; FDR, false discovery rate; GEO, Gene Expression Omnibus; GO,

Gene Ontology; GSEA, Gene Set Enrichment Analysis; HCC, hepatocellular carcinoma; HCCDB, Integrative

Molecular Database of Hepatocellular Carcinoma; HR, hazard ratio; ICGC, International Cancer Genome

Consortium; LOOCV, leave-one-out cross-validation; MIF, macrophage migration inhibitory factor; MVI,

microvascular invasion; MVIRGs, MVI-related genes; MVI_Scissor0, unrelated to the MVI phenotype;

MVI_Scissor-, related to MVI-negative phenotype; MVI_Scissor+, related to MVI-positive phenotype; NES,

normalized enrichment score; NODE, The National Omics Data Encyclopedia; OS, overall survival; Scissor0,

unrelated to the prognosis phenotype; Scissor-, related to a favorable prognosis; Scissor+, related to an

unfavorable prognosis; scRNA-seq, single-cell RNA-seq; TCGA, The Cancer Genome Atlas; TME, tumor

microenvironment; TPM, transcripts per million; UMAP, uniform manifold approximation and projection.
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Results: Pseudotime analysis indicated that malignant cells, showing a positive

correlation with MVI, were primarily concentrated in the early to middle stages of

differentiation, correlating with an unfavorable prognosis. Importantly, these cells

showed significant enrichment in the MYC pathway and were involved in

extensive interactions with diverse cell types via the MIF signaling pathway. The

association of malignant cells with the MVI phenotype was corroborated through

validation in spatial transcriptomics data. The prognostic model we devised

demonstrated exceptional sensitivity and specificity, surpassing the

performance of most previously published models. Calibration curves and DCA

underscored the clinical utility of this model.

Conclusions: Through integrated multi-transcriptomics analysis, we delineated

MVI-related malignant cells and elucidated their biological functions. This study

provided novel insights for managing HCC, with the constructed prognostic

model offering valuable support for clinical decision-making.
KEYWORDS

hepatocellular carcinoma, microvascular invasion, prognostic model, tumor
microenvironment, scRNA-seq, spatial transcriptome
1 Introduction
Hepatocellular carcinoma (HCC) accounts for over 80% of liver

cancer cases and is the sixth most commonly diagnosed cancer

globally. Despite the continuous advancement of diagnostic and

therapeutic strategies for HCC, including systemic treatments such

as targeted therapy and immune checkpoint inhibitor therapy, liver

cancer still ranks third in terms of cancer-related mortality. This is

largely attributed to its high rates of metastasis and recurrence (1–3).

Within 5 years following hepatectomy, HCC patients experience a

recurrence rate exceeding 50%, and the prognosis for recurrent

patients is significantly worse than for those without recurrence (4, 5).

Microvascular invasion (MVI) is characterized by the infiltration

of malignant cells into the microvasculature surrounding the liver

tumor. As a critical risk factor for tumor recurrence and unfavorable

prognosis in HCC patients, MVI is commonly observed in HCC cases

(6). It’s important to note that HCC patients with MVI exhibit

significantly lower disease-free survival (DFS; date of randomization

or treatment to date of first recurrence or death) and overall survival

(OS; date of randomization or treatment to date of death as a result of

any cause) rates compared to those without MVI (7–11). Therefore,

comprehensive research into the mechanisms underlying MVI

occurrence is essential for guiding clinical treatment and

management. Previous studies have suggested that the invasion and

metastasis of HCC are closely associated with the tumor

microenvironment (TME) (12). The TME of HCC, which

encompasses various cell types such as stromal cells, immune cells,

and malignant cells, is highly diverse. Notably, within the TME, there

are small yet functionally unique cell subpopulations, including stem
02
cell-related malignant cells (13). This raises the question of whether

the occurrence and progression of MVI are also influenced by similar

tumor subpopulations.

Technological advancements have provided insights into the

gene expression profiles of tumor tissues through bulk

transcriptome sequencing, while single-cell transcriptome

sequencing has offered a more precise understanding of the roles

played by different cells. Recently, spatial transcriptomics has

offered spatial information that single-cell transcriptomics alone

cannot provide (14). The combined application of these sequencing

data will facilitate an in-depth study of the TME (15). In this study,

we conducted a thorough analysis of the potential mechanisms

underlying the occurrence and development of MVI in HCC by

utilizing bulk transcriptome sequencing and clinical data from

TCGA and HCCDB databases, in conjunction with single-cell

transcriptome data provided by Li et al. (16) and Lu et al. (17), as

well as spatial transcriptome data provided by Wu et al. (18).

With the advancement of genomics, constructing patient

prognostic models based on gene expression profiles has proven

effective (19). Compared to traditional modeling, machine learning

algorithms have shown better fitting effects on the same data and are

gradually widely applied in the biomedical field (20, 21). The

combination of different algorithms falls under stacking algorithms,

demonstrating excellent predictive performance. Drawing inspiration

from Liu et al.’s publication, which integrated 10 machine learning

algorithms, we used 101 algorithm combinations to determine the

optimal modeling (22). We applied the leave-one-out cross-validation

(LOOCV) framework to avoid overfitting. The final prognostic model

based on MVI-related genes (MVIRGs) demonstrated strong

predictive performance and clinical decision-making significance.
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2 Materials and methods

2.1 Data sources used for analysis

The bulk RNA-seq dataset comprising 374 tumor tissue samples

and 50 normal tissue samples from the TCGA-LIHC project was

retrieved from the TCGA database (http://tcga.cancer.gov/;

November 19, 2023). Clinical information of the TCGA-LIHC

patients was sourced from the cBioPortal database (https://

www.cbioportal.org/; November 22, 2023). Additionally, we

accessed the preprocessed projects (HCCDB18, HCCDB25, and

HCCDB30) from HCCDB as external validation sets (http://

lifeome.net:809/#/home; January 13, 2024). These projects house

bulk RNA-seq data and corresponding clinical information of

patients. HCCDB18 was obtained from the ICGC-LIRI-JP project

(https://dcc.icgc.org/). HCCDB25 was obtained from project

OEP000321 (https://www.biosino.org/node/). HCCDB30 was

obtained from project GSE148355 (https://www.ncbi.nlm.nih.gov/

geo/). The HCC single-cell RNA-seq (scRNA-seq) datasets,

GSE242889 and GSE149614, were obtained from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/; June 27, 2024). We

acquired 5 tumor tissue samples from GSE242889 and 10 tumor

tissue samples from GSE149614, respectively. The spatial

transcriptomic data of HCC, HRA000437, were downloaded from

the CNCB database (https://www.cncb.ac.cn/; January 15, 2024).
2.2 Data processing

Each patient in all datasets had only one tumor sample retained

for analysis. In the TCGA-LIHC project, the original raw count data

was employed for differential expression analysis, while Log2 (TPM

+1) data was utilized for other analyses. We excluded redundant

tumor samples from three recurrent sites of two patients in the

TCGA dataset. Additionally, we excluded 29 tumor samples

corresponding to patients with missing follow-up data or follow-

up times less than 30 days. Furthermore, to mitigate the impact of

rare HCC subtype gene expression pattern differences on

subsequent analyses, we excluded 8 samples with pathology

reports indicating “Hepatocellular Carcinoma plus Intrahepatic

Cholangiocarcinoma” and “Fibrolamellar Carcinoma”. Ultimately,

we included 334 tumor samples for further analysis. In the ICGC-

LIRI-JP project, we excluded two patients with insufficient follow-

up times, resulting in a total of 201 samples for subsequent analysis.

