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Exploring common pathogenic
association between Epstein Barr
virus infection and long-COVID
by integrating RNA-Seq and
molecular dynamics simulations
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1MOE Key Laboratory for Cellular Dynamics and Division of Life Sciences and Medicine, University of
Science and Technology of China, Hefei, Anhui, China, 2Department of Physics, University of Science
and Technology of China, Hefei, Anhui, China
The term "Long-COVID" (LC) is characterized by the aftereffects of COVID-19

infection. Various studies have suggested that Epstein–Barr virus (EBV)

reactivation is among the significant reported causes of LC. However, there is

a lack of in-depth research that could largely explore the pathogenic mechanism

and pinpoint the key genes in the EBV and LC context. This study mainly aimed to

predict the potential disease-associated common genes between EBV

reactivation and LC condition using next-generation sequencing (NGS) data

and reported naturally occurring biomolecules as inhibitors. We applied the

bulk RNA-Seq from LC and EBV-infected peripheral blood mononuclear cells

(PBMCs), identified the differentially expressed genes (DEGs) and the Protein–

Protein interaction (PPI) network using the STRING database, identified hub

genes using the cytoscape plugins CytoHubba and MCODE, and performed

enrichment analysis using ClueGO. The interaction analysis of a hub gene was

performed against naturally occurring bioflavonoid molecules using molecular

docking and the molecular dynamics (MD) simulation method. Out of 357

common genes, 22 genes (CCL2, CCL20, CDCA2, CEP55, CHI3L1, CKAP2L,

DEPDC1, DIAPH3, DLGAP5, E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8,

DEPDC1, IL6, RETN, MMP2, LCN2, and OLR1) were classified as hub genes, and

the remaining ones were classified as neighboring genes. Enrichment analysis

showed the role of hub genes in various pathways such as immune-signaling

pathways, including JAK-STAT signaling, interleukin signaling, protein kinase

signaling, and toll-like receptor pathways associated with the symptoms

reported in the LC condition. ZNF and MYBL TF-family were predicted as

abundant TFs controlling hub genes' transcriptional machinery. Furthermore,

OLR1 (PDB: 7XMP) showed stable interactions with the five shortlisted refined

naturally occurring bioflavonoids, i.e., apigenin, amentoflavone, ilexgenin A,

myricetin, and orientin compounds. The total binding energy pattern was

observed, with amentoflavone being the top docked molecule (with a binding

affinity of –8.3 kcal/mol) with the lowest total binding energy of −18.48 kcal/mol.

In conclusion, our research has predicted the hub genes, their molecular
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pathways, and the potential inhibitors between EBV and LC potential pathogenic

association. The in vivo or in vitro experimental methods could be utilized to

functionally validate our findings, which would be helpful to cure LC or to prevent

EBV reactivation.
KEYWORDS

RNA-Seq, long-COVID, hub-genes, EBV-reactivation, bioflavonoids, molecular docking,
molecular dynamics simulation
1 Introduction

After the declaration of the coronavirus disease 2019 (COVID-

19) pandemic, the world continues to face its aftereffects (1). There

is considerable knowledge available on COVID-19 that focuses on

the acute illnesses linked to it (2–4); overall, it is also evident that

there are tremendous long-term consequences (5, 6) associated with

it. Even after recovering from COVID-19, there has been a

population of patients who are continuously experiencing

symptoms such as breathlessness, cough, fatigue, and neurological

symptoms (7); this condition was termed “post-COVID syndrome”.

Symptoms may last from a few weeks to several months, severely

impacting everyday life activities. In recent times, knowledge on

post-COVID syndrome has increased dramatically, which explored

clinical manifestations such as pulmonary, neurological, and

thromboembolic complications (5, 8–11).

An alternative term called Long COVID (also referred to as

“post-acute sequelae of COVID-19”) has recently evolved, which is

characterized by a multisystemic condition ranging from severe to

mild symptoms like severe acute respiratory syndrome coronavirus

2 (SARS-CoV-2) infection. Several reports show that at least 65

million individuals globally have long COVID (LC) (12, 13).

