
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Raquel Alarcon Rodriguez,
University of Almeria, Spain

REVIEWED BY

Wenzheng Guo,
University of Kentucky, United States
Xingxing Yuan,
Heilongjiang Academy of Traditional Chinese
Medicine, China

*CORRESPONDENCE

Jiaan Lu

Lujiaan130130@163.com

Guanhu Yang

gy182915@ohio.edu

Hao Chi

chihao7511@163.com

Shangke Huang

huangshangke001@swmu.edu.cn

†These authors have contributed equally to
this work

RECEIVED 19 May 2024
ACCEPTED 21 June 2024

PUBLISHED 04 July 2024

CITATION

He R, Lu J, Feng J, Lu Z, Shen K, Xu K, Luo H,
Yang G, Chi H and Huang S (2024) Advancing
immunotherapy for melanoma: the critical
role of single-cell analysis in identifying
predictive biomarkers.
Front. Immunol. 15:1435187.
doi: 10.3389/fimmu.2024.1435187

COPYRIGHT

© 2024 He, Lu, Feng, Lu, Shen, Xu, Luo, Yang,
Chi and Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 04 July 2024

DOI 10.3389/fimmu.2024.1435187
Advancing immunotherapy for
melanoma: the critical role of
single-cell analysis in identifying
predictive biomarkers
Ru He1†, Jiaan Lu1*†, Jianglong Feng2†, Ziqing Lu1, Kaixin Shen3,
Ke Xu4, Huiyan Luo4, Guanhu Yang5*, Hao Chi1*

and Shangke Huang6*

1Clinical Medical College, Southwest Medical University, Luzhou, China, 2Department of Pathology,
The Affiliated Hospital of Guizhou Medical University, Guiyang, China, 3Department of Art and Design,
Shanghai Institute of Technology, Shanghai, China, 4Department of Oncology, Chongqing General
Hospital, Chongqing University, Chongqing, China, 5Department of Specialty Medicine, Ohio
University, Athens, OH, United States, 6Department of Oncology, The Affiliated Hospital, Southwest
Medical University, Luzhou, Sichuan, China
Melanoma, a malignant skin cancer arising from melanocytes, exhibits rapid

metastasis and a high mortality rate, especially in advanced stages. Current

treatment modalities, including surgery, radiation, and immunotherapy, offer

limited success, with immunotherapy using immune checkpoint inhibitors

(ICIs) being the most promising. However, the high mortality rate underscores

the urgent need for robust, non-invasive biomarkers to predict patient response

to adjuvant therapies. The immune microenvironment of melanoma comprises

various immune cells, which influence tumor growth and immune response.

Melanoma cells employ multiple mechanisms for immune escape, including

defects in immune recognition and epithelial-mesenchymal transition (EMT),

which collectively impact treatment efficacy. Single-cell analysis technologies,

such as single-cell RNA sequencing (scRNA-seq), have revolutionized the

understanding of tumor heterogeneity and immune microenvironment

dynamics. These technologies facilitate the identification of rare cell

populations, co-expression patterns, and regulatory networks, offering deep

insights into tumor progression, immune response, and therapy resistance. In

the realm of biomarker discovery for melanoma, single-cell analysis has

demonstrated significant potential. It aids in uncovering cellular composition,

gene profiles, and novel markers, thus advancing diagnosis, treatment, and

prognosis. Additionally, tumor-associated antibodies and specific genetic and

cellular markers identified through single-cell analysis hold promise as predictive

biomarkers. Despite these advancements, challenges such as RNA-protein

expression discrepancies and tumor heterogeneity persist, necessitating further

research. Nonetheless, single-cell analysis remains a powerful tool in elucidating

the mechanisms underlying therapy response and resistance, ultimately

contributing to the development of personalized melanoma therapies and

improved patient outcomes.
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1 Introduction

Melanoma, a type of malignant skin cancer originating from

melanocytes, poses a serious health risk. Once it metastasizes, it

quickly disseminates throughout the body, resulting in a

significantly poor prognosis (1). At present, its treatment methods

include surgery, radiation therapy, immunotherapy et al.

