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Anticoccidial vaccines comprising living oocysts of Eimeria tenella, Eimeria

necatrix, Eimeria maxima, and Eimeria acervulina are used to control

coccidiosis. This study explored the potential of IL-1b to act as a molecular

adjuvant for enhancing the immunogenicity of Eimeria necatrix and mucosal

immunity. We engineered E. necatrix to express a functional chIL-1b (EnIL-1b)
and immunized chickens with oocysts of the wild type (EnWT) and tranegenic

(EnIL-1b) strains, respectively. The chickens were then challenged with EnWT

oocysts to examine the immunogenicity-enhancing potential of chIL-1b. As
expected, the oocyst output of EnIL-1b-immunized chickens was significantly

reduced compared to those immunized using EnWT. No difference in body

weight gain and lesion scores of EnIL-1b and EnWT groups was observed. The

parasite load in the small intestine and caeca showed that the invasion and

replication of EnIL-1bwas not affected. However, themarkers of immunogenicity

andmucosal barrier, Claudin-1 and avian b-defensin-1, were elevated in EnIL-1b-
infected chickens. Ectopic expression of chIL-1b in E. necatrix thus appears to

improve its immunogenicity and mucosal immunity, without increasing

pathogenicity. Our findings support chIL-1b as a candidate for development of

effective live-oocyst-based anticoccidial vaccines.
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1 Introduction

Eimeria necatrix, one of the seven known species causing avian

coccidiosis, is classified as highly pathogenic in poultry that resulting in

huge economic losses due to impaired growth performance and high

mortality (1). The live E. necatrix-based vaccine against E. necatrix

exhibits robust pathogenicity and poor immunogenicity, limiting its

effectiveness to control coccidiosis (2). Fc and certain interleukins, such

as IL-2, can be used as adjuvant molecules to enhance the

immunogenicity of other Eimeria species (3, 4). In addition, other

cytokines play an essential role in the process of resisting intestinal

pathogen infection, such as the study of the NK cell-derived IFN-g for
control of T. gondii, Cryptosporidium (5–7). Besides, The IL-10Ra
signaling pathway in promoting microbiota homeostasis and

maintaining the intestinal epithelial barrier also plays a vital role

during whipworm infections (8) and inflammatory bowel disease

(IBD) pathogenesis (9). Moreover, in the intestine, IL-13 contributes

to goblet cell differentiation and mucus production, which are essential

for interactions with the microbiome and infectious agents (10, 11).

The cytokines show different roles in the resistance/susceptibility and

the immunopathogenesis of Leishmania infection (6). So, we

hypothesized that cytokines would be excellent exogenous adjuvant

molecules to help us to enhance the immunogenicity of E.necatrix.

The innate immune system can sense molecular patterns of

invading microorganisms. Once activated, it regulates the

inflammatory response by secreting proinflammatory cytokines, such

as IL-1b. IL-1b contributes to maintaining immune tolerance to

commensal microbiota and responding to intestinal pathogens (12).

Intestinal bacteria can induce IL-1b release and promote colitis via

recruited monocytes, which are the primary source of IL-1b (13).

Among the first responder cells, monocytes are significant producers of

IL-1b during infection of gut epithelial cells by Toxoplasma or intestinal

injury (14–17). IL-1b production is also required for strong and

sustained neutrophil recruitment to the site of infection by

Leishmania (18). In summary, IL-1b plays a pivotal role in host

defense against protozoan pathogens and microenvironment

homeostasis in the intestinal mucosa.

Akin to IL-1b, IL-17A is also essential for maintaining and

protecting epithelial barriers in the intestinal mucosa (19, 20). The

basal levels of cytokines and their intricate network have complex

tightly-regulated interactions in the gut (21). Some cytokines regulating

the production of IL-17A are produced by T cells and innate immune

cells (ILCs), thereby limiting microbial translocation and preventing

systemic inflammation (22–25). In addition, both IL-17A and IFN-g
are produced by neutrophils and may promote neutrophil