LC cases have been reported in all ages, and the severity level varies

in different age groups; the age range 30–50 years has the highest

percentage of diagnosis (14). It is characterized by multiple vital organs

malfunction, including cardiovascular, thrombotic, and

cerebrovascular disease (15), type 2 diabetes (16), and chronic forms

of fatigue including myalgic encephalomyelitis/chronic fatigue

syndrome (ME/CFS) and dysautonomia, especially postural

orthostatic tachycardia syndrome (POTS) (17–20). The duration of

these chronic symptoms can last from months to years, and in chronic

conditions. The difference between COVID-19 and LC is based on the

duration as well. The duration of ongoing COVID-19 is approximately

4–12 weeks, and if the COVID-19 symptoms last for more than 12

weeks, it is referred to as post-acute sequelae of COVID-19 (PASC) or

LC (21, 22).

Several studies have formulated various hypotheses regarding

the pathogenesis of LC such as persisting reservoirs of SARS-CoV-2

in tissues (23) after the COVID infection and immune

dysregulation; pathogen reactivation, including herpesviruses such

as Epstein–Barr virus (EBV) and human herpesvirus 6 (HHV-6), is
02
another potential cause of LC (24). Other causes include the impact

of SARS-CoV-2 on the set of naturally occurring microbiomes

within the cells, blood clotting in micro vessels with endothelial

dysfunction (25, 26), and dysfunctional signaling in the brainstem.

Multiple studies have reported that during the LC condition, the

reactivation of EBV infection has been among the most reported

phenomena. This reactivation process has also been associated with

the severity of the COVID-19 illness (27, 28). Various longitudinal

multi-omics studies have suggested that other risk factors such as

type 2 diabetes, SARS-CoV-2 RNAemia, specific autoantibodies,

and EBV viremia (29) associated with LC development. EBV

infection causes various central nervous system illness conditions

such as viral meningitis, encephalitis, sleep disorders, psychosis, and

multiple sclerosis (30, 31). Previously, a study from Wuhan

University (China) was carried out in which the population

sample was co-infected with SARS-CoV-2 and EBV. The risk of

severe symptoms was approximately threefold increased compared

to the samples infected with SARS-CoV-2 only (32), indicating that

EBV infection reactivation might directly contribute to increase in

the severity of clinical symptoms.

Furthermore, Gold et al. (33) have reported that general

symptoms of LC, such as fatigue, insomnia, headaches, myalgia,

and confusion, might be because of the EBV reactivation by

SARS-2CoV-2 infection. Another study that used COVID-19

patients (n = 309) has demonstrated that the EBV virus is greatly

associated with LC symptoms (33). Taken together, the relationship

between EBV reactivation and LC symptoms has been potentially

established (33, 34).

Most studies have used just one-dimensional data, for

example, either the observational data or the clinical/serological

data, to prove their co-infection biological hypothesis, which is

insufficient to provide a solid explanation for the pathogenic

association mechanism in EBV-LC scenario and potentially

associated genes (35–37). In the recent past, various scientists

have applied next-generation sequencing (NGS) data especially

the bulk RNA-Seq to decipher the association between two co-

infections (38–41) and proposed the hub genes that could be used

as biomarkers.

In this study, we have attempted to identify the common hub-

genic profile between LC and EBV infection. We applied next-

generation sequencing data, mainly RNA-Seq from the EBV-
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infected and LC-positive PBMCs combined with the protein

structural bioinformatics data, and protein three-dimensional data

using cutting-edge techniques such as molecular docking and

dynamic simulations to explore the potential pathogenic

correlation between EBV infection and LC at the genomic and

protein structural level. We investigated the interaction of small

molecules, specifically the bioflavonoids, with the shortlisted key

hub genes to assess their potential as a drug candidate in mitigating

the effects associated with LC and EBV infection scenarios. The

results of this study will help us to understand the potential

pathogenic connection and could serve as a tool to open a new

therapeutics avenue against LC disease-associated manifestations.
2 Materials and methods