Immunotherapy, a pioneering approach, leverages the body’s

immune system to combat cancer, offering hope when

conventional treatments fall short. Among the most assertive and

promising techniques for advanced melanoma treatment is ICI,

which aids in boosting patient survival rates. However, advanced

melanoma continues to exhibit a high mortality rate (2).

Consequently, identifying non-invasive and reliable biomarkers to

differentiate patients who will benefit from adjuvant therapy from

those who will not is urgently needed. In targeted therapy and

immunotherapy, there is a significant improvement in objective

treatment efficacy and overall survival compared to traditional

methods, but the emergence of drug resistance has had an impact

on these positive outcomes,and tumor heterogeneity is playing a

significant role in drug resistance (3, 4). In this context, single-cell

technology has become an important information acquisition

platform that can decipher complex clone relationships and

potentially reveal the factors contributing to intratumoral

heterogeneity with respect to MAPKi and ICI therapy resistance

(5). Moreover, it plays an important role in analyzing the TIME,

cancer progression, and immunotherapy response (6).
2 The immune microenvironment
of melanoma

In the melanoma microenvironment, a diverse array of immune

cells can be found. These include CD8+ T cells, CD4+ T cells,

regulatory T cells (Tregs), natural killer (NK) cells, macrophages,

and dendritic cells (DCs), along with several other types. These cells

influence tumor growth and immune responses by secreting

cytokines and chemokines, as well as interacting directly with

tumor cells (7–9). As melanoma progresses, the acquisition of

immune suppression in the environment and changes in

endogenous pathways allow for immune escape. The main

mechanisms of immune escape in melanoma include immune

recognition defects, immune checkpoint receptors, and epithelial-

mesenchymal transition (EMT) (10). Melanoma cells counteract

antigen recognition and immune system stimulation through

various strategies. Kimberly R. Jordan and her team have

observed that the melanoma environment sees an accumulation

of myeloid-derived suppressor cells (MDSCs) and Tregs, resulting

in immune suppression. In patients with advanced melanoma, the

populations of CD14+ and CD14− MDSCs in peripheral blood are

significantly increased compared to healthy donors, and the

frequency of MDSCs is significantly correlated with the frequency

of Tregs, indicating a significant increase and interrelation of

immunosuppressive cells in patients with advanced melanoma

(correlation between MDSCs and Tregs) (11). Regulatory T cells
Frontiers in Immunology 02
(Tregs) can produce immunosuppressive cytokines, such as IL-10,

TGF-b, and IL-35. These cytokines can inhibit the functions of

effector T cells, dendritic cells, and other immune cells, thereby

reducing their ability to generate immune responses (12, 13). They

can also upregulate immunosuppressive molecules, such as PD-1

(programmed cell death protein 1) and CTLA-4 (cytotoxic T-

lymphocyte-associated protein 4), further inhibiting anti-tumor

immune responses by suppressing the antigen-presenting

capability of antigen-presenting cells (such as macrophages).

Additionally, Tregs contribute to resistance to immune

checkpoint inhibi tors . Their presence in the tumor

microenvironment can lead to acquired resistance by upregulating

compensatory immune escape mechanisms (14). Moreover, IL-10

and IDO further reduce the activity of NK cells, CD4+, and CD8+

lymphocytes against melanoma (11). The dysregulation of immune

checkpoint receptors, such as PD-1 and CTLA-4, is a critical

mechanism by which melanoma escapes the immune system (15).

Tumor cells can inhibit the function of cytotoxic T cells by

abnormally expressing high levels of PD-L1, the ligand for PD-1.

This PD-1/PD-L1 pathway forms the foundation for many

immunotherapies. Immune checkpoint inhibitors, which are

primarily used to treat melanoma, target two main proteins: PD-1

with monoclonal antibodies like nivolumab and pembrolizumab,

and CTLA-4 with ipilimumab (15). These therapies assist in

reinstating the immune system’s capability to target and destroy

cancer cells. The process of epithelial-mesenchymal transition

(EMT) is essential for metastatic cells to successfully colonize

distant organs and is a significant mechanism of melanoma

malignancy. EMT transcription factors (EMT-TFs) like SNAI1/2,

ZEB1/2, and TWIST are responsible for regulating phenotype

transitions, which are vital for melanoma progression.