transmigration to the site of injury (26). IL-17A is particularly

important in defending against Leishmania donovani (27, 28),

Salmonella (29), and Citrobacter (30). Specifically, IL-17A has been

shown to induce robust protection against Trypanosoma cruzi and

Toxoplasma gondii (31). However, the potential of IL-17A as an

adjuvant molecule to enhance the immunogenicity has not been

reported yet. Here, we successfully constructed transgenic E. necatrix

strains expressing IL-17 and IL-1b, termed EnIL-17 and EnIL-1b
respectively, and examined their adjuvant potential in chickens

challenged by a wild type strain. As detailed below, our findings,
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highlight the utility of IL-1b as a molecular adjuvant for anticoccidial

vaccines. In the future we will study that IL-1b as an adjuvant to

enhance the immunogenicity of live attenuated vaccine.
2 Materials and methods

2.1 Ethics statement

We assert that all procedures comply with the ethical standards

of the relevant national and institutional guides on the care and use

of laboratory animals, and all the experiments were reviewed and

approved by the China Agricultural University Animal Ethics

Committee and Beijing Laboratory Animal Committe.
2.2 Animals and parasites

Specific-Pathogen-Free (SPF) chickens were purchased from

Beijing Boehringer Ingelheim Vital Biotechnology (Beijing, China).

One-day-old Arbor Acres (AA) broiler chickens were procured

from Beijing Arbor Acres Poultry Breeding Company Limited.

Animals were housed in coccidia-free isolators and were fed a

pathogen-free diet and water ad libitum. The parasite (E. necatrix)

was propagated in coccidia-free one to three week-old AA broilers.

Oocysts were collected from the feces of infected birds 6-12 dpi.

They were isolated, purified and sporulated, as described previously

(32). Sporozoites were purified from transgenic and control oocysts

using a method reported elsewhere (33).
2.3 Molecular cloning

Total RNA was isolated from the spleen lymphocytes of 2-week-

old SPF chickens using the TRIzol reagent (155960 Invitrogen, USA).

cDNA was synthesized using an EasyScript® One-Step gDNA

Removal and cDNA Synthesis SuperMix Kit (AE31102; TransGen

Biotech, China). Based on the IL-1b (B8YIH3) and IL-17 sequences of

Gallus gallus (GenBank Accession: AY744450.1), the open reading

frames of chIL-1b and chIL-17 were amplified using specific primer

sets (see Table 1). The PCR amplicons were inserted into the pEASY-

Blunt Simple Cloning Vector (TransGen Biotech, China). The

constructs pSDEP2AssIL-1b-Fc-P2A-ssFC-IL-1bA and

pSDEP2AssIL-17-Fc-P2A-ssFC-IL-17A were generated from the

pSDEP2AHA1A plasmid (3). They consist of a single expression

cassette where TgDHFR-TS (a pyrimethamine selection marker)

(34), EYFP (the enhanced yellow fluorescent protein), the fused IL-

1b or IL-17-Fc, and the fused Fc-IL-1b or Fc-IL-17 are expressed under
the control of the surface antigen 13 promoter and the 3’-untranslated

region of actin. Each plasmid is capable of expressing N andC terminus

Fc-fused proteins through Sag13 promoter due to self-cleavable P2A

peptide (34). The signal sequence of dense granule 8 (Gra8) from T.

gondii (84 bp) (35) was fused at the N-terminal of the target protein to

allow secretion. The final constructs were linearized by SnaBI enzyme

before transfection.
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2.4 Making of transgenic parasites

Merozoites (2×108) were purified and electroporated with 10 mg
of SnaBI-linearized plasmid using the AMAXANucleofector Device

(Program U-033, Lonza, Switzerland). Transfected merozoites were

used to inoculate chickens via the cloaca route (2, 36), and oocysts

were collected from feces 18-72 h post-infection. For subsequent

propagation, oocysts were collected on day 6 to 12 after infection.
2.5 Immunostaining

Western Blot and indirect immunofluorescent assays to confirm

the expression of IL-1b or IL-17-Fc fused protein in transgenic

parasites were performed as reported previously (37, 38). Briefly,

soluble antigens of transgenic sporozoites (EnIL-1b, EnIL-17, and
EnWT) were resolved by denaturing gel electrophoresis and blotted

onto a polyvinylidene difluoride membrane. To detect the IL-1b
and IL-17Fc fused protein, the blot was probed with polyclonal

antibodies anti-rabbit IL-1b and IL-17 (ICPIL1706Ga01, USA

Immuno Clone Biosciences CO Ltd), and HRP-conjugated goat

anti-rabbit IgG (IS003; M&C Gene Technology Ltd, Beijing, China).