2.1 Data source

The bulk RNA-Seq from human peripheral blood mononuclear

cells (PBMCs) of LC (42) 8th month post-SARS-CoV-2 infection,

non-LC, and the bulk transcriptome of 4th day of post-EBV-infected

PBMCs (43). The criteria of data selection were based on the

patients with no treatment/wild samples. The high-resolution

crystal protein structures of shortlisted drug target gene were

downloaded from the RCSB Protein databank, and 3D structures

of bioflavonoid small molecules were retrieved from PubChem

(https://pubchem.ncbi.nlm.nih.gov/). The complete details of

input data are given in Supplementary Table S1.
2.2 RNA-sequence data analysis

Sequence Reads Archives (SRA) files of RNA-Seq data from LC

and EBV+ infection samples were converted into fastq raw format

using fastq-dump and subjected to quality control analysis. The

adapters, linkers, and overrepresented and poor-quality reads were

evaluated and removed using TrimGlore (44). Refined raw reads

were subjected to mapping against Human Genome 38 assembly

(Hg38). STAR align (45) was used for the mapping at default

parameters, and post-mapped files were formatted and sorted using

SAMtools (46). The percentage of mapped reads are shown in

Supplementary Table S2. It is crucial to count the number of

mapped reads against the reference genome; we have used

featureCounts (47), a part of the subreads platform, to quantify

the mapped reads. FeatureCounts uses hg39_annotation.gtf

bamfiles from normal and diseased samples as an input to

quantify the reads at the gene level (47).
2.3 Identification of differentially expressed
genes using DESeq2

After the mapped reads quantification, the next step is

identifying the DEGs between conditions such as normal and

diseased samples. The DESeq2 R-Package in R-studio package

uses the shrinkage estimation for the read's dispersion and fold
Frontiers in Immunology 03
changes (FCs) among the sample; besides that, it also estimates the

p-values and expression mean (48). First, the samples were

normalized in a way that only the genes with greater than 10

reads counts were used for the DEGs analysis. We have selected two

parameters, i.e., Log2FoldChange > 1 and p-values<0.05, to define

the gene expression. The common DEGs (cDEGs) between LC and

EBV+ infection samples were extracted using the “Venn”

R-package. The final output files were exported in the excel format.
2.4 Gene ontology analyses

Significant cDEGs were subjected to identify functional

categories such as gene ontology (GO), including biological

process (BP), cellular component (CC), and molecular functions

(MF), and underlying pathways like Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichments in the web-based

platform ShinyGo 0.80 version (49) (http://bioinformatics.

sdstate.edu/go/) that uses the list of DEGs as an input. To ensure

the quality of results, we used false discovery rate (FDR) values

> 0.05 as a threshold and the top 20 enrichment terms

were visualized.
2.5 Protein–protein interaction
network analysis

Cells perform various complex functions mediated by the

regulatory interactions among several proteins. Therefore, to get an

insight into the involvement of common genes in PPIs, we used the

STRING database (https://string-db.org/). This database collects data

from different sources via text-mining from published literature,

computational predictions using co-expression information, and

conserved genomic landscape of genes (50). We have used official

symbols of common genes as an input to predict their PPI network.

PPIs with an interaction score > 0.4 were refined and used for

downstream steps.
2.6 Hub gene identification and
transcription factor enrichment analysis

In the genome, some genes are involved in the formation of

frequent interactions with other genes; such genes are called hub

genes. These genes are essentially involved in the formation of a

regulatory network and play a crucial role in gene regulation and

biological processes (51). Hub genes were detected using the

CytoHubba plug-in followed by conformation through different

modules (degree) (52). CytoHubba takes PPI network as an input;

therefore, the output of STRING was exported and visualized in

cytoscape's plug-in CytoHubba (53). Molecular Complex Detection

(MCODE) (degree cutoff = 2, max depth = 100, node score cutoff =

0.2 and K-core = 2) was applied for the clustering analysis (54)

followed by the ClueGo to carry out KEGG and GO analysis (55).

Since gene expression is mainly controlled by transcription factors

(TFs), it is thus worthy to perform a TF analysis for the hub genes to
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get an insight into the correlation between hub gene expression and