Additionally, these factors can influence antigen presentation,

MHC I expression, and immune checkpoint regulation, thereby

facilitating immune evasion (16, 17). These mechanisms allow

melanoma cells to survive and proliferate under immune

surveillance, impacting treatment outcomes and patient

prognosis. Studying these immune escape mechanisms is crucial

for developing new treatment strategies and improving the clinical

management of melanoma patients.
3 The principles and revolutionary
impact of single-cell
analysis technology

Single-cell analysis encompasses both technology and

methodology aimed at investigating the characteristics, functions,

and behaviors of individual cells to attain a deeper comprehension

of their diversity and complexity across various dimensions such as

morphology, biochemistry, and genetics (18). This field comprises

diverse techniques such as single-cell RNA sequencing, proteomics,

and DNA sequencing. Recently, single-cell sequencing (sc-seq)

technologies have primarily concentrated on comparing specific

compartments within individual cells, such as the genome,

transcriptome, epigenome, and proteome, to elucidate differences
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between cell populations and assess their heterogeneity (19). This

comparative approach allows for the identification of rare cell

populations, such as highly reactive immune cells within the

tumor microenvironment (TME), and facilitates lineage tracking

and developmental relationship analysis, including the diversity of

lymphocyte fates. Moreover, particularly in the context of sc-

RNAseq, exploring co-expression patterns of genes at the single-

cell level enables the detection of co-regulated gene modules and

regulatory networks associated with cell function and specification

heterogeneity (20, 21). Single-cell sequencing also holds significant

promise in immuno-oncology, offering insights into immune

infiltration, trajectory inference, functional enrichments, and TCR

repertoire analysis, thereby fostering opportunities for personalized

medicine (22, 23).

4 Utilization & challenges of single-
cell analysis technology in biomarker
discovery for melanoma

The search for biomarkers is intricately influenced by the

complexity and dynamism of the tumor microenvironment and

the interplay between the immune system and cancer cells.

Conventional analysis methods, reliant on large sample sizes, fall

short in capturing this complexity, prompting a shift towards

single-cell analysis. In melanoma and other cancer types, single-

cell transcriptomics has emerged as a pivotal tool, facilitating the

discovery of multidimensional biomarker signatures linked to both

immune therapy response and resistance. This advancement holds

promise in shaping the next generation of immune therapies aimed

at enhancing cancer patient survival rates. Leveraging these

techniques not only enhances our comprehension of immune

therapies like immune checkpoint inhibitors but also sheds light

on the tumor microenvironment’s role in immune therapy.

Presently, biomarker identification primarily hinges on batch

expression data analysis, necessitating endeavors to scrutinize cell

type-specific gene expression features as plausible biomarkers. The

application of single-cell technology in immuno-oncology research

has demonstrated potential in delineating tumor microenvironment

characteristics that influence immune therapy response and

resistance across various cancer types, including melanoma. For

instance, the amalgamation of scRNA-seq and TCR-seq has

revealed the presence of functionally impaired CD8 T cells

forming a proliferation hub within human melanoma, alongside a

notable accumulation of functionally impaired T cells linked to

tumor recognition (24). Moreover, experiments employing

extensive RNA sequencing have identified B cell markers as the

most differentially expressed genes between responders and non-

responders in tumors. These findings offer valuable insights into the

potential roles of B cells and tertiary lymphoid structures in

immune checkpoint blockade (ICB) therapy response, thus

holding significant implications for biomarker development and

therapeutic targeting (25). Nevertheless, it is imperative to

acknowledge that single-cell and single-nucleus RNA sequencing

fall short in bridging the gap between RNA and protein expression,

likely due to technical capture challenges (such as transcription
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capture/dropout) and biological intricacies (including translation

barriers, post-translational effects, RNA degradation kinetics, or

protein transport to the cell surface) (26, 27), whereas multi-omic

CITE-seq holds promise in bridging this gap (28).