Immunofluorescence assay used rabbit anti-IL1b and anti-IL-17

antibodies and Cy3-conjugated goat anti-rabbit IgG (SA00009-2;

M&C Gene Technology (Beijing) Ltd, China).
2.6 IL-1b and IL-17 activity measurement

The activity of IL-1b and IL-17 in transgenic E. necatrix was

determined according to published methods (27, 39, 40). IL-6 and
Frontiers in Immunology 03
K60, are known to be strongly induced by proinflammatory

cytokines, such as IL-17 and IL-1b respectively, in both

mammalian and avian cells (41, 42). The soluble antigen of EnIL-

1b was incubated with DF-1 cells for two hours to test the biological

activity of Fc-fused IL-1b (43, 44). Total RNA from DF-1 cells

(TRIzol, Invitrogen, USA) was reverse-transcribed into cDNA using

an EasyScript® One-Step gDNA Removal and cDNA Synthesis

SuperMix Kit (AE311-02; TransGen Biotech, China). The level of

K60 mRNA was determined using an RT-PCR kit (A25778;

Thermo Fisher Scientific Inc, USA) and the appropriate primers

(Table 1). Data are plotted as the ratio of K60 to b-actin mRNA

expression. Soluble antigen of wild-type Eimeria necatrix (EnWT)

used as control. To measure the activity of IL-17, primary chicken

embryonic fibroblasts (from 9-11-day embryos) were cultured in

DMEM with 10% FBS for 18-24 hours, followed by a 12 hours

incubation with LPS or the soluble antigen of EnIL-17/EnWT.

Expression of IL-6 was quantified by qPCR and normalized to b-
actin transcript (Table 1). To measure the mRNA level of different

cytokines such as IL-1b, IL-22, or genes of gut mucosal barrier like

CLDN-1, JAM-1 the RNA was isolated from 9 day old broilers.
2.7 Immunogenicity test

Two-week-old SPF chickens (n=3) were orally vaccinated with 500

freshly sporulated oocysts of EnIL-17 and EnWT. A naïve control

group (PBS) was also included. Fourteen days after inoculation, all

groups were challenged, and antibody titer in serum was detected on

days 6, 10, 14, and 21 post-challenge infection. Oocysts shedding (per

group) was determined 5 to 10 days, after the both vaccination and

challenge infection using the McMaster egg counting chamber.
TABLE 1 Gene special primers used in the real-time quantitative reverse-transcription PCR.

Primer The nucleotide sequence (5’-3’)

GAPDH F-AGGGTGGTGCTAAGCGTGTTA R-TCTCATGGTTGACACCCATCA

IL-22 F-TGTTGTTGCTGTTTCCCTCTTC R-CACCCCTGTCCCTTTTGGA

IL-1b F-TGGGCATCAAGGGCTACA R-TCGGGTTGGTTGGTGATG

IFN-g R-AGCTGACGGTGGACCTATTATT R-GGCTTTGCGCTGGATTC

IL-17 F-ATTACAGGATCGATGAGGACCAC R-AGTTCACGCACCTGGAATGG

AvBD-1 F-TACCTCTGCTGCAAAAGAATATGG R-GAGAAGCCAGGGTGATGTCC

Mucin-2 F-TCACCCTGCATGGATACTTGCTCA R-TGTCCATCTGCCTGAATCACAGGT

Claudin-1 F-CTGATTGCTTCCAACCAG R-CAGGTCAAACAGAGGTACAAG

Occludin F-GATGGACAGCATCAACGACC R-CATGCGCTTGATGTGGAAGA

ZO-1 F-GCCTGAATCAAACCCAGCAA R-TATGCGGCGGTAAGGATGAT

JAM-2 F-AGCCTCAAATGGGATTGGATT R-CATCAACTTGCATTCGCTTCA

CATHL-2 F-AGGAGAATGGGGTCATCAGG R-GGATCTTTCTCAGGAAGCGG

Actin F-TACCACAATGTACCCTGGC R-CTCGTCTTGTTTTATGCGC

K60 F-ATTTCCTCCTGCCTCCTACA R-GTGACTGGCAAAAATGACTCC

IL-6 F-GCAGGACGAGATGTGCAAGA R-ATTTCTCCTCGTCGAAGCCG
F, Forward primer; R, Reverse primer.
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2.8 Statistical analysis