We included all 158 patient samples from the OEP000321 project

and 50 tumor samples with survival information from the

GSE148355 project for analysis. The “Seurat” R package was

utilized for processing 10× single-cell transcriptomic and spatial

transcriptomic data. Quality control standards for scRNA-seq data

included the following criteria: (1) nCount_RNA > 1000; (2)

nFeature_RNA > 300; (3) percent_mito < 20%; (4) percent_ribo >

3%; (5) percent_hb < 0.1%. Subsequently, the “DoubletFinder” R

package was used to eliminate potential doublets, and the

“harmony” R package facilitated the integration of these fifteen

samples. We utilized the uniform manifold approximation and
Frontiers in Immunology 03
projection (UMAP) for dimensionality reduction and visualization.

Next, the “FindNeighbors” and “FindClusters” functions were

employed for cell clustering. Manual annotation was performed

to label different cell clusters. After normalizing the spatial

transcriptomic data with the “SCTransform” function, we

performed principal component analys is and UMAP

dimensionality reduction. Subsequently, we utilized the

“FindTransferAnchors” function to map the annotated

information from the processed scRNA-seq data to the spatial

transcriptomic data.
2.3 Identification of MVI-related genes in
malignant cells

We isolated the epithelial cell population from all single-cell

clusters and reclassified them. The “infercnv” R package was

utilized to infer chromosomal copy number variation (CNV) of

macrophages, T/NK cells, and epithelial cells in scRNA-seq data

(23). We employed the “FindMarkers” function to identify

differentially expressed genes in malignant cells from MVI-

positive and MVI-negative samples. Specifically, genes with |

avg_log2FC | > 1 and p_val_adj < 0.05 were designated as

MVIRGs in malignant cells.
2.4 Analysis of prognosis-related single
cells and MVI-related malignant cells

We utilized the “Scissor” R package (24) to predict and visualize

single cells potentially associated with prognosis and malignant cells

potentially associated with MVI, respectively. This was based on the

gene expression patterns of tumor tissue and clinical information of

patients from TCGA-LIHC. The “FindMarkers” function was

applied to discern specifically expressed genes between Scissor+

and Scissor- cells within distinct cell clusters, as well as MVI_Scissor

+ and MVI_Scissor- cells.
2.5 Pseudotime analysis of malignant cells

We conducted pseudotime analysis on malignant cells using the

“Monocle” R package [8]. The “CytoTRACE” R package was

utilized to aid in determining the direction of cell differentiation.

By integrating the predictions from the Scissor algorithm, we

conducted a comprehensive analysis of the differential

differentiation trajectories between Scissor+ and Scissor-

malignant cells, as well as between MVI_Scissor+ and

MVI_Scissor- malignant cells.
2.6 Analysis of function and
pathway enrichment

To gain a better understanding of the functional characteristics

of malignant cell subpopulations, we utilized the “clusterProfiler” R
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package (25) to conduct Gene Ontology (GO) enrichment analysis

on different states of malignant cells. Additionally, we employed the

Gene Set Enrichment Analysis (GSEA) software (v4.3.2) along with

its accompanying Hallmark gene sets to analyze the enriched

signaling pathways among MVI-related malignant cell subgroups,

and visualized the results using the “GseaVis” R package.
2.7 Cell-cell communication

We utilized the “CellChat” R package (26) to conduct

intercellular interaction analysis in both single-cell transcriptomic

data and spatial transcriptomic data. Our focus was on identifying

differentially expressed signaling genes between malignant cells and

other cell types and predicting the probability of intercellular

communication as well as the associated pathways.
2.8 Construction, validation, and evaluation
of the prognostic model

Using the “caret” R package, we randomly partitioned the

tumor tissue samples from TCGA-LIHC in a 4:1 ratio to create

training and testing sets. The ICGC-LIRI-JP project, OEP000321

project, and GSE148355 project are used for external validation.

Due to the varying numbers of genes in different datasets (26729

genes in TCGA; 21362 genes in ICGC; 35690 genes in OEP000321;

and 21444 genes in GSE148355), we intersected the MVIRGs with

all datasets for further analysis. Univariate Cox regression analysis

was used for preliminary screening for prognostic genes in the

TCGA-LIHC training set.

Based on the study by Liu et al., we utilized 101 combinations of

10 machine-learning algorithms to construct a prognostic model.

These algorithms included CoxBoost, elastic network (Enet),

generalized boosted regression modeling (GBM), least absolute

shrinkage and selection operator (Lasso), partial least squares

regression for Cox (plsRcox), Ridge, random survival forest

(RSF), stepwise Cox, supervised principal components (SuperPC),

and survival support vector machine (survival-SVM). These

combinations were applied to the selected representative

MVIRGs, and LOOCV was employed to prevent overfitting. After

the machine learning filtering of key variables, we utilized

multivariate Cox regression to develop a prognostic model, as it

facilitates model interpretation and practical implementation. The

computational formula for the risk model is as follows:

risk   score = o
n

x=1
(coef (mRNAx)� expr(mRNAx))

coef (mRNAx) and expr (mRNAx) are the survival correlation

coefficient and expression of MVIRGs involved in the construction

of the model, respectively. For each model, Harrell’s concordance

index (C-index) was calculated for the training, testing, and

validation sets. The model with the highest average C-index was

deemed optimal. Subsequently, we collected 37 published

prognostic models for HCC and applied them to our TCGA-
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to calculate the C-index. This facilitated a comparison between our

study’s optimal model and the existing models.

Within the TCGA-LIHC training set, internal testing set, and

external validation sets, patients were stratified into high- and low-

risk groups based on the median risk score, respectively. The

“survminer” R package was utilized to plot the survival curves

corresponding to OS and DFS. After excluding patients with

missing clinical information, the “pec” R package was used to

visualize the time-dependent C-index for the risk score and

clinical information. Additionally, the “rms” R package was

employed to construct calibration curves. Furthermore, decision

curve analysis (DCA) was developed in all the datasets to assess the

guidance significance of the risk score for clinical decision-making

in a 2-year timepoint.
2.9 Statistical analysis

All statistical analyses were performed using R language

(v4.2.2). Univariate Cox regression was employed to screen

MVIRGs associated with OS. The prognostic model and decision

model for DCA comparison are based on multivariate Cox

regression. Kaplan-Meier method was utilized to estimate the OS

rates and DFS rates of patients stratified into high- and low-risk

groups, and their significance was assessed using the log-rank test. A

statistical significance threshold of p-value < 0.05 was applied to all

statistical tests.
3 Results

3.1 Cell annotation

Figure 1 shows the overall process of our study. After

conducting quality control and removing doublets, a total of

50477 cells were included in the analysis. Using the “harmony” R

package for sample integration, batch effects were effectively

mitigated (Supplementary Figure S1A). Employing the “clustree”

function, we showcased cell clustering at various resolutions,

ultimately opting for a resolution of 1 to partition all cells into 32

distinct subgroups (Figure 2A, Supplementary Figure S1B).