Besides above, the accuracy and reliability of melanoma

biomarker discovery still need improvement, and single-cell

analysis requires advancements and optimizations in technology

and methods.

Briefly, the future directions include the following:

1) Mass Cytometry (CyTOF):

Capable of measuring multiple protein markers at the single-

cell level, improving the sensitivity [Integration of online desalting

techniques with dual-spray mass spectrometry has improved the

detection sensitivity of cell surface proteins (29)] and throughput of

marker detection [A novel Zr-NMOF-based mass tag has been

developed, which provides fivefold signal amplification and allows

for the detection of low-abundance antigens, improving sensitivity

and multiplexing capability (30)].

Development of new antibodies and tags [Development of new

metal-containing tags using click chemistry has enabled the

generation of highly sensitive and specific reagents for proteomics

and glycomics applications (31)] to increase the number and range

of detectable proteins, along with improvements in data processing

and analysis methods [Comparison of clustering methods for high-

dimensional CyTOF data has shown that algorithms like FlowSOM

and PhenoGraph are effective for defining cell populations,

enhancing the efficiency of data analysis (32)].

2) Spatial Transcriptomics:

Combines single-cell sequencing with spatial information from

tissue samples to provide gene expression maps of cells in their

native tissue environment.

Improvements include enhancing spatial resolution

[BayesSpace (33), DIST (34)] and data integration capabilities

[SPOTlight (35), PRECAST (36) and SpatialScope (37)].

Development of higher resolution imaging and sequencing

technologies, as well as advanced data analysis tools to integrate

spatial and single-cell data [As Benchmarking Computational

Integration Methods: Evaluates various methods for integrating

spatially variable and highly variable genes from spatial

transcriptomics data to improve clustering performance (38)].

3) Single-Cell Epigenomics (e.g., single-cell ATAC-seq):

Used to analyze chromatin accessibility [In cancer (39),

Leukemia (40) and Schizophrenia (41)] and epigenetic

modifications at the single-cell level.

Technological advancements aim to improve data quality and

analysis precision.

Improvements to single-cell ATAC-seq techniques to better

understand how chromatin state regulates gene expression.

4) Multi-Omics Data Integration:

By integrating single-cell RNA sequencing, DNA sequencing,

proteomics, and epigenomics data, a more comprehensive

understanding of cell states and functions can be achieved.

The key is to develop effective data integration and analysis

methods (42).

Development of new computational and bioinformatics tools to

efficiently integrate and interpret multi-omics data, revealing
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complex biological mechanisms. Various computational and

bioinformatics tools, such as LIBRA and Cobolt, have been

developed to address the challenges of multi-omics data

integration. These tools improve the accuracy of data analysis and

enhance the biological insights gained from multi-omics

studies (43).

Additionally, the continuous development of artificial

intelligence (AI) technologies brings many possibilities to the field

of single-cell sequencing, injecting fresh vigor. Utilizing advanced

machine learning and AI techniques to analyze single-cell data can

improve the efficiency and accuracy of data processing and pattern

recognition. Development of AI algorithms specifically for single-

cell analysis can enhance data interpretation capabilities,

particularly in identifying rare cell types and states.

Through advancements in these technologies and methods, the

application of single-cell analysis in melanoma biomarker discovery

will become more accurate and reliable, thereby promoting the

development of personalized treatment and precision medicine.
5 Discovery of predictive biomarkers

In the earlier discussion, single-cell analysis techniques can be

employed to examine cellular composition and status, analyze gene

profiles, identify cell markers, and uncover novel melanoma

markers. This, in turn, offers novel avenues for the diagnosis,

treatment, and prognosis of melanoma. Established biomarkers

encompass tumor-related antibodies, circulating biomarkers, cell

markers, and specific genetic features.
5.1 Circulating biomarkers

Circulating biomarkers encompass a variety of detectable and

quantifiable molecules, including DNA, RNA, proteins, and

immune cells, which are released into the bloodstream and can

serve as indicators of disease status (44). These biomarkers exhibit

significant potential in predicting treatment response, facilitating

diagnosis, and assessing prognosis. Blood-based liquid biopsy has

garnered increasing interest due to its non-invasive and reliable

nature. Despite the identification of numerous circulating

biomarkers in both preclinical research and clinical settings, only

few have received approval from FDA for clinical application.

