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Objectives: The objective of this study was to profile the transcriptional profiles

of peripheral blood mononuclear cells (PBMCs) and their immune repertoires

affected by anti-synthetase syndrome (ASS) at the single-cell level.

Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis of

PBMCs and bulk RNA sequencing for patients with ASS (N=3) and patients with

anti-melanoma differentiation-associated gene 5-positive dermatomyositis

(MDA5+ DM, N=3) along with healthy controls (HCs, N=4). As ASS and MDA5+

DM have similar organ involvements, MDA5+ DM was used as a disease control.

The immune repertoire was constructed by reusing the same scRNA-seq

datasets. Importantly, flow cytometry was performed to verify the results from

the scRNA-seq analysis.

Results: After meticulous annotation of PBMCs, we noticed a significant

decrease in the proportion of mucosal-associated invariant T (MAIT) cells in

ASS patients compared to HCs, while there was a notable increase in the

proportion of proliferative NKT cells. Compared with MDA5+ DM patients, in

their PBMCs ASS patients presented substantial enrichment of interferon

pathways, which were primarily mediated by IFN-II, and displayed a weak

immune response. Furthermore, ASS patients exhibited more pronounced

metabolic abnormalities, which may in turn affect oxidative phosphorylation

pathways. Monocytes from ASS patients appear to play a crucial role as receptive

signaling cells for the TNF pathway. Immunophenotyping analysis of PBMCs from

ASS patients revealed an increasing trend for the clone type CQQSYSTPWTF.
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Conclusion: Using single-cell genomic datasets of ASS PBMCs, we revealed a

distinctive profile in the immune system of individuals with ASS, compared to that

with MDA5+ DM or healthy controls.
KEYWORDS

anti-synthetase syndrome (ASS), single-cell RNA sequencing (scRNA-seq), mucosal-
associated invariant T (MAIT) cell, IFN-II, auto-immune diseases
Highlights
• Amore robust storm-like immune response was detected in

PBMCs of MDA5+ DM patients compared to that in

ASS patients.

• The frequency of MAIT cells was significantly reduced in

ASS patients compared to that in healthy controls, which

was verified by flow cytometry, indicating that MAIT cells

may play an important regulatory role in homeostasis.

• We revealed metabolic abnormalities in ASS patients, which

are involved in regulating oxidative phosphorylation pathways.

• Aberrant IFN signaling, especially the signaling mediated

by IFN-II subgroup, was found in ASS.

• The ASS samples were dominated by a shared clone type

CQQSYSTPWTF in their immune repertoire.
Introduction

Idiopathic inflammatory myopathy (IIM), also known as

myositis, encompasses a diverse range of autoimmune disorders

with varying clinical presentations, treatment responses, and

prognoses (1). Since the discovery of myositis-specific antibodies

(MSAs) in 2005 and their widespread clinical application, our

understanding of the subtypes associated with patients with IIMs

has significantly improved (2). Anti-synthetase syndrome (ASS) is an

infrequent idiopathic inflammatory myopathy characterized by the

presence of at least one of three primary symptoms: myositis,

interstitial lung disease (ILD), and arthritis (3). These symptoms

may be accompanied by concomitant manifestations, such as

mechanic’s hands and feet, Raynaud’s disease, and fever; all of

these symptoms can be accompanied by the detection of synthetase

antibodies in peripheral blood containing aminoacyl-tRNA. In

addition to myositis, ILD represents a common and significant

organ involved that contributes substantially to morbidity and

mortality. Among these antibodies, Jo-1 is the most prevalent. The

incidence and severity of primary and concomitant symptoms vary

among these antibodies (4). Anti-melanoma differentiation-

associated gene 5-positive dermatomyositis (MDA5+ DM) is a rare

form of idiopathic inflammatory myositis that is associated with
02
rapidly progressive, refractory ILD (5). These two diseases of ASS and

MDA5+ DM have similar organ involvement such as the skin, muscle

and lung (6, 7). And ASS presents a slower disease progression in ILD

than MDA5+ DM (8). However, the underlying immune

pathogenesis of this disease has not been fully elucidated.

In the past decade, single-cell RNA sequencing (scRNA-seq) has

emerged as a promising and robust technique for analyzing gene

expression in thousands of individual cells, offering an efficient and

innovative tool to investigate the immune system in human diseases.

It has been employed to explore uncharacterized or rare cell types or

states within tissues and to elucidate dynamic changes in gene

expression during cellular differentiation, temporal progression, or

transitions between different cellular states (9, 10). Zhu et al. utilized

scRNA-seq to provide a high-resolution depiction of the cellular

landscape in peripheral blood mononuclear cells (PBMCs) derived

from patients with ASS-ILD. These findings revealed an increase in

interferon responses in NK cells, monocytes, T cells, and B cells

among these patients. Moreover, there was a significantly greater

ratio of effector memory CD8+ T cells to naïve CD8+ T cells in ASS-

ILD patients than in HCs. Additionally, enrichment analysis

highlighted Th1, Th2, and Th17 cell differentiation signaling

pathways within the T-cell population. However, despite these

insights, a comprehensive understanding of the characteristics of all

PBMC types and the intricate interactions between immune cells in

ASS-ILD patients has not been achieved. Furthermore, any insightful

conclusions from scRNA-seq should be experimentally verified by

flow cytometry or other orthogonal techniques.

In this study, we employed single-cell RNA sequencing

(scRNA-seq) and bulk RNA sequencing (RNA-seq) to elucidate

the cellular composition and gene expression characteristics of

peripheral blood immune cells from patients with ASS.