Subsequently, we manually annotated different cell clusters,

drawing from established literature (Figure 2B). The markers used

to delineate various cell clusters in this study are as follows:

macrophages (CD163, CD68, VSIG4); monocytes (S100A8,

FCN1); dendritic cells (CLEC9A, IDO1); B cells (MS4A1,

CD79A); plasma cells (MZB1, TNFRSF17); T/NK cells (CD2,

CD3D, CD7); epithelial cells (KRT18, PROX1, ALDH1A1);

fibroblasts (COL3A1, COL1A2, DCN); endothelial cells (VWF,

CDH5, CD34) (27–32). Notably, due to the co-expression of

markers of different cell types in clusters 21, 25, and 28,

suggesting potential doublets, these cells were excluded from

further analysis. Subsequently, we isolated the epithelial cell

cluster and re-clustered it into 12 subgroups using a resolution of
frontiersin.org
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0.1. The “infercnv” R package was then employed to compute the

CNV scores for each epithelial cell subgroup, allowing for the

discrimination of malignant epithelial cells. The results revealed a

significant increase in CNV across all epithelial cell subgroups

compared to macrophages and T/NK cells, indicating the

malignant nature of these epithelial cells (Figure 2C,

Supplementary Figure S1C). Based on distinct cell markers, we

initially categorized all cells into 9 types (Figure 2D).
3.2 Analysis of prognosis-related
single cells

The Scissor algorithm has been proven to be a highly accurate

predictive tool (24, 33). Using TCGA-LIHC data as input, we

employed survival prognosis to predict potential prognosis-related

single cells within the single-cell data. The alpha parameter was set

at 0.02, and we got 4073 Scissor+ cells and 4441 Scissor- cells. The

predictive results were validated through 10-fold cross-validation,

yielding a p-value of less than 0.001 (Supplementary Figure S1D, E).

Scissor+ represents an association with an unfavorable prognosis,

while Scissor- indicates an association with favorable prognosis, and

Scissor0 denotes no significant correlation (Figure 2E). The largest

number of prognosis-related single cells were found within the

malignant cells. Interestingly, T/NK cells, fibroblasts, macrophages,

and endothelial cells (ECs) also exhibited the presence of cells

associated with unfavorable prognosis. Conversely, B cells and

plasma cells were predominantly associated with a favorable
Frontiers in Immunology 05
prognosis (Figure 2F). In addition to the malignant cells, we

analyzed differentially expressed genes between Scissor+ cells and

Scissor- cells within macrophages, fibroblasts, and ECs, respectively

(Supplementary Table S1–S4). The “scRNAtoolVis” R package was

utilized to generate volcano plots displaying the top ten

differentially expressed genes for each cell population (Figure 2G).

We observed that within the three subgroups associated with

adverse prognosis, TUBB, TUBA1B, and ENO1 were all

overexpressed by more than 2-fold, indicating potentially

heightened metabolic and migratory capabilities of these cells.

Furthermore, the Scissor+ malignant cells, macrophages, and ECs

also exhibit high expression of cell cycle-related genes such as

TOP2A, MKI67, and PCNA, indicating the high proliferative

capacity of these cell populations.

To further investigate the differentiation trajectory of malignant

cells, we conducted a pseudotime analysis. The results indicated that

malignant cells can be categorized into three states through a single

intersection point. The Monocle2 software package suggested that

state-1 malignant cells represent the initiation of differentiation,

while state-3 represents the terminal differentiation. Scissor+

malignant cells were predominantly located at the early and

middle stages of differentiation, whereas Scissor- malignant cells

were mainly found at the terminal stages of differentiation. We

further validated these findings using the “CytoTRACE” R package

(F igure s 3A–C) . Addi t iona l l y , by employ ing the “

plot_pseudotime_heatmap2” function of the “ClusterGVis” R

package, we classified malignant cells into 3 cell clusters and

analyzed the cellular component genes enriched in these cell
FIGURE 1

The overall flow chart of this study.
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clusters (Figure 3D). From the enrichment analysis, it was evident

that the malignant cell cluster C1 located at the initiation of

differentiation was highly enriched in ribosome-related genes,

indicating its potential robust biosynthetic capacity. It is well-

established that the malignant proliferative capacity of malignant

cells relies on increased protein synthesis, which in turn depends on

ribosomal complexes (34). Translation dysregulation is considered

a hallmark of cancer stem cells (CSCs), with translational control

also enhancing the plasticity of cancer cells, thereby promoting

tumor progression and metastasis (35). The excessive activity of

ribosome biogenesis is associated with advanced tumor staging and

lower cancer survival rates, aligning with the predominance of

Scissor+ malignant cells at the initiation of differentiation (36).

Cluster C3 was enriched in chromosome and splicing-related genes.

Recent studies have validated that mutations or abnormal

expression of spliceosome-related genes are linked to tumor
Frontiers in Immunology 06
progression, with some of these genes also regulating immune

signal transduction (37). Therefore, malignant cells in Cluster C1

and C3, located at the early to middle stages of differentiation, may

both be associated with tumor progression and metastasis.

Interestingly, malignant cells in these two clusters also exhibit

high expression of exosome marker genes such as CD9, CD63,

and TSG101. The exosome marker proteins were obtained from the

ExoCarta database (http://www.exocarta.org; January 29, 2024).

Extracellular vesicles play a crucial role in tumor metastasis,

facilitating communication between malignant cells and other

cells (38). Therefore, cells in clusters C1 and C3 may also play a

pivotal role in influencing the TME. It is noteworthy that malignant

cells in cluster C2 at the terminal stages of differentiation exhibit

high expression of MHC-related genes such as HLA-DRA, HLA-

DPB1, and HLA-DQB1. This expression pattern overlaps with the

distribution of Scissor- malignant cells. Previous research has
FIGURE 2

Cell annotation and analysis of prognosis-related cells. (A) UMAP distribution of 32 clusters at a resolution of 1; (B) Expression of markers
corresponding to the 9 cell types (Mac, Macrophage; Mono, Monocyte; DC, Dendritic cell; B, B cell; Pla, Plasma cell; T_NK, T/NK cell; Epi, Epithelial
cell; Fibro, Fibroblast; Endo, Endothelial cell); (C) Copy number variation scores of epithelial cells, macrophages, and T/NK cells; (D) UMAP
distribution of 9 annotated cell types; (E) UMAP distribution of prognosis-related cells predicted by the Scissor algorithm; (F) Proportions of different
cell types in Scissor0, Scissor-, and Scissor+ cells; (G) Volcano plot of differentially expressed genes in Scissor+ cells versus Scissor- cells within ECs,
fibroblasts, macrophages, and malignant cells.
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indicated that tumor-specific MHC expression can potentially elicit

immune recognition of the tumor, thereby augmenting immune-

mediated malignant cell destruction (39). This heightened MHC

expression may contribute to the favorable prognosis associated

with this specific cell cluster.
3.3 Analysis of MVI-related malignant cells

It becomes evident that not all malignant cells are directly

associated with adverse prognoses, underscoring the heterogeneity
Frontiers in Immunology 07
of malignant cells. To delve deeper into the malignant cells

associated with MVI, we employed the Scissor algorithm,

substituting the phenotype with the occurrence of MVI in TCGA

patients. We included 98 tumor samples from MVI-positive

patients and 146 tumor samples from MVI-negative patients,

setting the a parameter to 0.05, ultimately identifying 622

MVI_Scissor+ malignant cells and 1462 MVI_Scissor- malignant

cells (Supplementary Figure S1F, G). MVI_Scissor+ represents an

association with the MVI-positive phenotype, while MVI_Scissor-

indicates an association with the MVI-negative phenotype, and

MVI_Scissor0 denotes no significant correlation. Subsequent
FIGURE 3

Analysis of malignant cells. (A) Proportion of Scissor0, Scissor-, and Scissor+ malignant cells in different states and pseudotime direction predicted
by Monocle2; (B) Predicted differentiation direction of malignant cells by CytoTRACE; (C) Proportion of different states malignant cells in
MVI_Scissor0, MVI_Scissor-, and MVI_Scissor+ groups; (D) Corresponding gene expression heatmaps and enriched Gene Ontology (GO) cellular
components of three malignant cell clusters related to pseudotime; (E) UMAP distribution of MVI-related malignant cells predicted by the Scissor
algorithm; (F) UMAP distribution of prognosis-related malignant cells predicted by the Scissor algorithm; (G) CytoTRACE scores of MVI_Scissor0,
MVI_Scissor-, and MVI_Scissor+ malignant cells; (H) Differential hallmark pathway enrichments between MVI_Scissor+ malignant cells and other
malignant cells analyzed by GSEA.
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analysis revealed that, in comparison to the other malignant cells,

the overall gene expression profile of MVI_Scissor+ malignant cells

closely resembled Scissor+ malignant cells (Figures 3E, F,

Supplementary Table S5). The MVI_Scissor+ malignant cells

predicted by CytoTRACE scored the highest, meaning they were

immature malignant cells (Figure 3G). Consequently, we

hypothesize that the malignant cells leading to clinical MVI

occurrence belong to the initial differentiation rather than the

terminal differentiation of malignant cells.