All experiments were performed three times, unless stated

otherwise. The images presented represent one of the several

assays conducted. Data plotting was done using GraphPad Prism

software (version 8.01). Statistical significance was determined

using either a T-Test or ANOVA depending on the specific

comparisons and data distributions, where ****p ≤ 0.0001, ***p ≤

0.001, **p ≤ 0.01, and *p ≤ 0.05 indicate the levels of significance.
3 Results

3.1 Construction of transgenic E. necatrix
expressing Fc-fused chicken IL-1b and IL-
17 genes

We transfected the merozoites of E. necatrix with plasmids

containing the chIL-1b or chIL-17 gene (Figure 1A), followed by

inoculation of chickens and collection of oocysts for 3 dpi. The

yields of EnIL-1b (expressing chIL-1b) and EnIL-17 (expressing

chIL-17) strains were 1.2×104 and 1.2×106 oocysts/animal,
Frontiers in Immunology 04
respectively (Table 2). Based on fluorescence-activated cell

sorting, the proportions of transgenic oocysts expressing Fc- fused

chIL-1b and chIL-17 were 0.17% and 0.12%, respectively, after

second propagation (Table 2). Transgenic oocysts were

continuously passaged, FACS-sorted, and selected with

pyrimethamine using the drug-resistant DHFR-TS fused to EYFP.

As a result, the population of EYFP-expressing sporulated oocysts

gradually increased, reaching over 90% after 5 passages (Table 2).

Immunoblot and immunofluorescence analyses confirmed the

ectopic expression of Fc-fused chIL-1b and chIL-17-Fc

(Figure 1A) in the transgenic E. necatrix, as shown in

(Figures 1B, C). Additionally, as expected, EYFP was detected in

both the nuclei and cytoplasm during the sporozoite stage, further

supporting the successful integration and expression of the

transgene (Figure 1C).

The oocyst output showed no significant differences between

EnIL-1b/EnIL-17 and EnWT, suggesting that the expression of Fc-

fused chIL-1b or chIL-17 did not hinder the development of

transgenic E. necatrix (Figures 2A, B). In subsequent experiments,

we employed recombinant IL-1b or IL-17 (rIL-1b or rIL-17) along

with soluble antigens from EnIL-1b, EnIL-17, or EnWT, which

were then incubated with DF-1 cells or chick embryo fibroblasts
B C

A

FIGURE 1

Construction and identification of transgenic Eimeria necatrix expressing Fc- fused chicken IL-1b and IL-17 proteins. (A) The schematic diagram of
the plasmids SDEp2AIL-1b-Fc-P2A-Fc-IL-1bA and SDEp2AIL-17-Fc-P2A-Fc-IL-17A used for engineering the transgenic parasites expressing IL-1b
and IL-17, respectively. The expressed proteins are secreted due to the signal sequence of the Toxoplasma gene Gra8. (B) Western Blot analysis of
the expression of IL-1b and IL-17 fused proteins in transgenic E. necatrix. Polyclonal antibodies against IL-1b (1:500) and IL-17 (1:1500) were used as
the primary antibodies. HRP-conjugated goat anti-rabbit IgG was used as the secondary antibody. (C) Identification of the expression of IL-1b and
IL-17-Fc fused proteins in the sporozoites of the EnIL-1b and EnIL-17 transgenic parasite lines by IFA. Fixed parasites were treated with protein-
specific primary polyclonal antibodies, and the signal was developed using Cy3-labelled secondary antibodies. Scale bar = 5 mm.
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(CEFs) for 12 hours. PBS and recombinant protein served as the

negative and positive controls, respectively. Importantly, the mRNA

levels of K60 (indicative of IL-1b activity) and IL-6 (reflective of IL-

17 activity) in the host cells were considerably elevated compared to

the negative control (Figures 2C, D). For future assays, we utilized

transgenic E. necatrix strains that express functional Fc- fused chIL-

1b and chIL-17.
3.2 Ectopic expression of Fc-fused chIL-1b
does not affect the pathogenicity of
transgenic E. necatrix