Consequently, comprehensive investigation into blood-based

biomarkers holds considerable importance for melanoma patients

undergoing immune checkpoint inhibitor (ICI) therapy, potentially

paving the way for innovation in personalized medicine.

Researchers conducted single-cell RNA expression and protein

sequencing (REAP-Seq) on longitudinally collected tumor and

peripheral blood mononuclear cell (PBMC) samples before and

after one cycle of immune checkpoint blockade (ICB). Their

findings revealed that the abundance of tumor-infiltrating B cell

clones had a prognostic impact on overall survival, with patients

harboring a higher number of B cell clones in the tumor exhibiting

improved survival prognosis post-ICB treatment. Furthermore, the

CD14+ monocyte subset was implicated in a favorable response to
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ICB among melanoma patients (45). Single-cell analysis unveiled a

specific monocyte phenotype (CD14[+]CD16 (–)CD33[+]HLA-DR

[hi]) capable of predicting the response to PD-1 immunotherapy.

While certain bone marrow cell populations (e.g., CD33[low]

CD11b[+]HLA-DR[lo]) displayed no disparity in frequency

between responders and non-responders during treatment,

responsive patients showcased classical monocytes (CD14[+]

CD16[−]) expressing more migration and activation markers

(e.g., ICAM-1 and HLA-DR), suggesting their involvement in the

immune response during PD-1 immunotherapy. Moreover, a

decrease in pre-treatment T cell frequency correlated with

treatment response and survival rate. Single-cell analysis

demonstrated that CD8+ T cells exhibited enhanced cytolytic

function and reduced immature phenotype during treatment.

Despite gene expression not always mirroring protein levels,

blood analysis of multiple cancer patients evidenced a correlation

between immunotherapy and reduced frequency of immature-like

CD8+ T cells, indicative of potentially improved treatment

outcomes. Thus, specific CD8+ T cells and their markers in the

blood hold promise as potential indicators for predicting immune

therapy response (46).
5.2 Autologous (tumor-
associated) antibodies

Tumor-specific antibodies have been the subject of extensive

research in recent years. NY-ESO-1, a cancer/testis antigen, is

expressed in a subset of melanoma patients. A 2016 study

demonstrated that ipilimumab enhances the immune response

against this antigen, and such antibody response correlates with

the predictive value of ipilimumab treatment (47). Building on this,

Fässler, Mirjam, and their colleagues conducted a cohort

experiment hypothesizing that pre-existing antibodies against

more widespread antigens might correlate with the clinical

outcomes of melanoma patients undergoing PD-1/PD-L1 and

CTLA4 treatment. Their experimental findings indicated that

responders exhibited significantly stronger absorbance signals

against NY-ESO-1, MelanA/MART1, TRP1/TYRP1, and TRP2/

TYRP2, and these stronger signals were significantly associated

with treatment response. Hence, these antibodies hold potential as

novel biomarkers that could benefit metastatic melanoma patients

(48). However, a recent study refuted this conclusion, finding no

significant difference in serum levels of tumor-related antibodies

between responders and non-responders, even across different

overall survival groups (49). Further investigation is warranted to

ascertain the potential of tumor-related antibodies as biomarkers.