Through GSEA analysis, we investigated the differential

enrichment of signaling pathways in MVI_Scissor+ malignant

cells compared to other malignant cells. | normalized enrichment

score (NES) | > 1.4 and FDR q-value < 0.05 were considered

screening conditions. The results revealed that MVI_Scissor+

malignant cells exhibited significant enrichment only in the

HALLMARK_MYC_TARGETS_V2 pathway. In contrast, other

malignant cells are involved in a wider range of biological

activities, such as coagulation, epithelial-mesenchymal transition,

oxidative phosphorylation, and processing of exogenous substances.

This suggested that MVI_Scissor+ malignant cells possess unique

functional characteristics, primarily associated with MYC-regulated

cell proliferation (Figure 3H, Supplementary Table S6).

To further investigate the role of MVI_Scissor+ malignant cells

in the tumor immune microenvironment, we conducted a cell-cell

communication analysis. The results indicate rich interactions

between MVI_Scissor+ malignant cells and other cell types, with

the MIF (macrophage migration inhibitory factor) signaling

pathway being widely distributed among various cell populations

(Figures 4A, B, Supplementary Table S7). The MIF signaling

pathway encompasses two receptor pairs, and our analysis

revealed that MIF-(CD74+CXCR4) exhibited the highest

predicted probability and the most widespread distribution.

However, the communication probability of MIF-(CD74+CD44)

was not as high as MIF-(CD74+CXCR4) (Figures 4C, D). What’s

more, the enrichment of the MIF pathway between MVI_Scissor+

malignant cells and ECs was not significant. Interestingly, the most

significant signaling between MVI_Scissor+ malignant cells and

ECs was through SPP1-(ITGA5+ITGB1), surpassing the VEGF

signaling pathway (Figure 4E). Taken together, the MIF signaling

pathway may represent a potential target for disrupting the

interaction between MVI_Scissor+ malignant cells and other

cell types.
3.4 Validation from the
spatial transcriptome

We performed external validation using spatial transcriptomic

data HCC-1 and HCC-2 from project HRA000437 of the CNCB

database. HCC-1 samples were derived from tumor sections of

patients without MVI, while HCC-2 samples were obtained from

patients with MVI. In addition to the tumor (T) and the
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surrounding tissue (L), HCC-2 includes portal vein tumor

thrombus samples (P) compared to HCC-1. Cell populations

were annotated based on scRNA-seq data, yielding annotations

basically consistent with those of Wu et al. (Supplementary Figures

S2A, B, Supplementary Figures S3A–C). We conducted cell-cell

communication analysis in the HCC-2T sample (Supplementary

Table S8). The results indicated significant communication of

malignant cells with macrophages, ECs, and fibroblasts via MIF

signaling (Figure 4F). Furthermore, co-localization analysis of MIF

and (CD74+CXCR4) or (CD74+CD44) affirmed the consistency

and widespread nature of this receptor’s distribution (Figure 4G).

Subsequently, we focus on the spatial distribution of malignant

cells in different states and those predicted to be MVI-related and

prognosis-related by the Scissor algorithm. Our analysis revealed

that, regardless of MVI status, Scissor0 and MVI_Scissor0

malignant cells predominated. Conversely, Scissor-, and

MVI_Scissor- malignant cells were more abundant in tumors

without MVI, while Scissor+ and MVI_Scissor+ malignant cells

were notably more prevalent in MVI-positive tumors. This validates

the accuracy of our prediction of MVI-related malignant cells

(Figures 5A–E, Supplementary Figures S4A–E).
3.5 Construction, validation, and evaluation
of the prognostic model

To investigate tumor heterogeneity in MVI-positive and MVI-

negative patients, we identified MVI-related genes within malignant

cells, which are provided in Supplementary Table S9. These genes

were applied to construct a prognostic model. In the TCGA-LIHC

training set, the results from univariate Cox regression analysis

revealed significant associations between the expression levels of 38

MVIRGs and OS. Specifically, 23 genes were correlated with an

unfavorable prognosis, while 15 genes were correlated with a

favorable prognosis (Supplementary Table S10). Genes exhibiting

high expression and a Hazard ratio (HR) greater than 1 in

malignant cells of MVI-positive patients, as well as those

demonstrating high expression and an HR less than 1 in

malignant cells of MVI-negative patients, were selected

(Figure 6A). These 22 genes were designated as representative

MVIRGs and were subsequently incorporated into the

modeling process.

After identifying 22 representative MVIRGs, we utilized 101

combinations of 10 machine-learning algorithms to individually

screen for distinct key genes. These genes were then used to build

101 multivariate Cox regression models. The C-indexes of these 101

models were calculated in the TCGA-LIHC training set, internal

testing set, and external validation sets (Figure 6B). The optimal

model was the Enet (alpha=0.6) model, achieving an average C-index

of 0.72. This model comprised 10 genes: TMEM45A, S100A10,

NDUFA6, STMN1, SERPINA12, LGALS3, BHMT, CYP3A5,

CFHR3, and RPL8. The final formula for the risk model is as follows:
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Risk score =  0:12568178 �  TMEM45A  +  

0:07016186 �  S100A10  +  0:14298943�  NDUFA6 

+ 0:13330516 �  STMN1  +  0:08159631 �
 SERPINA12  +  0:06043725 �  LGALS3 

+ 0:15569238 � RPL8−0:01400613 �  BHMT   −  

0:05863893 �  CYP3A5 − 0:09699672 �  CFHR3

Differential expression analysis of TCGA-LIHC tumor tissues

and adjacent normal tissues revealed that the expression differences

of TMEM45A, S100A10, SERPINA12, BHMT, CFHR3, RPL8, and

STMN1 all exceed a 2-fold change (Supplementary Table S11). The

findings indicated the potential significance of these genes.

When compared with 37 published HCC prognostic models,

our selected risk model demonstrated significant stability

(Figure 6C, Supplementary Table S12). We evaluated the

sensitivity and specificity of the prognostic predictions by plotting

time-dependent C-index curves. After excluding clinical

information with significant missing data across various datasets,

the clinical information included in our analysis was as follows: the

TCGA-LIHC dataset included age, gender, AJCC (American Joint
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Commission of Cancer) stage, and histologic grade; the ICGC-LIRI-

JP dataset included age, gender, AJCC stage, HBV/HCV infection

status, liver fibrosis grade, vascular invasion status, and bile duct

invasion status; the OEP000321 dataset included age, gender, and

AJCC stage; the GSE148355 dataset included age, gender, AJCC

stage, AFP (Alpha-fetoprotein) levels, liver fibrosis grade, Child-

Pugh grade, and maximum tumor size. Across all datasets, the risk

model demonstrated excellent performance by comparing the

predictive efficacy of individual clinical information (Figure 7A).