To evaluate the pathogenicity of our transgenic parasite strains,

we measured the body weight and lesion scores from 5-7 dpi. We

first infected chickens with EnWT oocysts and evaluated the body

weight and lesions in response to infection. Animals receiving a

higher dose (1×104 oocysts) displayed a reduction in body weight

and an increase in lesion scores when compared to those infected

with a lower dose and PBS-treated control groups (Figures 3A, B).

We then compared the body weight and lesion scores of chickens

inoculated with 1×104 oocysts of EnIL-1b, EnIL-17, or EnWT

strains (5 to 7 dpi), as reported previously (45). The body weight

of chickens infected with EnIL-1b and EnIL-17 was similar to the

EnWT group (Figure 3C). Furthermore, chIL-1b- and chIL-17-

expressing parasites did not appear to enhance lesion scores

indicating no increase in pathogenicity (Figures 3D, E).
3.3 IL-1b improves the immunogenicity of
transgenic E. necatrix

The effect of chIL-1b and chIL-17 as potential adjuvants was

tested by immunizing chickens with sporulated oocysts of
Frontiers in Immunology 05
transgenic or wild type strains, followed by a challenge infection.

Initially, we immunized birds with 300 oocysts of EnIL-1b, EnIL-17,
or EnWT and challenged them on 21 dpi with 500 EnWT oocysts

(Figure 4A). The oocyst output of immunized groups was notably

reduced. When chickens were immunized with a dose of 200

oocysts and received a booster dose on day 14, and then

challenged with 10000 oocysts, the parasite yield of all vaccinated

groups was also sharply decreased (Figure 4B). However, the oocyst

output of groups inoculated with EnWT and EnIL-17 was higher

than that of EnIL-1b after the first immunization. Besides, EnIL-1b-
immunized birds displayed a further decline in parasite yield after

the second immunization and challenge infections, suggesting

improved immunogenicity of the Fc- fused chIL-1b-expressing
transgenic parasite. In extended assays, we used 500 oocysts of

EnIL-17 and EnWT to immunize birds, which were then challenged

with 500 oocysts on day 14. EnIL-17 appeared to have a negative

impact on immunogenicity (Supplementary Figure S1A).

Moreover, no difference in parasite-specific IgY titer between the

EnIL-17 and wild type groups was observed (Supplementary

Figure S1B).
3.4 Transgenic E. necatrix-expressing Fc-
fused chIL-1b promote the gut mucosal
barrier function

To examine the impact of transgenic strains on the gut

mucosal barrier, chickens were infected, and total RNA of

intestinal tissues was collected on 5 dpi (Figure 5A). We

analyzed the abundance of transcr ipts be longing to

inflammatory cytokines, barrier function, and host defense. The

qPCR results showed that the levels of IL-1b, IL-17, and IL-22 in

EnIL-1b-infected chickens were significantly higher than those in

EnWT-infected birds (Figure 5B). The transcriptional levels of
TABLE 2 Propagation and establishment of transgenic En-cytokines.

Passage No. of Birds
The dose of

Inoculation/bird
No. of oocysts

Fluorescent
Oocysts (%)

En IL-1b

1st 2 2×107 (merozoites) 1.2×104 unknown

2nd 2 6×103 1 ×105 0.17%

3rd 3 170 4.6×106 50-60%

4th 2 1×104 3.6×106 75-80%

5th 5 1×104 1.17×107 >90%

EnIL-17

1st 3 4×108 (merozoites) 1.2X106 unknown

2nd 3 1.5X104 7X106 0.12%

3rd 2 1.3×102 2×105 30%

4th 3 2×103 3×105 50%

5th 4 1×104 1.5×107 70-80%

6th 5 1x104 2×107 >90%
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Claudin-1 (CLDN-1), Junctional Adhesion Molecule 2 (JAM-2),