Moreover, some literature has highlighted dual-specificity

antibodies that enhance the targeting effect and cytotoxicity of

malignant melanoma by simultaneously targeting two antigens in

tumor and immune cells, thus reducing drug resistance and offering

a clinical treatment option (50, 51). Despite extensive recent

research on specific antibodies, there is limited literature on the

utilization of scRNA-seq techniques to aid in the study of predictive

antibodies. scRNA-seq can unveil the cellular origin, expression

patterns, and interactions of these autoantibodies with other
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components in the tumor microenvironment. For instance,

researchers identified tumor-related NK cells via single-cell

analysis, revealing impaired anti-tumor function, which correlates

with poor prognosis and resistance to immunotherapy, potentially

linked to autoantibody production. Additionally, single-cell analysis

can elucidate changes in systemic immunity during tumor

progression; researchers identified an adaptive NK cell subgroup

characterized by upregulation of specific pro-inflammatory

cytokines and MHC class II genes in the peripheral blood of

cancer patients (52). This nuanced understanding at the cellular

level can facilitate the discovery and validation of autoantibodies as

predictive biomarkers. Single-cell analysis offers insights into the

expression pattern and variation of tumor cell surface antigens,

aiding in the design and screening of more specific and effective

tumor antibodies. Therefore, further exploration of single-cell

analysis in studying autoantibodies is warranted.
5.3 Genetic characteristics

In recent years, many studies on melanoma cells using single-

cell technology have indicated that certain gene expressions are

associated with the metastasis and prognosis of tumors (Table 1).
5.4 Cellular biomarkers

scRNA-seq has been utilized to examine the composition of

tumor-immune cells in melanoma. Within the tumor, CD4 and

CD8 T cells display distinct transcriptional profiles, revealing a

gradual shift from initial effector states to dysfunctional T cell states

(24, 61). CD8 T cells that are functionally impaired, exhibiting

elevated levels of immunosuppressive molecules like LAG-3 and

PD-1, are strongly linked to tumor malignancy (62). In melanoma

research, scRNA-seq technology has aided in identifying various T

cell subsets, such as CD8+ T cells, CD4+ T cells, Tregs, and NK cells

are essential in the antitumor immune response. Their distinct

phenotypes and functional states can act as biomarkers to predict

how patients will respond to immunotherapy. For instance,

research indicates that CD8+ T cells display varying degrees of

dysfunction in the melanoma microenvironment, a phenomenon

known as T cell exhaustion (63). Inhibitory receptors, including

PD-1, CTLA-4, TIM-3, TIGIT, and LAG3, are commonly expressed

by exhausted T cells (64, 65) (Figure 1). Although they express

cytotoxic-related genes like IFNG, GZMB, and PRF1, indicating

an active effector state, exhausted T cells show diminished or

minimal expression of IL-2, tumor necrosis factor-alpha (TNF-a),
and T-box transcription factor (TBX21). Notably, a minor

subset of these exhausted CD8+ T cells exhibits elevated levels of

MKi67, a marker indicating active proliferation, implying that T cell

proliferation might precede the exhaustion process (66). scRNA-seq

technology has identified a distinct subset of CD8+ T cells that

express high levels of GZMK instead of GZMB. These GZMK+ T

cells either lack or have low levels of exhaustion-related markers

and have been detected in various tumor types, including
Frontiers in Immunology 05
TABLE 1 This table provides some key findings of gene expressions are
associated with the metastasis and prognosis of melanoma.

Study Key Findings Reference

Durante
et al.

- Identified EIF1AX and SF3B1 gene mutations as
potential predictive biomarkers associated with
Class 1 UM
- Genomic alterations and increased aneuploidy in
Class 2 tumors associated with an
immunosuppressive microenvironment
- LAG3 emerged as a major exhaustion marker in
UM, acting synergistically with the immune
checkpoint receptor PD1

(53)

Zhang
et al.

- Identified gene amplification on chromosome 4
and differentially expressed genes potentially
associated with immunotherapy resistance
- Enriched pathways related to EGFR and the
cell cycle

(54)

Liu et al.

- Established glycosylation-related gene (GRG)
features through the integration of extensive
RNA-seq and scRNA-seq data
- Identified AUP1 as a key gene affecting UM cell
survival, proliferation, and invasion
- Gene feature risk scoring system (GCNS)
identified as an important prognostic factor
for UM

(55)

Bakr
et al.