Additionally, calibration curves for 1-, 2-, and 3-year periods

confirmed that the risk model’s predicted OS closely mirrored

actual outcomes (Figure 7B). To assess the model’s impact on

clinical decision-making, we performed DCA at a 2-year

timepoint. These curves included two multivariate Cox regression

models: one based on clinical information mentioned above, and

the other combining risk scores with clinical information. Across all

datasets, the risk-combined clinical model yielded greater net

benefit for patients compared to the clinical model alone. For

instance, in the TCGA_test dataset, the net benefit of the

predictive strategy based on the risk-combined clinical model

significantly exceeded that of the clinical model predictive
FIGURE 4

Cell-cell communication analysis of MVI-related malignant cells. (A) The number and weight of communications between MVI_Scissor+ malignant
cells and other cell types; (B) Heatmap of MIF signaling pathway communications between MVI_Scissor+ malignant cells and other cell types;
(C) Expression levels of MIF signaling pathway receptor-ligand pairs in different cell types; (D) Communication probabilities of various receptor-
ligand pairs in the MIF signaling pathway between MVI_Scissor+ malignant cells and other cell types; (E) Comparison of predicted communication
pathways between MVI_Scissor+ malignant cells and ECs; (F) Predicted communications of the MIF signaling pathway between malignant cells and
other cells in HCC-2T; (G) Co-localization of MIF-(CD74+CXCR4) and MIF-(CD74+CD44) receptor-ligand pairs in HCC-2T.
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strategy, with threshold probabilities ranging from approximately

10% to 60% (Figure 7C).

Based on the risk scores, patients were stratified into high-risk

and low-risk groups equally. To assess differences in survival time

and status between the two groups, survival curves were

constructed. The result clearly illustrated that the high-risk group

displayed a significantly unfavorable prognosis compared to the

low-risk group. Moreover, across the training, testing, and

validation sets, all log-rank test P-values were below 0.05,

indicating notable disparities (Figure 8A). Importantly, the model

not only discriminated between high- and low-risk patients in terms

of OS but also revealed remarkably significant differences in

DFS (Figure 8B).
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4 Discussion
Previous studies have highlighted the pivotal role of MVI in the

postoperative recurrence of hepatocellular carcinoma, often

associated with heightened tumor invasiveness. As the extent of

MVI increases, such as a rise in MVI quantity and its distance from

the main tumor, the prognosis for patients becomes increasingly

unfavorable (11, 40). The diagnosis of MVI typically relies on

histopathological microscopic examination of resected surgical

specimens, limiting the potential for early detection. Given this

scenario, an increasing number of researchers are exploring

methods, including radiomics, to predict the presence of MVI
FIGURE 5

Predicted distribution of MVI-related malignant cells in spatial transcriptomic data. (A–E) Predicted distribution of MVI_Scissor0, MVI_Scissor-, and
MVI_Scissor+ malignant cells in HCC-1L, HCC-1T, HCC-2L, HCC-2T, and HCC-2P, respectively.
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preoperatively (41–44). However, even upon identifying the

likelihood of MVI, there remains a lack of systematically targeted

treatment strategies, despite some studies reporting potential

considerations, such as postoperative adjuvant hepatic arterial

infusion chemotherapy with 5-fluorouracil and oxaliplatin (45,

46). This is due to the unclear mechanisms underlying the

occurrence and progression of MVI. Therefore, delving into the

specific biological origins of MVI becomes particularly crucial.

In this study, we comprehensively analyzed the biological

characteristics of MVI by integrating bulk RNA-seq, single-cell

RNA-seq, and spatial transcriptomics data containing clinical
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information on MVI from public databases. The invention of the

Scissor algorithm has enabled the prediction of single-cell

subpopulations associated with clinical phenotypes, facilitating

relevant studies on the origin and development of diseases (24).

Utilizing this algorithm, we predicted prognosis-related single cells

and MVI-related malignant cells and validated the accuracy of these

predictions using spatial transcriptomics data. Through combined

pseudo-time analysis and intercellular communication analysis, we

have proposed a novel hypothesis: the occurrence and progression

of MVI are determined by the distinct differentiation fates of tumor

cells. The presence of tumor cells located at the early and middle
FIGURE 6

Construction, validation, and comparison of prognostic model based on MVIRGs. (A) Representative MVIRGs with statistically significant results from
univariate Cox regression analysis in the TCGA-LIHC training set; (B) C-index of different models constructed using 101 machine-learning algorithm
combinations in the TCGA-LIHC training set, testing set, and external validation sets; (C) C-index comparison of the prognostic model based on
MVIRGs and 37 published HCC prognostic models in the TCGA-LIHC training set, testing set, and external validation sets.
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stages rather than the terminal stage of differentiation correlates

with a higher likelihood of microvascular invasion. In the terminal

stage of differentiation, some tumor cells exhibit high expression of

MHC-related proteins, potentially rendering them more susceptible

to recognition and elimination by immune cells. Consequently,

these tumor cells may exert an opposing effect on the occurrence

and progression of MVI and unfavorable prognosis. Importantly,

the proportion of these malignant cells potentially impacts the

efficacy of immunotherapy and prognosis to a certain extent.

Conversely, MVI-positive patients harbor a higher proportion of

MVI_Scissor+ malignant cells, thus promoting MVI progression

and leading to an unfavorable prognosis.

Interestingly, MVI-related malignant cells do not enrich

pathways related to metabolism but rather in the MYC pathway.

This indicates that the biological behavior of MVI_Scissor+

malignant cells is largely regulated by the MYC transcription

factor. Conducting in-depth research on MYC downstream

targets may be an effective direction to inhibit this subgroup and

potentially impede the progression of MVI. In terms of intercellular

communication, we observed minimal signals emitted by other cells

towards MVI_Scissor+ malignant cells, with only partial pathways

from fibroblasts and ECs. Conversely, MVI_Scissor+ malignant

cells emit a substantial amount of signals to other cell types,

particularly through the MIF signaling pathway. The receptors

involved in the MIF signaling pathway exhibit the highest and

most widespread interaction strength with MIF-(CD74+CXCR4).
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Furthermore, widespread co-localization of MIF-(CD74+CXCR4)

was observed in spatial transcriptomics, suggesting that the MIF

signaling pathway may be a key mechanism through which

MVI_Scissor+ malignant cells exert significant influence in the

tumor microenvironment. In conclusion, further in-depth

research is warranted to elucidate the role of MIF in the

occurrence and progression of MVI.

In addition to tumor cells, our investigation also focused on

prognosis-associated macrophages, fibroblasts, and ECs.

Macrophages linked to unfavorable prognosis exhibited heightened

expression of SPP1, TREM2, LGALS3, CTSB, CTSD, CTSL, and

FABP5, indicative of a lipid-related macrophage phenotype (47).

Consistent with prior findings, these macrophages have been

implicated in promoting malignant cell epithelial-mesenchymal

transition and exerting immunosuppressive effects (32, 48). The

fibroblasts associated with poor prognosis exhibit high expression of

extracellular matrix-related markers, including COL5A1, COL6A3,

POSTN, LUM, DCN, and FAP, consistent with the mCAFs defined

by Zhu et al. This subgroup may be associated with epithelial-

mesenchymal transition, hence positively correlated with poor

prognosis (49). Furthermore, ECs associated with poor prognosis

show high expression of LYVE1 and CD36, suggesting that this

subgroup belongs to liver sinusoidal ECs (50).