and avian b-defensin-1 (AvBD-1) in EnIL-1b-infected chickens

were increased compared to the EnWT-infected and control

groups (Figure 5C). Other transcripts, Mucin 2 (MUC-2) and

zonula occludens protein 1 (ZO-1), were unaffected, and

Cathelicidin-2 (CATHL-2) was declined in the EnIL-1b group

(Figures 5D, E). Our results suggest a role for IL-1b and other

cytokines in the homeostasis of the intestinal epithelium and

mucosal barrier function.
4 Discussion

IL-1 family cytokines, especially IL-1b, play crucial roles in

promoting tissue repair and maintaining homeostasis (46). IL-17,

on the other hand, is primarily associated with host protection by

regulating chemokines, cytokine balance and infiltration of various
Frontiers in Immunology 06
immune cells to the site of infection (47). In this study, we

constructed transgenic Eimeria strains expressing Fc fused chIL-

1b and chIL-17 cytokines intending to test their potential as

molecular adjuvants (Figure 1). Incubation of secreted antigens of

EnIL-1b with DF-1 cells resulted in enhanced expression of K60

whereas incubation of EnIL-17 with chicken fibroblast gave rise to

transcription of IL-6 confirming that both transgenic parasites

secrete active Fc fused cytokines (Figure 2).

No difference in pathogenicity between the transgenic E.

necatrix and the wild type was apparent (Figure 3). Our results

specifically show that EnIL-1b parasites were more immunogenic

than both wild type and IL-17 transgenic E. necatrix strains. EnIL-

1b parasites were able to enhance expression of IL-1b and IL-17 in

infected hosts. In addition, Fc fused chIL-1b expressing parasite

were able to completely eradicate the second round of infection

proving the efficacy of IL-1b as an effective molecular adjuvant

(Figure 4). It could be that, as a cytokine contributing to innate
B

C D

A

FIGURE 2

The impact of transgenic E. necatrix expressing Fc- fused chIL-1b or chIL-17 on parasite proliferation. (A, B) A study of the fecundity of EnIL-1b and
EnIL-17, respectively, compared to EnWT. Comparison of oocyst shedding patterns of EnIL-1b and EnIL-17 with EnWT using SPF chickens.
Measurement of the output of oocysts from the two E. necatrix populations in the parasite-infected chickens daily between 6 and 12 days post-
inoculation (n=3, two replicates). (C, D) K60 mRNA levels were determined by qPCR and normalized to b-actin mRNA (IL-17 used IL-6 mRNA as an
indicator). One-way ANOVA demonstrates that the data is significant (shown in the Figure). *p ≤ 0.05 indicate the levels of significance. EnWT: wild-
type E. necatrix; EnIL-1b: transgenic E. necatrix expressing IL-1b-Fc fused proteins, rIL-1b: recombinant chicken IL-1b protein, EnIL-17: transgenic E.
necatrix expressing IL-1b-Fc fused proteins, rIL-17: recombinant chicken IL-17 protein.
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immunity, IL-1b induces the synthesis of other cytokines, enhances

T-cell activation and antigen presentation, and recruit neutrophils

to the site of injury or infection, resulting in enhanced immunity

against invading pathogens (18, 48–53).

The integrity of the intestinal mucosa is maintained by

epithelial cells connected via tight junction (TJ) proteins
Frontiers in Immunology 07
(Figure 5). Claudins constitute a key component of the TJ strand,

binding peripheral membrane proteins, including scaffold proteins

such as JAM-1 (54, 55). Transcriptional levels of CLDN-1 and JAM-

2 were higher in EnIL-1b than in other groups, suggesting improved

integrity of the intestinal epithelium. On the other hand, MUC-2

and ZO-1 were unaltered. Mucins contribute to maintaining the gut
B

C D

A

E

FIGURE 3

EnIL-1b has no obvious impact on pathogenicity. (A) Body weight gain after 9 days of inoculation (the doses of inoculation: 5×10², 5×10³, or 1×104,
respectively; n=6/group). PBS was used as a control. (B) Lesions are scored at 7 dpi (168h). One-way ANOVA demonstrates that the data is credible
(shown in the Figure, ***p ≤ 0.001, **p ≤ 0.01). (C) The body weight gain after inoculating transgenic E. necatrix (IL-1b and other cytokines), EnWT,
or PBS (the dose of inoculation: 1×104; 9-day-old AA Broiler; n=6/group). (D, E) Lesions are scored at 5 dpi (120 h). Statistical significance calculated
using one-way ANOVA. n.s. means no statistical difference.
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barrier and protecting it from pathogens (54). Their compromised