- Demonstrated that melanoma cells expressing
CHRNA1 are predominantly metastatic and
exhibit high expression levels of CHRNB1,
CHRNG, and genes associated with myogenesis/
cell cycle

(56)

Huang
et al.

- Treg cells become paradoxical contributors to
immune evasion. 29 genes significantly associated
with melanoma prognosis were identified among
the top 200 marker genes in the C2 TIGIT+ Treg
cell subset. Subsequently, employing the LASSO
method, the gene pool was refined, strategically
narrowing down the candidate genes to a set of
six key marker genes (MALAT1, TTC39C,
TNFRSF4, GBP5, B2M, and GBP2) as protective
genes.
- In C3 TNFRSF18+ Treg cells, TNFRSF4,
CTLA4, IL2RA, GBP2, PSMB9, GADD45A,
SH3BGRL, NAMPT, and PSMA2 were identified
as protective factors (HR <1), while NDUFA13,
CALM3, and PGAM1 were identified as high-risk
factors (HR >1).

(57)

Wang
et al.

- Utilized network embedding analysis of single-
cell sequencing data to identify hub genes ETS1,
TP53, E2F1, and GATA3 associated
with melanoma

(58)

Bakr
et al.

- Identified a melanoma prognostic signature
composed of 45 genes (MPS_45)
- MPS_45 demonstrated significant association
with survival in TCGA-SKCM and three other
melanoma datasets, independently predicting
melanoma patient prognosis with high potential

(59)

Xie et al.

- Established an m7G gene feature for predicting
survival and clinical outcomes in uveal melanoma
(UVM) patients using single-cell analysis,
weighted gene co-expression network analysis
(WGCNA), and Lasso-Cox regression <br> -
Identified the gene phosphoprotein membrane
anchor 1 (PAG1) as most closely associated with
patient prognosis

(60)
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melanoma. The prevalence of this GZMK+ T cell subset suggests it

may play a significant role in tumor immunity. Indeed, a higher

ratio of GZMK+ CD8+ T cells to exhausted T cells is positively

correlated with improved survival rates in patients with non-small

cell lung cancer and is linked to better responses to immune

checkpoint inhibitors in melanoma patients (Figure 1). Through

the utilization of scRNA-seq technology, researchers have also been

able to track the clonal dynamics of T cells, including clonal

expansion, tendencies of transcriptional state, enrichment in

specific tissues, and propensity to migrate to other tissues. These

insights aid in understanding the dynamic changes of T cells in the

tumor microenvironment and may unveil new therapeutic targets

(6). In the research on acral melanoma, it was found that the

quantity of Treg cells is more significant in AM (advanced

melanoma) compared to CM (conventional melanoma). And a

greater abundance of Tregs is linked to increased resistance to

immune therapy (54). Tissue-resident memory T cells (TRM) are

distinct T cell populations that remain in peripheral tissues,

particularly the skin. By examining scRNA-seq datasets from

human melanoma, researchers have developed a TRM signature

that effectively indicates the presence of tissue-resident memory

T cells in melanoma patients. TRM infiltration in melanoma
Frontiers in Immunology 06
correlates with extended overall survival and increased quantities

of T cells, NK cells, M1 macrophages, and memory B cells. This

finding suggests that the presence of TRM could signify a more

active TME, potentially enhancing patient outcomes (Figure 1) (67).

Single-cell analysis reveals that NF1LoF (neurofibromatosis 1 loss of

function) melanoma cells’ response to drugs is significantly

associated with the inhibition of both Ki-67 (a marker of cell

proliferation) and p-S6 (phosphorylation of ribosomal S6 protein,

an effector molecule of the mTOR signaling pathway). Ki-67 is a

nuclear protein associated with the cell cycle and commonly used as

a marker for cell proliferation; p-S6 is a key factor in cell growth and

survival. The inhibitory effects of these markers can serve as

indicators for predicting the sensitivity of melanoma to kinase

inhibitors. A study analyzed the expression of p-S6 and Ki-67 in

three NF1LoF cell lines after treatment with MTX-216, pictilisib,

trametinib, or ulixertinib, finding that all inhibitors reduced the

expression of these two markers, and the inhibitory effects

correlated with drug efficacy. Additionally, the study identified

the importance of SYK kinase in NF1LoF melanoma cells,

potentially becoming a novel predictive biomarker. The inhibitory

effects of SYK and its relationship with mitochondrial function may

help assess patients’ response to treatment. If SYK inhibitors can
FIGURE 1

The role of cell markers identified by single-cell analysis in the immunotherapy of melanoma.
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effectively suppress the growth and survival of melanoma cells, SYK