The AJCC staging system is commonly used in clinical practice

to assess patient prognosis. However, the heterogeneity of tumors

makes predicting OS and DFS challenging. Shindoh et al.
FIGURE 7

Evaluation of prognostic model based on MVIRGs using time-dependent C-index curves, calibration curves, and DCA. (A) Comparison of time-
dependent C-index curves based on the risk model and single clinical information in all the datasets; (B) 1-, 2-, and 3-year calibration curves of the
prognostic model in the TCGA-LIHC training set, testing set, and external validation sets; (C) Comparison of 2-year DCA between the multivariate
Cox model constructed using risk scores combined with clinical information and the multivariate Cox model constructed using only clinical
information in all the datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1436131
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1436131
demonstrated that optimizing the prognostic assessment of the

eighth edition AJCC staging system by incorporating patient MVI

status underscores the importance of MVI (51). Through validation

using training, testing, and external validation sets, we found that

the model constructed based on MVIRGs demonstrates good

generalizability and outperforms conventional AJCC staging

systems and most previously published gene models. In future

clinical applications, consideration could be given to integrating

our model with Shindoh et al.’s new AJCC staging system to

comprehensively evaluate patient prognosis from anatomical,

pathological, and transcriptomic perspectives. By sequencing

tumor samples from patients, we can calculate the risk scores for

each patient based on the risk model formula. Suitable risk score

threshold values will be identified based on a sufficiently large

sample size. Additionally, incorporating more prognostic clinical
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information, and constructing a nomogram to refine patient

scoring, thereby predicting overall survival time.

Admittedly, our study has certain limitations due to the

relatively small sample size. Currently, there is limited inclusion

of MVI as a patient stratification factor in single-cell studies of

hepatocellular carcinoma (HCC). We aim to collect more data in

this direction in the future. To mitigate bias, we integrated bulk,

single-cell, and spatial transcriptomic data from different centers for

multi-omics validation. Therefore, we believe in the high reliability

of our results. Nevertheless, further in vivo and in vitro experiments

are still needed to validate and expand our findings, especially

regarding the molecular pathway mechanisms involved in the

biological functions of MVI-related malignant cells.

In conclusion, our study identified a malignant cell subgroup

related to MVI in HCC. By analyzing differentiation and
FIGURE 8

Evaluation of prognostic model based on MVIRGs using survival curves. (A) OS differences between high- and low-risk groups in all the datasets;
(B) DFS differences between high- and low-risk groups in the TCGA-LIHC training set, testing set, and GSE148355 validation set.
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developmental trajectories as well as intercellular interactions, we

elucidated the primary biological functional characteristics of this

subgroup. Moreover, we utilized a machine learning algorithm to

construct a prognostic model based on MVIRGs. Our model

exhibited excellent predictive performance and holds the potential

to assist in clinical decision-making, thereby offering substantial

benefits for patients. This provides new directions and insights for

the treatment of HCC patients with MVI in the future.
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SUPPLEMENTARY FIGURE 1

Results of scRNA-seq data processing. (A) UMAP visualization of 15 tumor

samples from GSE242889 and GSE149614 before and after integration using

harmony; (B) Single-cell clustering analysis at different resolutions using the
“clustree” function; (C) Comparison of copy number variation in epithelial cell

subtypes, macrophages, and T/NK cells analyzed using the “infercnv” R
package; (D, E) Results of prognosis-relate single-cell prediction and 10-

fold cross-validation using the Scissor algorithm; (F, G) Results of MVI-related
malignant cell prediction and 10-fold cross-validation using the

Scissor algorithm.

SUPPLEMENTARY FIGURE 2

Predicted distribution of different cell types in spatial transcriptomic data of
MVI-negative Patients. (A, B) Predicted distribution of 9 different cell types in

HCC-1L and HCC-1T, respectively.

SUPPLEMENTARY FIGURE 3

Predicted distribution of different cell types in spatial transcriptomic data of
MVI-positive Patients. (A–C) Predicted distribution of 9 different cell types in

HCC-2L, HCC-2T, and HCC-2P, respectively.

SUPPLEMENTARY FIGURE 4

Predicted distribution of prognosis-related malignant cells in spatial

transcriptomic data. (A–E) Predicted distribution of Scissor0, Scissor-, and

Scissor+ malignant cells in HCC-1L, HCC-1T, HCC-2L, HCC-2T, and HCC-
2P, respectively.
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global
cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA: Cancer J For Clin. (2021) 71:209–49. doi: 10.3322/
caac.21660

2. Llovet JM, Pinyol R, Yarchoan M, Singal AG, Marron TU, Schwartz M, et al.
Adjuvant and neoadjuvant immunotherapies in hepatocellular carcinoma.Nat Rev Clin
Oncol. (2024). doi: 10.1038/s41571-024-00868-0
3. Yang X, Yang C, Zhang S, Geng H, Zhu AX, Bernards R, et al. Precision treatment
in advanced hepatocellular carcinoma. Cancer Cell. (2024) 42:180–97. doi: 10.1016/
j.ccell.2024.01.007

4. Imamura H, Matsuyama Y, Tanaka E, Ohkubo T, Hasegawa K, Miyagawa S, et al.
Risk factors contributing to early and late phase intrahepatic recurrence of
hepatocellular carcinoma after hepatectomy. J Hepatol. (2003) 38:200–7.
doi: 10.1016/S0168-8278(02)00360-4
frontiersin.or
g

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1436131/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1436131/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.3322/caac.21660
https://doi.org/10.1038/s41571-024-00868-0
https://doi.org/10.1016/j.ccell.2024.01.007
https://doi.org/10.1016/j.ccell.2024.01.007
https://doi.org/10.1016/S0168-8278(02)00360-4
https://doi.org/10.3389/fimmu.2024.1436131
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2024.1436131
5. Portolani N, Coniglio A, Ghidoni S, Giovanelli M, Benetti A, Tiberio GAM, et al.
Early and late recurrence after liver resection for hepatocellular carcinoma: prognostic
and therapeutic implications. Ann Surg. (2006) 243:229–35. doi: 10.1097/
01.sla.0000197706.21803.a1

6. Zhang Z-H, Jiang C, Qiang Z-Y, Zhou Y-F, Ji J, Zeng Y, et al. Role of
microvascular invasion in early recurrence of hepatocellular carcinoma after liver
resection: A literature review. Asian J Surg. (2024). doi: 10.1016/j.asjsur.2024.02.115

7. Zhang X, Li J, Shen F, LauWY. Significance of presence of microvascular invasion
in specimens obtained after surgical treatment of hepatocellular carcinoma. J
Gastroenterol Hepatol. (2018) 33:347–54. doi: 10.1111/jgh.13843

8. Kang I, Jang M, Lee JG, Han DH, Joo DJ, Kim KS, et al. Subclassification of
microscopic vascular invasion in hepatocellular carcinoma. Ann Surg. (2021) 274:
e1170–8. doi: 10.1097/SLA.0000000000003781

9. Walia A, Tuia J, Prasad V. Progression-free survival, disease-free survival and
other composite end points in oncology: improved reporting is needed. Nat Rev Clin
Oncol. (2023) 20:885–95. doi: 10.1038/s41571-023-00823-5

10. Wei X, Jiang Y, Feng S, Lu C, Huo L, Zhou B, et al. Neoadjuvant intensity
modulated radiotherapy for a single and small (≤5 cm) hepatitis B virus-related
hepatocellular carcinoma predicted to have high risks of microvascular invasion: a
randomized clinical trial. Int J Surg. (2023) 109:3052–60. doi: 10.1097/
JS9.0000000000000574