Additionally, we utilized MDA5+ DM as a disease control to gain

more informative insights into the molecular mechanisms

underlying this autoimmune disorder.
Materials and methods

Patients

Patients who fulfilled Solomon’s criteria for ASS (11) and Bohan

and Peter’s criteria for dermatomyositis (12) at Tianjin Medical
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University General Hospital from July 2021 to April 2023 were

recruited for the study. All patients enrolled in the study were

treatment naïve. Peripheral blood samples were collected from 12

patients with ASS, 3 patients with MDA5+ DM and 18 healthy

controls (HCs). The clinical characteristics of the patients are

described in Supplementary Tables 1, 2. The HCs who fulfilled

the following inclusion criteria were included: (1) had normal blood

test results, including blood count and liver and kidney function test

results, and (2) had no symptoms of autoimmune disease. The study

agreed with the recommendations of the Declaration of Helsinki.

The study was approved by the hospital ethics committee of Tianjin

Medical University General Hospital (approval number: IRB2021-

YX-211-01), and informed written consent was obtained from

the participants.
Sample preparation

PBMCs were isolated via density gradient centrifugation with

Ficoll-Hypaque (GE Healthcare, USA). The PBMCs of 3 patients

with ASS, 3 patients with MDA5+ DM and 4 HCs were subjected to

scRNA-seq, while the PBMCs of 12 patients with ASS and 14 HCs

were subjected to flow cytometry.
Single-cell RNA sequencing

The PBMCs were subjected to both single-cell RNA sequencing

(scRNA-seq) and bulk RNA-Seq analyses (Figure 1A). For scRNA-

seq, the experimental procedure followed the established technique

with the SeekOneMe single-cell 3’ library preparation kit (SeekGene

SO01V3.1, China). Batch RNA sequencing was conducted via the

TruSeqTM RNA Sample Preparation Kit from Illumina (San Diego,

CA, USA). The raw gene expression matrix for each sample was

aggregated via the Cell Ranger (v.6.0.0) pipeline in conjunction with

the human reference version GRCh38. The merged matrices were

subsequently transferred to the R statistical environment for further

analysis via the Seurat software package (v.4.2.0). Cells exhibiting

more than 0.1% expression and those with more than 200 detected

genes were selected for subsequent analysis. To ensure data quality,

cells with unique mitochondrial molecular identifiers (UMIs)

constituting more than 20%, as well as those with more than

4000 or fewer than 200 genes detected, were excluded as low-

quality cells. Following the removal of low-quality cells, gene

expression was normalized via the Harmony transformation

normalization method while correcting for batch effects through

the SCT integration approach. The following cells were isolated

from each donor: ASS1(4663), ASS2(8773), ASS3(4307), HC1

(2352), HC2(5113), HC3(6479), HC4(4639), MDA5_1(7528),

MDA5_2 (3756) and MDA5_3(3669). To reduce dataset

dimensionality, principal component analysis (PCA) was

performed via the RunPCA function. Finally, cell clustering was

accomplished by applying Find neighbors and Find clustering

functions at a resolution of 1 unit. The resulting clusters were

then visualized in a two-dimensional representation.
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Identifying the marker genes of single cells

The FindAllMarkers function was used to identify marker

genes. Cell clusters were identified on the basis of differentially

expressed genes (DEGs) exhibiting log fold changes (logFCs) (13).
Analysis of transcription factors

SCENIC was employed as a computational tool to

simultaneously reconstruct gene regulatory networks and identify

stable cell states from single-cell RNA-seq data (14). The inference

of the gene regulatory network was based on coexpression analysis

and DNA motif analysis, followed by the examination of network

activity in individual cells to determine their cellular status (14, 15).

We analyzed transcription factors (TFs) using the pySCENIC

package (16).
Cell–cell communication analysis

The signaling inputs and outputs among the different cell types

and cell clusters were assessed using the CellChat package (17). The

netVisual_circle function was employed to evaluate the strength of

cell−cell communication networks within specific subsets of

cells (17).
Ligand−receptor analysis

NicheNet focuses on the analysis of cell-to-cell communication,

considering not only potential interactions between ligands and

receptors but also the incorporation of information on signaling

networks and target genes that may be impacted (18, 19).

Developed by the Saeys Laboratory and made available on

GitHub (https://github.com/saeyslab/nichenetr), NicheNet aims to

predict how one cell (the sender cell) influences the gene expression

of another cell (the receiver cell) through ligand secretion.
Immune repertoire analysis

The Immunarch (v 1.0.0) package is specifically designed for the

analysis of T-cell receptors (TCRs) and B-cell receptors (BCRs).

(Immunarch: an R package for painless bioinformatics analysis of

T-cell and B-cell immune repertoires. Zenodo https://doi.org/

10.5281/zenodo.3367200 (2019))
ImmuCellAI analysis

ImmuCellAI is an immune cell abundance assessment method

based on a gene set signature. It is a tool for accurately estimating

the abundance of 24 immune cell types (18 T-cell subsets) from

gene expression data (20).
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scMetabolism analysis

scMetabolism is an R package used to quantify metabolism at the

single-cell level (21). The package is based on a conventional single-
Frontiers in Immunology
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cell matrix file, to score each cell, and uses the algorithm of VISION

cells to obtain each activity score of metabolic pathways at the single-

cell level to evaluate the characteristics of cell metabolism. Analyses

were performed with the use of the Seurat software package (v.4.2.0).
FIGURE 1

Single-cell RNA sequencing (scRNA-seq) analysis of PBMCs from ASS, HCs and MDA5+ DM patients. Number of samples: ASS (N = 3), HC (N=4), and
MDA5+ DM (N=3). (A) Overview of the experimental workflow. (B) Uniform manifold approximation and projection (UMAP) plot of 13 cell types for
51, 289 high-quality single cells among PBMCs and UMAP illustrating the differentiation between controls and ASS patients based on 10 samples.
(C) UMAP feature highlighting distinct markers associated with different cell types. (D) Comparison of cell subtypes among PBMCs from ASS patients
and controls. (E) Inflammatory response scores for ASS patients and controls, along with UMAP visualizing inflammation levels across the three
groups, where brighter red indicates higher inflammation levels and darker red indicates lower inflammation levels. *p<0.05; ****p<0.0001;
ns, not statistically significant; Wilcoxon rank sum test.
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TRUST4 analysis

TRUST4 is an algorithm that can identify immune cell receptor

sequences from bulk RNA-seq and single-cell RNA-seq data (22).