function is associated with impaired expression of MUC-2 (56);

however, in EnIL-1b-vaccinated birds, it remained intact. Beta-

defensins are cationic peptides with antimicrobial activity,
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defending epithelial surfaces including the skin, gastrointestinal,

and respiratory tracts (57). The EnIL-1b group displayed significant

upregulation of AvBD-1, indicating an active immune response

against the challenge infection. It has been reported that a
B

A

FIGURE 4

Comparison of immunogenicity between transgenic E. necatrix expressing chIL-1b fused proteins and the wild type of E. necatrix. (A) Upper panel:
Schematic of the experimental procedure for immunogenicity test (n=4/group, 7-day-old SPF chickens). Chickens were immunized at day 0 with 300
oocysts/bird, and the challenge infection with 500 oocysts was at day 21. Lower panel: Oocyst output of all groups after immunization and challenge.
Fecal samples from each group were collected between 5 and 10 days post-vaccination and challenge, respectively. (B) Upper panel: Schematic of the
experimental procedure for immunogenicity test (n=4/group, 10-day-old SPF chickens). Chickens were immunized at 0 and 14 days with 200 oocysts/
bird, respectively, and challenged with 10,000 oocysts at 28 days. (B) Lower panel: Oocyst output of all groups after immunization and challenge.
Fecal samples from each group were collected between 5 and 10 days after vaccination and challenge, respectively. I; immunization and C; challenge.
Statistical differences were measured by t-test or one-way ANOVA. n.s. means no statistical difference. **p ≤ 0.01.
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microbiota- and IL-1b-dependent axis promotes the production of

IL-2 by ILC3s to orchestrate immune regulation in the intestine

(58). Whether the above mechanisms play a role in IL-1b-mediated

mucosal immunity and barrier function remains to be investigated.

In conclusion, Transgenic Eimeria necatrix-expressing the

cytokines-Fc fused protein was successfully constructed. According

to the results of pathogenicity and immunogenicity experiments,

EnIL-1bmaybe have a good effect on enhancing the immunogenicity

of Eimeria to prevent coccidiosis. IL-1b could recruit neutrophils to
Frontiers in Immunology 09
the site of infection to regulate the guts’ intestinal microenvironment.

Although IL-17 expressed in the E.necatrix didn’t increase the

immunogenicity of E. necatrix, it may have a beneficial correlation

to epithelial barriers during E. necatrix infection. In the future we will

study that IL-1b as an adjuvant to enhance the immunogenicity of

live attenuated vaccine. In addition, our future work will focus on IL-

1b to study the effects on the gut intestinal micro ecological balance

and on parasites itself. And IL-1b as an adjuvant to enhance the

immunogenicity of live attenuated vaccine.
B

C

D

E

A

FIGURE 5

The impact of transgenic E. necatrix expressing chIL-1b fused proteins on the gut mucosal barrier. (A) Extracting RNA from the intestine after
inoculating EnIL-1b, EnWT, PBS. The dose of inoculation: 1×104; 9-day-old AA broiler; n=6/group. (B) Detection of the transcriptional level of
cytokines such as IL-1b and IL-22 by qPCR at 5 dpi (120 h). (C) Representation of the transcriptional level of some genes, such as Claudin-1 (CLDN-
1), Junctional Adhesion Molecule 2 (JAM-2), IL-17, and avian b-defensin 1 (AvBD-1). (D) Detection of the transcriptional level of some host defense
peptide genes by qPCR at 5 dpi (120 h), including Mucin-2 (MUC-2) and tight junction protein 1 (ZO-1). (E) Detection of the transcriptional level of
Cathelicidin-2 (CATHL-2) by RT-qPCR. Statistical significance was determined using ANOVA, where ***p ≤ 0.001, **p ≤ 0.01, and *p ≤ 0.05 indicate
the levels of significance. n.s. means no statistical significance.
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