11. Xu X-F, Diao Y-K, Zeng Y-Y, Li C, Li F-W, Sun L-Y, et al. Association of severity
in the grading of microvascular invasion with long-term oncological prognosis after
liver resection for early-stage hepatocellular carcinoma: a multicenter retrospective
cohort study from a hepatitis B virus-endemic area. Int J Surg. (2023) 109:841–9.
doi: 10.1097/JS9.0000000000000325

12. Wu Q, Zhou L, Lv D, Zhu X, Tang H. Exosome-mediated communication in the
tumor microenvironment contributes to hepatocellular carcinoma development and
progression. J Hematol Oncol. (2019) 12:53. doi: 10.1186/s13045-019-0739-0

13. Li X-Y, Shen Y, Zhang L, Guo X, Wu J. Understanding initiation and progression
of hepatocellular carcinoma through single cell sequencing. Biochim Biophys Acta Rev
Cancer. (2022) 1877:188720. doi: 10.1016/j.bbcan.2022.188720

14. Hong M, Tao S, Zhang L, Diao L-T, Huang X, Huang S, et al. RNA sequencing:
new technologies and applications in cancer research. J Hematol Oncol. (2020) 13:166.
doi: 10.1186/s13045-020-01005-x

15. Kang K, Wu Y, Han C, Wang L, Wang Z, Zhao A. Homologous recombination
deficiency in triple-negative breast cancer: Multi-scale transcriptomics reveals distinct
tumor microenvironments and limitations in predicting immunotherapy response.
Comput Biol Med. (2023) 158:106836. doi: 10.1016/j.compbiomed.2023.106836

16. Li K, Zhang R, Wen F, Zhao Y, Meng F, Li Q, et al. Single-cell dissection of the
multicellular ecosystem and molecular features underlying microvascular invasion in
HCC. Hepatology. (2023). doi: 10.1097/HEP.0000000000000673

17. Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the
multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat
Commun. (2022) 13:4594. doi: 10.1038/s41467-022-32283-3

18. Wu R, Guo W, Qiu X, Wang S, Sui C, Lian Q, et al. Comprehensive analysis of
spatial architecture in primary liver cancer. Sci Adv. (2021) 7:eabg3750. doi: 10.1126/
sciadv.abg3750

19. Cai J, Li B, Zhu Y, Fang X, Zhu M, Wang M, et al. Prognostic biomarker
identification through integrating the gene signatures of hepatocellular carcinoma
properties. EBioMedicine. (2017) 19:18–30. doi: 10.1016/j.ebiom.2017.04.014

20. Greener JG, Kandathil SM, Moffat L, Jones DT. A guide to machine learning for
biologists. Nat Rev Mol Cell Biol. (2022) 23:40–55. doi: 10.1038/s41580-021-00407-0

21. Swanson K, Wu E, Zhang A, Alizadeh AA, Zou J. From patterns to patients:
Advances in clinical machine learning for cancer diagnosis, prognosis, and treatment.
Cell. (2023) 186:1772–91. doi: 10.1016/j.cell.2023.01.035

22. Liu Z, Liu L, Weng S, Guo C, Dang Q, Xu H, et al. Machine learning-based
integration develops an immune-derived lncRNA signature for improving outcomes in
colorectal cancer. Nat Commun. (2022) 13:816. doi: 10.1038/s41467-022-28421-6

23. Patel AP, Tirosh I, Trombetta JJ, Shalek AK, Gillespie SM, Wakimoto H, et al.
Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Sci
(New York NY). (2014) 344:1396–401. doi: 10.1126/science.1254257

24. Sun D, Guan X, Moran AE, Wu L-Y, Qian DZ, Schedin P, et al. Identifying
phenotype-associated subpopulations by integrating bulk and single-cell sequencing
data. Nat Biotechnol. (2022) 40:527–38. doi: 10.1038/s41587-021-01091-3

25. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: A universal
enrichment tool for interpreting omics data. Innovation (Camb). (2021) 2:100141.
doi: 10.1016/j.xinn.2021.100141

26. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan C-H, et al.
Inference and analysis of cell-cell communication using CellChat.Nat Commun. (2021)
12:1088. doi: 10.1038/s41467-021-21246-9

27. MacParland SA, Liu JC, Ma X-Z, Innes BT, Bartczak AM, Gage BK, et al. Single
cell RNA sequencing of human liver reveals distinct intrahepatic macrophage
populations. Nat Commun. (2018) 9:4383. doi: 10.1038/s41467-018-06318-7
Frontiers in Immunology 15
28. Ma L, Hernandez MO, Zhao Y, Mehta M, Tran B, Kelly M, et al. Tumor cell
biodiversity drives microenvironmental reprogramming in liver cancer. Cancer Cell.
(2019) 36. doi: 10.1016/j.ccell.2019.08.007

29. Popescu D-M, Botting RA, Stephenson E, Green K, Webb S, Jardine L, et al.
Decoding human fetal liver haematopoiesis. Nature. (2019) 574:365–71. doi: 10.1038/
s41586-019-1652-y

30. Ramachandran P, Dobie R, Wilson-Kanamori JR, Dora EF, Henderson BEP, Luu
NT, et al. Resolving the fibrotic niche of human liver cirrhosis at single-cell level.
Nature. (2019) 575:512–8. doi: 10.1038/s41586-019-1631-3

31. Zhang Q, He Y, Luo N, Patel SJ, Han Y, Gao R, et al. Landscape and dynamics of
single immune cells in hepatocellular carcinoma. Cell. (2019) 179. doi: 10.1016/
j.cell.2019.10.003

32. Ma R-Y, Black A, Qian B-Z. Macrophage diversity in cancer revisited in the era
of single-cell omics. Trends Immunol. (2022) 43:546–63. doi: 10.1016/j.it.2022.04.008

33. Yang C, Cheng X, Gao S, Pan Q. Integrating bulk and single-cell data to predict
the prognosis and identify the immune landscape in HNSCC. J Cell Mol Med. (2024)
28:e18009. doi: 10.1111/jcmm.18009

34. El Khoury W, Nasr Z. Deregulation of ribosomal proteins in human cancers.
Biosci Rep. (2021) 41. doi: 10.1042/BSR20211577

35. Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, et al. METTL16 promotes liver
cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA
translation. J Hematol Oncol. (2024) 17:7. doi: 10.1186/s13045-024-01526-9

36. Ruggero D. Revisiting the nucleolus: from marker to dynamic integrator of
cancer signaling. Sci Signal. (2012) 5:pe38. doi: 10.1126/scisignal.2003477

37. Yang H, Beutler B, Zhang D. Emerging roles of spliceosome in cancer and
immunity. Protein Cell. (2022) 13:559–79. doi: 10.1007/s13238-021-00856-5

38. BebelmanMP, Smit MJ, Pegtel DM, Baglio SR. Biogenesis and function of extracellular
vesicles in cancer. Pharmacol Ther. (2018) 188. doi: 10.1016/j.pharmthera.2018.02.013

39. Axelrod ML, Cook RS, Johnson DB, Balko JM. Biological consequences of MHC-
II expression by tumor cells in cancer. Clin Cancer Res. (2019) 25:2392–402.
doi: 10.1158/1078-0432.CCR-18-3200