(Website: https://github.com/liulab-dfci/TRUST4)
Pseudotime analysis

The Vector package was used to perform the pseudotime

analysis. The Vector packages aims to infer the vector of cell

development and bases on the grid distance of the starting cells in

UMAP. The cell principal component value quantile polarization is

closely related to the development level in the state to determine the

primitive cells (23).
Flow cytometry

PBMCs were first stained with a Zombie NIR™ Fixable

Viability Kit (BioLegend) to remove dead cells. PerCP-conjugated

anti-human CD3 (BioLegend) and the 5-OP-RU MR1 tetramer

were used for surface staining in the present study. Flow cytometry

analysis was performed with FlowJo software (BD).
Statistical analysis

Statistical analyses were conducted using Prism 9 or R.

Differences in quantitative parameters were evaluated using the t

test for normally distributed data or nonparametric tests for data

that were not normally distributed. Unless otherwise specified, the

results with a P value < 0.05 were considered statistically significant.

* P <0.05; ** P <0.01; *** P <0.001; **** P <0.0001; ns, not

statistically significant.
Data availability

The raw sequencing data from this study have been deposited in the

Genome Sequence Archive in BIGData Center (https://bigd.big.ac.cn/),

Beijing Institute of Genomics (BIG), Chinese Academy of Sciences,

under the accession number: PRJCA024528. Any additional

information required to reanalyze the data reported in this paper

is available from the lead contact upon request.
Results

Single-cell sequencing of human
peripheral blood revealed the presence of
distinct cellular subpopulations

The clinical characteristics of each patient are presented in

Supplementary Table 1. Following quality control measures, a total
Frontiers in Immunology 05
of 51,289 PBMCs were utilized for further analysis, comprising

17,743 cells from three ASS patients, 18,538 cells from four controls,

and 14,963 cells from three MDA5+ DM patients. On the basis of

classical gene expression markers (24), the cells were categorized

into 13 subgroups: T cells (CD3D), B cells (CD79A), CD14+

monocytes (CD14), plasma cells (JCHAIN), CD16+ monocytes

(MS4A7), neutrophils (DEFA3), natural killer cells (GZMB),

innate lymphocytes (IL1RL1), myeloid dendritic cells (FCER1A),

plasmacytoid dendritic cells (IRF7), platelets (PPBP), erythrocytes

(HBB) and proliferative NKT cells (MKI67, CD3D, GZMB)

(Figures 1B, C; Supplementary Figure 1A). Interestingly, multiple

cell clusters with elevated expression of the interferon-related gene

IFITM2, inflammation-related genes (IER2, S100A8, and FOS) and

cytoskeleton-related genes (ACTB) were observed in ASS patients

compared to healthy controls (Supplementary Figures 1D, E).

Multiple clusters of cells with heightened expression of

proinflammatory cytokines (IL1B) and HLA class II-related genes

(HLA_DRB5) were found in ASS patients compared to MDA5+ DM

controls. Additionally, MDA5+ DM patients displayed more than

one cell cluster with high expression of interferon genes (IFIT1,

IFIT2, IFIT3, IFI44, IRF7, IFI127, IFIH1, IFI27 and IF16), as well as

interferon-stimulated genes (MX1 andMX2). This suggests that the

immune response in both diseases is associated with the interferon

pathway. Second, the proportion of proliferative NKT cells in

patients with ASS was greater than that in both the HC group

(P=0.045) and the MDA5+ DM group (P=0.099), indicating a

potential association between proliferative NKT cells and the

progression of ASS disease (Figure 1D).

Then, utilizing scMetabolism (21), which is used for quantifying

single-cell metabolism levels, we observed abnormally enhanced

metabolic activities in ASS patients, particularly in the tricarboxylic

acid cycle (TCA cycle) (Supplementary Figure 1B). To investigate

alterations in different immune response signaling pathways among

the three groups, we employed the signature gene set from the

Molecular Signature database (MsigDB) to score inflammatory

responses. The greatest inflammatory response was observed in

MDA5+ DM patients, followed by ASS patients, with increased

enrichment scores observed for CD14+ Mono subset T cells,

neutrophil subsets, and proliferative NKT subsets (Figure 1E).

Furthermore, enrichment of genes in the Gene Ontology (GO)

gene set for antigen presentation, type I interferon signaling

pathway, type II interferon pathway and oxidative phosphorylation

pathway across all three groups revealed that immune response-

related pathways were not as strongly activated in the PBMCs of ASS

patients compared to those in the PBMCs of MDA5+ DM patients

(Supplementary Figure 1C). These results are consistent with the

clinical features of ASS and MDA5+ DM.
T cells present in PBMCs

Due to the crucial role of T cells in the progression of ASS disease,

we subsequently isolated and reaggregated T cells from the entire pool

(Supplementary Figure 2A). By analyzing the expression levels of

TDDC, KLRB1, CXCR6, CD3D, CD4, CD8A, IL7R, CCR7, SELL,

TCF7, LEF1, LTB, S100A4, S1LLA11, MAL, GPR183, GZMA, GZMB,
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GZMH, GZMK, GNLY, FGFBP2, TRBV20-1, FCGR3A, NKG7,