activity levels may serve as a biomarker for predicting treatment

outcomes (Figure 1) (68). Zhicheng Zhou et al. conducted integrated

transcriptomic and proteomic analysis of emerging immunooncology

targets in melanoma across multiple clinical cohorts receiving anti-

PD-1 therapy, finding that patients with tumors carrying high

expression of signal regulatory protein alpha (SIRPA) exhibited

favorable responses to anti-PD-1 immunotherapy. SIRPA expression

specific to tumors could serve as a more accurate biomarker compared

to overall SIRPA expression. This is because overall expression might

be influenced by signals from various cellular components present

within the tumor, potentially causing confusion (Figure 1) (69).
6 Discussion

The TME in melanoma is characterized by a complex interplay

between immune cells, cytokines, and tumor cells. Immune evasion

mechanisms, including immune checkpoint receptor dysregulation

and immune suppression by MDSCs and Tregs, contribute to tumor

progression and therapy resistance (70, 71). Single-cell analysis

elucidates these dynamics by identifying specific immune cell

subsets and their functional states, offering potential biomarkers for

therapy response prediction. Single-cell analysis can also construct a

prognostic model for SKCM (skin cutaneous melanoma) based on

relevant genetic markers in the immune microenvironment, such as

necroptosis-related genes [NRGs (72) & CRG (73)], to help SKCM

patients obtain precise clinical treatment strategies. Which opens up

new avenues for patient prognosis evaluation.

Moreover, scRNA-seq facilitates the discovery of novel

biomarkers beyond traditional approaches. For instance, circulating

tumor cells (CTCs) and immune cells in the bloodstream harbor

valuable information reflecting tumor dynamics and therapy

response (74, 75). Recent studies have identified specific cell

subsets, such as B cell clones and monocyte phenotypes, associated

with improved survival and therapy response in melanoma patients

undergoing ICI treatment (76). These findings underscore the

prognostic significance of circulating biomarkers and emphasize

the potential of scRNA-seq in personalized medicine.

Furthermore, scRNA-seq uncovers insights into cellular

mechanisms underlying therapy response and resistance. For

instance, the identification of functionally impaired CD8+ T cell

subsets within the TME elucidates pathways of immune evasion

and highlights potential targets for therapy intervention (62).

Additionally, the characterization of TRM correlates with a more

active tumor immune microenvironment and improved patient

outcomes, suggesting TRM abundance as a prognostic marker (67).

Despite these advancements, challenges remain in translating

single-cell analysis findings into clinical practice. Technical

limitations, such as capturing RNA-protein expression

discrepancies, and biological complexities, such as tumor

heterogeneity, pose obstacles to biomarker validation and

therapeutic targeting. To integrate the findings from single-cell

analysis into clinical practice for personalized melanoma

treatment, the following potential obstacles need to be overcome:

the complexity of technology translation, the consistency of data
Frontiers in Immunology 07
interpretation, and the reliability of clinical validation. These

obstacles need to be addressed through multidisciplinary

collaboration and continuous technological development. Further

research is needed to overcome these challenges and harness the full

potential of single-cell analysis in melanoma immunotherapy.

In conclusion, single-cell analysis represents a revolutionary

approach in advancing melanoma immunotherapy through the

identification of predictive biomarkers, elucidation of therapy

mechanisms, and characterization of the tumor immune

microenvironment. By unraveling the intricacies of melanoma

biology at the single-cell level, this technology holds promise for

improving patient outcomes and shaping the future of

precision oncology.
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