40. Lim K-C, Chow PK-H, Allen JC, Chia G-S, Lim M, Cheow P-C, et al.
Microvascular invasion is a better predictor of tumor recurrence and overall survival
following surgical resection for hepatocellular carcinoma compared to the Milan
criteria. Ann Surg. (2011) 254:108–13. doi: 10.1097/SLA.0b013e31821ad884

41. Lei Z, Li J, Wu D, Xia Y, Wang Q, Si A, et al. Nomogram for preoperative estimation
of microvascular invasion risk in hepatitis B virus-related hepatocellular carcinoma within
the milan criteria. JAMA Surg. (2016) 151:356–63. doi: 10.1001/jamasurg.2015.4257

42. Hyun SH, Eo JS, Song B-I, Lee JW, Na SJ, Hong IK, et al. Preoperative prediction
of microvascular invasion of hepatocellular carcinoma using 18F-FDG PET/CT: a
multicenter retrospective cohort study. Eur J Nucl Med Mol Imaging. (2018) 45:720–6.
doi: 10.1007/s00259-017-3880-4

43. Hong SB, Choi SH, Kim SY, Shim JH, Lee SS, Byun JH, et al. MRI features for
predicting microvascular invasion of hepatocellular carcinoma: A systematic review
and meta-analysis. Liver Cancer. (2021) 10. doi: 10.1159/000513704

44. Xia T-Y, Zhou Z-H, Meng X-P, Zha J-H, Yu Q, Wang W-L, et al. Predicting
microvascular invasion in hepatocellular carcinoma using CT-based radiomics model.
Radiology. (2023) 307:e222729. doi: 10.1148/radiol.222729

45. Li S-H, Mei J, Cheng Y, Li Q, Wang Q-X, Fang C-K, et al. Postoperative adjuvant
hepatic arterial infusion chemotherapy with FOLFOX in hepatocellular carcinoma with
microvascular invasion: A multicenter, phase III, randomized study. J Clin Oncol.
(2023) 41:1898–908. doi: 10.1200/JCO.22.01142

46. Xiang C, Shen X, Zeng X, Zhang Y, Ma Z, Zhang G, et al. Effect of transarterial
chemoembolization as postoperative adjuvant therapy for intermediate-stage
hepatocellular carcinoma with microvascular invasion: a multicenter cohort study.
Int J Surg. (2024) 110:315–23. doi: 10.1097/JS9.0000000000000805

47. Jaitin DA, Adlung L, Thaiss CA, Weiner A, Li B, Descamps H, et al. Lipid-
associated macrophages control metabolic homeostasis in a trem2-dependent manner.
Cell. (2019) 178. doi: 10.1016/j.cell.2019.05.054

48. Binnewies M, Pollack JL, Rudolph J, Dash S, Abushawish M, Lee T, et al.
Targeting TREM2 on tumor-associated macrophages enhances immunotherapy. Cell
Rep. (2021) 37:109844. doi: 10.1016/j.celrep.2021.109844

49. Zhu G-Q, Tang Z, Huang R, Qu W-F, Fang Y, Yang R, et al. CD36+ cancer-
associated fibroblasts provide immunosuppressive microenvironment for
hepatocellular carcinoma via secretion of macrophage migration inhibitory factor.
Cell Discovery. (2023) 9:25. doi: 10.1038/s41421-023-00529-z

50. Strauss O, Phillips A, Ruggiero K, Bartlett A, Dunbar PR. Immunofluorescence
identifies distinct subsets of endothelial cells in the human liver. Sci Rep. (2017)
7:44356. doi: 10.1038/srep44356

51. Shindoh J, Kobayashi Y, Kawamura Y, Akuta N, Kobayashi M, Suzuki Y, et al.
Microvascular invasion and a size cutoff value of 2 cm predict long-term oncological
outcome in multiple hepatocellular carcinoma: reappraisal of the american joint committee
on cancer staging system and validation using the surveillance, epidemiology, and end-
results database. Liver Cancer. (2020) 9:156–66. doi: 10.1159/000504193
frontiersin.org

https://doi.org/10.1097/01.sla.0000197706.21803.a1
https://doi.org/10.1097/01.sla.0000197706.21803.a1
https://doi.org/10.1016/j.asjsur.2024.02.115
https://doi.org/10.1111/jgh.13843
https://doi.org/10.1097/SLA.0000000000003781
https://doi.org/10.1038/s41571-023-00823-5
https://doi.org/10.1097/JS9.0000000000000574
https://doi.org/10.1097/JS9.0000000000000574
https://doi.org/10.1097/JS9.0000000000000325
https://doi.org/10.1186/s13045-019-0739-0
https://doi.org/10.1016/j.bbcan.2022.188720
https://doi.org/10.1186/s13045-020-01005-x
https://doi.org/10.1016/j.compbiomed.2023.106836
https://doi.org/10.1097/HEP.0000000000000673
https://doi.org/10.1038/s41467-022-32283-3
https://doi.org/10.1126/sciadv.abg3750
https://doi.org/10.1126/sciadv.abg3750
https://doi.org/10.1016/j.ebiom.2017.04.014
https://doi.org/10.1038/s41580-021-00407-0
https://doi.org/10.1016/j.cell.2023.01.035
https://doi.org/10.1038/s41467-022-28421-6
https://doi.org/10.1126/science.1254257
https://doi.org/10.1038/s41587-021-01091-3
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1038/s41467-021-21246-9
https://doi.org/10.1038/s41467-018-06318-7
https://doi.org/10.1016/j.ccell.2019.08.007
https://doi.org/10.1038/s41586-019-1652-y
https://doi.org/10.1038/s41586-019-1652-y
https://doi.org/10.1038/s41586-019-1631-3
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.cell.2019.10.003
https://doi.org/10.1016/j.it.2022.04.008
https://doi.org/10.1111/jcmm.18009
https://doi.org/10.1042/BSR20211577
https://doi.org/10.1186/s13045-024-01526-9
https://doi.org/10.1126/scisignal.2003477
https://doi.org/10.1007/s13238-021-00856-5
https://doi.org/10.1016/j.pharmthera.2018.02.013
https://doi.org/10.1158/1078-0432.CCR-18-3200
https://doi.org/10.1097/SLA.0b013e31821ad884
https://doi.org/10.1001/jamasurg.2015.4257
https://doi.org/10.1007/s00259-017-3880-4
https://doi.org/10.1159/000513704
https://doi.org/10.1148/radiol.222729
https://doi.org/10.1200/JCO.22.01142
https://doi.org/10.1097/JS9.0000000000000805
https://doi.org/10.1016/j.cell.2019.05.054
https://doi.org/10.1016/j.celrep.2021.109844
https://doi.org/10.1038/s41421-023-00529-z
https://doi.org/10.1038/srep44356
https://doi.org/10.1159/000504193
https://doi.org/10.3389/fimmu.2024.1436131
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Multi-transcriptomics analysis of microvascular invasion-related malignant cells and development of a machine learning-based prognostic model in hepatocellular carcinoma
	1 Introduction
	2 Materials and methods
	2.1 Data sources used for analysis
	2.2 Data processing
	2.3 Identification of MVI-related genes in malignant cells
	2.4 Analysis of prognosis-related single cells and MVI-related malignant cells
	2.5 Pseudotime analysis of malignant cells
	2.6 Analysis of function and pathway enrichment
	2.7 Cell-cell communication
	2.8 Construction, validation, and evaluation of the prognostic model
	2.9 Statistical analysis

	3 Results
	3.1 Cell annotation
	3.2 Analysis of prognosis-related single cells
	3.3 Analysis of MVI-related malignant cells
	3.4 Validation from the spatial transcriptome
	3.5 Construction, validation, and evaluation of the prognostic model

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