TYROBP, TRDV2, TRGV9, TRAV1-2, FOXP3, KLRG1, SLC4A10,

MKI67 and RRM2 (Figure 2C), we identified nine distinct types of T

cells, including effector memory CD8+ T lymphocytes (CD8 TEM),

effector memory CD4+ T lymphocytes (CD4 TEM), naïve CD4+ T

lymphocytes (CD4 naïve), GZMK-expressing cytotoxic CD8+ T cells

(GZMK CD8+ T), regulatory CD4+ T lymphocytes (Treg), central

memory CD4+ T lymphocytes (CD4 TCM), central memory cytotoxic

CD8+ T cells (CD8 TCM), NKT cells and mucosal-associated invariant

T (MAIT) cells (Figures 2A, B; Supplementary Figure 2B). The

proportion of MAIT cells was lower in ASS patients than in HCs

(Figure 2D). Compared to those of HCs, ASS patient-derived MAIT

cells exhibited greater expression of inflammation-related genes such as

IFNG, IFITM2 and STAT1 (Supplementary Figure 2C). Then, flow

cytometry was used to validate the alterations in the frequency of

MAIT cells in 12 treatment-naïve ASS patients and 14 HCs. The

proportion of MAIT cells was decreased in the ASS group (Figure 2F).

The percentage of cells expressing marker genes related to T-cell

function, including coinhibitory receptor interaction genes,

exhaustion-related genes, exhaustion precursor genes, stimulation

and activation genes, effector molecules, and chemotactic migration

genes, was greater in the ASS group (Figure 2E). In addition, the results

of GO (gene ontology) and KEGG (Kyoto Encyclopedia of Genes and

Genomes) analyses revealed significant enrichment of “antigen

processing and presentation”, “Th1 and Th2 cell differentiation”,

“Th17 cell differentiation”, “MHC protein complex binding” and

“MHCII protein complex binding” in T cells from ASS patients.

These findings suggest that inflammation and antigen presentation

play crucial roles in the pathogenesis of ASS (Figures 2G, H).

Furthermore, the ASS group presented higher scores for the type II

interferon pathway and oxidative phosphorylation pathway (Figure 2I;

Supplementary Figure 2D). CellChat was used to investigate

intercellular communication across multiple T-cell subtypes. The

results indicated that GZMK CD8+ T cells and CD4+ naïve cells

were key players involved in cell signaling communication within the

ASS group (Supplementary Figure 2E).
The features of proliferative NKT cells,
monocytes and neutrophils in patients
with ASS

Differentially expressed gene (DEG) analysis revealed high

expression of B2M, IL16, LYZ, S100A8, and HLA-DRA as well as

inflammation- and immune-related genes in ASS patients

(Figure 3A). Due to the significant difference in the proportion of

proliferative NKT cells between the patient group and the HC group,

we analyzed the characteristics of proliferative NKT cells. KEGG and

GO analyses revealed high enrichment of antigen processing and

presentation pathways, MHC-related pathways, and oxidative

phosphorylation pathways in proliferative NKT cells of ASS

patients (Figure 3B). The ASS patient group exhibited the highest

scores in terms of antigen presentation, type II interferon, and the

oxidative phosphorylation pathway (Figure 3C). These findings

suggest the significant involvement of proliferative NKT cells in
Frontiers in Immunology 06
ASS pathogenesis. Then, innate immune cells such as monocytes

and neutrophils were re-clustered. KEGG and GO analyses of

monocytes revealed that oxidative phosphorylation reaction

pathways were enriched within CD14+ and CD16+ Mono cells in

the ASS group (Figures 3D, E). In addition, the CD14+ monocyte cell

subsets can be further divided into three subtypes: CD14_Activated

(PLBD1, ALOX5AP, TSPO, HP, S100A8, S100A12, and CTSD),

CD14_HLA (CD74 and HLA-DPB1), and CD14_ISG (MX1, LY6E,

ISG15, XAF1, and FCER1A) (Supplementary Figures 3A, B). The

proportion of CD14_Activated cells showed the greatest change in

ASS patients (Supplementary Figure 3C). The differential expression

analysis (DEG) revealed that the TNF and IFI27 genes were

upregulated in the ASS patient group and that both genes were

associated with the inflammatory response (Supplementary

Figure 3D). GO analysis of the three subtypes of CD14+ monocytes

revealed that CD14_Activated cells were significantly enriched in

pathways associated with myeloid cell migration (Supplementary

Figure 3E). Neutrophils were categorized into four types based on

highly expressed genes: MKI67_Neu, CAMP_Neu, MMP9_Neu, and

CTSG_Neu (Supplementary Figures 3F, G). The patients with ASS

exhibited the most significant alteration in the proportion of

CAMP_Neu cells (Supplementary Figure 3H). Consequently, we

conducted DEG of CAMP_Neu cells within the ASS group and

revealed that both the IF16 and B2M genes were upregulated.

Notably, these genes are closely associated with the inflammatory

response and immune response (Supplementary Figure 3J).

Interestingly, trajectory analyses of neutrophils revealed that the

MKI67_Neu cell type differentiated into other cell types in the

patient group, while CAMP_Neu cells were the origin of

development in HCs, indicating that neutrophils may be involved

in the development of ASS (Supplementary Figure 3I).
Analysis of intercellular communication
and ligand−receptor interactions

CellChat was used to quantify intercellular communication

across diverse cell populations. CD14+ Mono cells, CD16+ Mono

cells, and proliferative NKT cells, which were activated in patients

with ASS, engaged extensively in interactions with various immune

cell subsets and were identified as major contributors to efferent or

transferred signals (Figure 4A; Supplementary Figure 4B). The TNF

signaling pathway, IFN_II signaling pathway, and CXCL signaling

pathway were more enriched in the ASS patient group than those in

the control group (Figure 4B; Supplementary Figure 4A). Moreover,

the number of Ligand−Receptor interactions, including interactions

with IGNG, B2M, and IFITM1, was significantly greater in ASS

patients than in controls. TNFRSF1A, TNFRSF1B, and IFNGR2

acted as ligands in ASS group (Figure 4C). In addition, ligand

−receptor interaction analysis revealed that the TNF−TNFRSF1A,

TNF−TNGRF1B, and TNF−LTBR ligand pairs were more active in

CD16+ Mono cells than those in CD14+ Mono cells in the ASS

group (Figure 4D). In patients with ASS, ligand−receptor link target

genes, including IRF1, IL1B, and TNF, were upregulated (Figure 4E;

Supplementary Figures 4C, D).
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FIGURE 2

The transcriptional profile of PBMCs was compared between patients with ASS and control subjects to assess changes in T-cell at a single-cell level.
Number of samples: ASS (N = 3), HC (N=4), MDA5+ DM (N=3). (A) Unified manifold approximation and projection (UMAP) plot showing the nine T-
cell subtypes from ASS patients and controls. (B) UMAP plot of T cells in the control and ASS patient groups. (C) Bubble plots illustrating the markers
of different T-cell types. (D) Boxplot of T-cell subtypes in PBMCs from ASS patients and controls. *p<0.05; ns, not statistically significant; Wilcoxon
rank sum test. (E) T-cell function in ASS patients and controls. (F) Representative flow cytometry analysis and statistics for MAIT cells in the ASS
patient and HC groups. (G) KEGG enrichment analysis of genes upregulated in T cells between ASS patients and HCs. The top 10 pathways which
had a p < 0.05 were presented. (H) GO enrichment analysis of upregulated genes in T cells comparing ASS patients with HCs. The top 10 pathways
which had a p < 0.05 were presented. (I) MHC type II pathway scores of the three groups; each dot represents the score of a single cell; *p<0.05;
**p<0.01; ***p<0.001; ****p<0.0001; Wilcoxon rank sum test.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2024.1436114
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2024.1436114
Transcription factor regulation analysis of
various cell types

We conducted transcription factor specificity analyses on CD14+

Mono, CD16+ Mono, NK, proliferative NKT, T, and B cells from the
Frontiers in Immunology 08
three groups. Our investigation revealed that FOXM1 was specifically

upregulated in ASS cells but downregulated in MDA5+ DM cells and

HCs among proliferative NKT cells (Figures 5A–D). Compared with

HCs, transcription factors of SPI1, THRB and HOXA5 had higher

activity in T cells of ASS patients (Figure 5E). Additionally, the IRF1
FIGURE 3

The aberrant appearance of proliferative NKT cells and monocytes in patients with ASS. Number of samples: ASS (N=3), HC (N=4), and MDA5+ DM
(N=3). (A) Volcano plot showing the differentially expressed genes. The gray scatter points represent nonsignificantly differentially expressed genes,
whereas the red and blue scatter points represent significantly differentially expressed genes. The red font indicates the genes we focused on.
(B) Enrichment analysis of proliferative NKT cells. (C) Antigen presentation score, type II MHC pathway score, oxidative phosphorylation pathway
score, and IFNG pathway score for both the ASS patient group and the control group. *p<0.05; **p<0.01; ***p<0.001; ****p<0.0001, Wilcoxon rank
sum test. (D) KEGG enrichment analysis, GO analysis, and oxidative phosphorylation pathway score in CD14+ monocytes from ASS patients.
****p<0.0001; Wilcoxon rank sum test. (E) KEGG enrichment analysis, GO analysis, and oxidative phosphorylation pathway score in CD16+

monocytes from ASS patients. ***p<0.001; ****p<0.0001; ns, not statistically significant; Wilcoxon rank sum test.
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transcription factor displayed significantly elevated activity in all

three ASS patients (Supplementary Figures 5A–D). Notably, the

FOSB, JUN, and NFE2 transcription factors exhibited increased

activity specifically in CD14+ Mono cells within the ASS patient

group (Figure 5F; Supplementary Figures 5E, F). Based on these
Frontiers in Immunology 09
results, we identified FOXM1 and IRF1 as potential key regulatory

transcription factors involved in ASS disease for target gene

prediction purposes. The target genes of FOXM1 include PRC1 and

MZT1, while the target genes of IRF1 include PCGF3 and

SLC23A2 (Figure 5G).
FIGURE 4

Analysis of ligand−receptor interactions and cellular communication in scRNA-seq of PBMCs from patients with ASSs and controls. Number of samples:
ASS (N=3), HC (N=4), and MDA5+ DM (N=3). (A) The predominant contribution of efferent and afferent signals to the 13 cell populations, with darker
shades of red indicating stronger effects. (B) Ranking of signaling pathways among the three groups. (C) Three groups of overall ligand−receptor pairs.
Arrows point from ligand to receptor. (D) CD14+ Mono cells presented as a ligand−receptor pair for the receptor. (E) The target genes associated with
ligand−receptor pairs.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1436114
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2024.1436114
Analysis of the immune repertoire using
single-cell RNA-seq and bulk RNA-seq
data analysis

TCR and BCR libraries were extracted from single-cell RNA-seq

data by TRUST4 and analyzed using the immunome library

package. The number of all clones and the number of unique
Frontiers in Immunology 10
clonotypes were greater in ASS patients than that in HCs

(Figure 6A). Although not significantly different, the TCR and

BCR repertoire richness estimated using Chao1 in ASS patients

tended to be greater than that in HCs (Figure 6B). The analysis

revealed that the complementarity determining region 3 (CDR3)

length distribution of immune cells from ASS patients was skewed

toward longer sequences and peaked at 11 amino acids
FIGURE 5

Transcription factor analysis of PBMCs from patients with ASS and controls via scRNA-seq. Number of samples: ASS (N=3), HC (N=4), and MDA5+

DM (N=3). (A) Transcription factor-encoding genes specific for different cell subsets in the ASS patient group. (+) indicates positive regulation, and (-)
indicates negative regulation. (B) Transcription factors specific for different cell subsets in HCs. (C) Transcription factors specific for different cell
subsets in the MDA5+ DM patient group. (D) Expression levels of the FOXM1 gene in ASS patients and controls. (E) Heatmap showing the top 10
transcription factor active genes in T cells from ASS patients and controls. (F) Heatmap showing the top 10 transcription factor sets in CD14+

monocytes from ASS patients and controls. (G) Target genes of the transcription factors IRF1 and FOXM1. **p<0.01; ***p<0.001; ****p<0.0001,
Wilcoxon rank sum test.
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(Supplementary Figure 6A). We traced clonotypes in patients with

ASS, HCs, and MDA5+ DM and found that the clonotypic

expansion of one CDR3 amino acid, CQQSYSTPWTF, occurred

in all three ASS patients (Figure 6C).
Analysis of bulk RNA-seq data analysis

To verify the results of single-cell sequencing, we used

ImmuCellAI to estimate the infiltration abundance of 24 immune

cells on the basis of gene expression datasets, including bulk RNA-

Seq data (Figure 7A). The results revealed that the numbers of

macrophages and neutrophils were significantly greater, whereas

the numbers of TCM cells and MAIT cells were significantly lower

in ASS patients than in HCs (Figure 7B). Further analysis of bulk

RNA-seq data revealed that the expression of the BATF2, ELANE,

and GOS2 genes, which are associated with cell cycle regulation, was

upregulated in patients with ASS compared with HCs. Additionally,

the expression of the MPO and ELANE genes, which are related to

neutrophil function, was also upregulated. Our findings

demonstrated that the RNF182 gene was upregulated in patients

with ASS compared with patients with MDA5+ DM, which is

consistent with our previous analysis of single-cell sequencing

data (Figure 7C). We subsequently examined the similarities

between the bulk RNA-seq data from the ASS group and the

MDA5+ DM group. A total of 304 genes were upregulated in

both the ASS vs HC and MDA5+ DM vs HC comparisons. KEGG

analysis revealed that TNF signaling, NF-kappaB signaling, JAK-

STAT signaling, and other inflammation-related pathways were

upregulated (Figure 7D). Furthermore, the CTSA and SOCS3 genes

presented high expression levels in the myeloid cell population

according to bulk RNA-seq data from the ASS patient group,

suggesting their potential as biomarkers for ASS patients

(Supplementary Figures 6B, C).
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Discussion

Understanding the pathogenesis of ASS is helpful for

identifying biomarkers and developing targeted treatment

strategies. The 3 ASS patients included in this study had rash,

myositis and ILD, so we chose MDA5+ DM patients as disease

control (25). However, these two diseases differ significantly in

terms of the types of antibodies involved, disease progression and

prognosis. By comparing the single-cell transcriptional landscape in

PBMCs between ASS patients and those with MDA5+ DM, we

aimed to gain further insights into the pathogenesis of both diseases.

Our findings from single-cell sequencing revealed significant

differences in cell type proportions, including a decrease in MAIT

cells and an increase in proliferative NKT cells within the ASS

patient group. The significant reduction in the proportion of MAIT

cells among ASS patients was further confirmed by both bulk RNA-

seq data analysis and flow cytometry. MAIT cells represent a

phylogenetically conserved subset of T cells, and in humans, the

frequencies of MAIT cells in the blood are altered during various

autoimmune diseases and are often associated with dysregulation of

the microbiota (26). Our findings align with previous studies that

reported an enrichment of Th1, Th2, and Th17 cell differentiation

signaling pathways in T cells within PBMCs from individuals with

ASS (10). Further investigation revealed that a population of

proliferative NKT cells was highly enriched in antigen processing

and presentation pathways, MHC-related pathways and oxidative

phosphorylation pathways in ASS patients and had significantly

greater scores in related pathways than in the MDA5+ DM patient

group. Moreover, the FOXM1 transcription factor is highly

expressed only in ASS patients and plays a positive regulatory

role. However, further studies are needed to explore the roles of

MAIT cells and NKT cells in ASS.

Previous reports have indicated significantly lower survival

rates among MDA5+ DM-ILD patients than among those with
FIGURE 6

Number of samples: ASS (N=3), HC (N=4), MDA5+ DM (N=3). (A) Number of distinct clone types observed in 10 samples. (B) The Chao1 index in
patients with ASS, HCs, and patients with MDA5+ DM. (C) Tracking the clonotypes in patients with ASS, HCs, and patients with MDA5+ DM.
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ASS-ILD (27). In our study, we found that, compared with ASS

patients, MDA5+ DM patients presented higher inflammatory

scores. The routine myo-pathological diagnosis of inflammatory/

immune dysregulation myopathies must include HLA-DR testing,

as it has been demonstrated that ASS is characterized by robust

MHC-II/HLA-DR expression in muscle fibers exhibiting a

distinctive peripheral pattern. It is hypothesized that the presence

of HLA-DR expression in ASS may indicate a specific immune
Frontiers in Immunology 12
mechanism potentially involving IFNg (28). Our study revealed

upregulation of the HLA_DRB5 gene in multiple cell populations

among ASS patients compared to MDA5+ DM patients. Although

this finding was derived from single-cell analysis of peripheral

blood, it implies potential circulation and associations between

peripheral blood and muscle fiber tissue.

Metabolic disorders can lead to irreversible structural damage

in the muscle fibers of patients with IIMs. There have been studies
FIGURE 7

Number of samples: ASS (N=3), HC (N=3), and MDA5+ DM (N=3). (A) Bulk RNA-seq ImmuCellAI analysis of ASS, HCs and MDA5+ DM patients.
(B) Statistics of the ImmuCellAI analysis results. (C) Comparison of DEGs in PBMC bulk RNA-seq between patients with ASS and HCs (red: up in ASS),
between patients with MDA5+ DM and HCs (red: up in MDA5+ DM), and between ASS patients and MDA5+ DM patients (red: up in ASS). (D) Venn
diagram showing upregulated genes in ASS patients and upregulated genes in MDA5+ DM patients according to bulk RNA-seq and KEGG and GO
pathway enrichment analyses. *p<0.05.
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that identified enriched metabolic pathways, including tryptophan

metabolism, phenylalanine and tyrosine metabolism, fatty acid

biosynthesis, b-oxidation of very long-chain fatty acids, a-
linolenic and linoleic acid metabolism, steroidogenesis, bile acid

biosynthesis, purine metabolism, and caffeine metabolism, in DM

and ASS (29). Notably, our results also showed that multiple

metabolic pathways were abnormally activated in ASS patients.

KEGG and GO analyses revealed that oxidative phosphorylation

pathways were highly enriched in multiple cell types of ASS

patients. And ASS patients exhibited the highest pathway score of

oxidative phosphorylation pathway, followed by MDA5+ DM

group. It has been reported that there is significant enrichment

across various metabolic pathways, including oxidative

phosphorylation and pyruvate metabolism, in MDA5+ DM

patients (30). The autoreactive CD4 T-cell effector subsets (Th1

and Th17) that drive the pathogenesis of these diseases exhibit an

increased reliance on glycolytic metabolism to upregulate key

transcription factors, including T-bet and RORgt, which play

crucial roles in their differentiation and proinflammatory

responses. However, studies on immunometabolism have

demonstrated that mitochondria-derived reactive oxygen species

(ROS) serve as signaling molecules that contribute to the fate and

function of T cells. Targeting glycolysis or ROS production to

eliminate autoreactive T cells is a potential strategy for inhibiting

their activation without compromising systemic immune function

(31). Metabolic abnormalities are associated with an inflammatory

immune cell phenotype, which has been implicated in the

pathogenesis of autoimmune diseases. Therefore, investigating

immune metabolism related to the oxidative phosphorylation

pathway is anticipated to offer novel opportunities for monitoring

and treating ASS.

Cell-to-cell communication analysis revealed significant

differences in the TNF pathway, IFN-II signaling pathway, and

chemokine signaling pathway among the ASS patient groups.

Moreover, myeloid cells and proliferative NKT cells have emerged

as the predominant contributors to efferent or transferred signals.

Originally identified for its role in inducing tumor necrosis, tumor

necrosis factor a (TNFa) has recently been recognized for its

crucial involvement in autoimmune diseases as a pathological

component. TNFa binds to two distinct receptors and initiates

signal transduction pathways that elicit diverse cellular responses,

including survival, differentiation, and proliferation (32). These

findings suggest that TNFa may be a potential therapeutic target.

The cytokine IFNg is primarily produced by cells of the innate

immune system, including monocytes, macrophages, and natural

killer (NK) cells (33, 34). IFNg is primarily produced by cells of the

innate immune system, including monocytes, macrophages, and

NK cells. Interestingly, in muscle biopsies from patients with ASS,

CD8+ T cells were found to be in close proximity to MHC class II+

muscle fibers, suggesting the involvement of the IFN-II pathway

(35). Thus, analysis of RNA sequencing data from a substantial

number of myositis muscle biopsies revealed significant activation

of IFN-II in patients with ASS, while the expression of genes

induced by IFN-I was only modestly observed in ASS (36).

Histidine RNA synthetase (HRS)-reactive CD4+ T cells, which

exhibit a Th1 phenotype and produce elevated levels of IFNg,
Frontiers in Immunology 13
have been detected in bronchoalveolar lavage fluid from patients

with ASS (37). In the peripheral blood of ASS patients, the presence

of HRS-reactive CD4+ T cells has also been reported (37); however,

Th1 cell involvement is less pronounced in the lungs. Collectively,

these data support the role of IFN in ASS. Transcriptomic studies

suggest that IFN-II plays a more prominent role than IFNI (35),

which aligns with the results obtained from our single-cell

transcriptomic analysis of peripheral blood samples. Based on the

aforementioned findings, we can conclude that disease activity is

associated with IFN-induced gene expression, which exhibits

distinct IFN signatures in ASS and MDA5+ DM patients.

Targeting these pathways may offer potential therapeutic

approaches for this disease. However, changes observed by

CellChat in cells present in peripheral blood may reflect residual,

somewhat durable gene expression changes that likely originated

from interactions originally occurring in tissues.

T cells play a crucial role in the adaptive immune system, and

analyzing T-cell receptors (TCRs) in the peripheral blood of

individuals with ASS can offer valuable insights into disease

pathogenesis. Through immune repertoire analysis, we identified

an amplified CDR3 amino acid clonotype, CQQSYSTPWTF, in ASS

patients, providing evidence for a shared antigen-driven T-cell

response under these conditions. Furthermore, we will investigate

the presence of disease-associated antigen-specific clones

surrounding the disorder to potentially increase diagnostic

accuracy and facilitate disease stratification.

Additionally, we integrated scRNA-seq and Bulk-seq data to

identify commonalities between ASS diseases and MDA5+ DM

diseases. Finally, we integrated the scRNA-seq and Bulk-seq data to

identify commonalities that were enriched in signaling pathways

associated with Th1 and Th2 cell differentiation, Th17 cell

differentiation, and NOD-like receptor activation, suggesting the

involvement of inflammation and antigen presentation in both

diseases. Through bulk-seq data analysis, we observed the joint

upregulation of 304 genes in these two diseases compared with HCs.

These genes were significantly enriched in inflammation-related

signaling pathways, such as the TNF signaling pathway, NF-kappaB

signaling pathway, and JAK-STAT signaling pathway. It has been

previously reported that inflammation can induce immune cell

recruitment followed by activation of the JAK/STAT pathway, the

primary signal transduction cascade utilized by cytokines essential

for initiating innate immunity (38). Examples of cytokines that

utilize the JAK-STAT pathway include erythropoietin, growth

hormone, IL-2, IL-6, IL-7, and IFN, among other related

molecules (39, 40). Interestingly, these findings were consistent

with the results of a recent study of ASS Endotype 2, a DM-like

cluster (41). For example, the expression levels of the IFITM3 and

IFI6 genes were found to be the highest in patients with MDA5+

DM, followed by those with ASS, according to our scRNA-seq

analysis (Supplementary Figure 6D). Our study revealed the shared

pathogenic mechanisms of ASS disease and MDA5+A DM, opening

new avenues for research on IIM.

However, it is important to acknowledge certain limitations

within our study. First, our sample size is relatively small; therefore,

further validation through larger sample sizes is necessary. Second,

some of the changes in gene expression and pathways observed in T
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cells may be attributable to the skewing of T cell populations present

in each patient group (as shown in Figures 2A–D), rather than to

disease group as a variable. Furthermore, the lack of samples from

lesion sites for detailed analysis hinders a comprehensive

understanding of the disease development mechanism. And in

vitro or in vivo experiments are needed to elucidate the

physiological functions of these cells and their associated

molecular pathways more comprehensively.

Overall, our study provides valuable insights into the

transcriptional profile of PBMCs in ASS. We utilized MDA5+

DM for disease control to investigate the similarities and

differences between the two diseases. Through this investigation,

we identified potential correlations between changes in specific cell

proportions and ASS disease. These alterations in intercellular

communication, along with differentially expressed genes, offer

novel therapeutic targets that can contribute to the search for

effective treatment regimens.
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SUPPLEMENTARY FIGURE 1

Related to Figure 1 (A) The top three genes in 13 different cell types. (B) Dot
plot showing metabolic activation in patients with ASS and controls. (C)
Pathway scores for both the ASS patient and control groups. ****p<0.0001;
Wilcoxon rank sum test. (D) Volcano plot illustrating differentially expressed

genes (DEGs) in each cell type between ASS patients and HCs through single-
cell sequencing. Red dots represent genes with p-values <0.01, black dots

represent genes with p-values >0.01, and blue fonts are genes of interest with

p-values <0.01. (E) Volcano plot displaying DEGs in each cell type between
ASS patients and MDA5+ DM patients according to single-cell

sequencing analysis.
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SUPPLEMENTARY FIGURE 2

Related to Figure 2 (A) UMAP plot illustrating the normalized expression
levels of the CD4, CD8A, and CD8B genes. (B) UMAP plot showing 19

groups reclustered from T cells and the pie chart showing the distribution

of T-cell clusters. (C) Volcano plot displaying differentially expressed genes
(DEGs) in MAIT cells between ASS patients and HCs. (D) The scores of the

inflammatory response pathway, type I MHC pathway, and oxidative
phosphorylation pathway in both the ASS patient group and the control

group; ***p<0.001; Wilcoxon rank sum test. (E) Circos plots illustrating the
intercellular communication network among T-cell subtypes in ASS

patients and controls.

SUPPLEMENTARY FIGURE 3

Related to Figure 3 (A) UMAP showing the subclusters of CD14+ monocytes
and the distribution of CD14+ monocytes in patients with ASS and controls.

(B) Bubble plots showing the expression patterns of markers in different
CD14+ Mono cell types. (C) Bar charts displaying the relative abundance of

CD14+ monocytes across different groups. (D) Volcano plot depicting the

differentially expressed genes (DEGs) in CD14_Activated cells between ASS
patients and HCs. (E) Bubble plots demonstrating the enrichment of GO

pathways for CD14+ Mono cell subtypes. (F) UMAP plot revealing four distinct
subtypes of neutrophils and their distribution in both ASS patients and

controls. (G) UMAP plot illustrating the expression patterns of the markers
associated with different neutrophil subtypes. (H) Bar charts showing the

cluster abundance of neutrophils across different groups. (J) Volcano plot

displaying DEGs in CAMP_Neu cells between ASS patients and HCs and GO
enrichment analysis of CAMP_Neu cells from ASS patients. (K) UMAP showing

developmental differentiation trajectories of neutrophils among these
three groups.
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SUPPLEMENTARY FIGURE 4

Related to Figure 3 (A) Circos plots illustrating the CCL cell signaling networks
between major cell types in patients with ASS and controls. (B) Determination

of the maximum contribution of efferent signals from 13 cell populations. (C)
Bubble plots displaying the differential target gene expression of CD14+

monocytes as receptors. (D) Bubble plot showing the differential target

gene expression of proliferative NKT cells as the receptor.

SUPPLEMENTARY FIGURE 5

Related to Figure 5 (A)Heatmap illustrating the heightened activity of transcription

factors in T cells among patients with ASS and healthy controls. The symbol (+)

denotes positive regulation, while (-) indicates negative regulation. (B) Heatmap
depicting the enhanced activity of transcription factors in T cells fromMDA5+ DM

patients and healthy controls. The symbol (+) represents positive regulation,
whereas (-) signifies negative regulation. (C) Violin plot displaying the expression

level of IRF1 in ASS patients and controls; ****p<0.0001; ns, not statistically
significant; Wilcoxon rank sum test. (D) UMAP plot showing the normalized

expression of IRF1(+) across the three groups. (E) Violin plot showing the

expression level of FOSB in ASS patients and controls; ****p<0.0001; **p<0.01;
Wilcoxon rank sum test. (F) UMAP plot displaying the normalized expression of

FOSB(+) across the three groups.

SUPPLEMENTARY FIGURE 6

Related to Figures 6, 7 (A) Distribution of the length of complementarity

determining region 3 (CDR3) in patients with ASS, HCs, and MDA5+ DM disease

controls. (B) Venn diagram illustrating the upregulated genes specific to the
disease group. (C) UMAP plot displaying the normalized expression levels of the

CTSA gene and SOCS3 gene across the three groups. (D) Violin plot displaying the
expression levels of the IFITM3 gene and IFI6 gene in ASS patients and controls.
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