TF enrichment. Therefore, we used the EnrichR (56) platform to

identify the TF-lof enrichment and ENCODE TF ChIP-

Seq enrichment.
2.7 Molecular docking

Molecular docking is an efficientmethod to identify the interactions

between proteins and small molecules. The three-dimensional protein

structure's selected hub gene OLR1 (PDB ID: 7XMP) was retrieved

from the RCSB protein data bank (https://www.rcsb.org/) in pdb

format. The attached ions, solvent, and unsaturated molecules

were removed using the Chimera visualization tool (57); protein

was prepared using Chimera's Dock Prep function, and hydrogen

and other missing atoms were added and subjected to molecular

docking using the PyRx software (58). The small bioflavonoids

molecules library of bioflavonoids was downloaded from PubChem

database (https://pubchem.ncbi.nlm.nih.gov/) and converted into

the pdb format. The AutoDock suite was applied, the small

molecules were imported as a library, their energies were

minimized using uff force field, and conjugate gradients were used

as the optimization algorithm saved in pdbqt format. The maximize

grid was selected and blind docking was performed. The best

docking pose was selected based on the lowest binding energy

and root mean square deviation (RMSD) value. The two-

dimensional view of interacting residues was visualized using

Discovery Studio (59).
2.8 Molecular dynamics simulations of
receptor–ligand complexes

MD simulations were conducted using AMBER (60) and

GROMACS software suites (61) with the Amber force field (62).

Initial coordinates and topology files of both receptor and ligands

were generated by using Gaff force field 2 and ff99SB force field,

respectively. Both ligands and proteins were prepared via the

Antechamber and the Leap program of Amber tools. The particle

mesh Ewald method was applied to compute the long-range

electrostatic interactions while the short-range interactions, such as

van der Waals interactions, were calculated with a default cutoff value

(1.0 nm). The system was solvated using the OPC water model with a

size of 12.0 Å. The GROMACS.top and.gro files were generated for

the MD simulations run using the amb2gro_top_gro.py tool, which

were based on the AMBER prmtop and inpcrd files (60). Energy

minimization was performed on the receptor–ligand complexes and

unbound proteins using the GROMACS v. 2021.4-plumed-2.8.0

software package. The initial 2,000 steps involved minimizing

steepest descents, while the subsequent 2,000 steps were for

minimizing the conjugate gradients. The temperature equilibration

was performed at 300 K temperatures for 50,000 steps. After the

equilibration step, the prepared systems of both apo and ligand-

bound complexes were subjected MD simulations for 100 ns at 300 K

temperature and 1 atm pressure. Several downstream analyses such as

RMSDs, radius of gyration (Rg), root mean square fluctuations
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(RMSFs), hydrogen bonding analysis, and energy decomposition

were carried out. The Bio3D (63) r-package was used to calculate

the principal component analysis (PCA) and the dynamic cross-

correlation map (DCCM). The analysis output graphs were plotted

using the r-package ggplot2. Molecular mechanics Poisson–

Boltzmann surface area (MMPBSA) is the remarkable method used

to calculate the binding free energy (in kcal/mol) of a complex

between protein and small molecules (64). The determination of

the binding free energy denoted as DGbind between a ligand and a

protein in the formation of a complex in aqueous solution is based on

the disparity stated as follows:

DGbind=Gcomplex−(GProtein−GLigand) (1)

DGbind= DGgas+DGsol+TDS (2)

DGgas= Bond+Angle+Dihed+EEL+VDWAAL (3)

DGsol=DEGB+DESURF (4)
3 Results

3.1 Mapping and analysis of differentially
expressed genes

The processed clean raw reads were mapped against the human

genome reference; mapping reads percentage statistics are

presented in Supplementary Table S2. The mapped output files

are saved in bam files format, the low-quality mapped reads were

filtered out with the “-bq1” parameter, and the resulting files were

sorted and saved again in new bam files. Filtration and sorting were

performed using SAMtools (46). In LC data, nearly ~22,500 genes

were found to be expressed. In order to differentiate between the up-

and downregulated genes, we used the following criteria: log2FC > 1

and log2FC< −1, and p-value<0.05, respectively. Out of ~22,500

expressed genes, 866 genes were found to be upregulated and 330

genes were found to be downregulated while rest of the genes did

not meet the criteria of significance and considered as outliers. In

EBV samples, a total of ~19,700 genes were detected as expressed

genes, and similar to LC samples, up- and downregulated genes

were detected in EBV data with the following criteria: log2FC > 1,

log2FC< −1, and p-value<0.05, respectively. A total of 3,075 genes

fulfilled the upregulation criteria of DEGs, where 2,806 genes were

found to be downregulated. The rest of the genes did not fulfill the

criteria specified and were considered as non-significant. The

genome-wide upregulated and downregulated genes of both LC

and EBV-infected samples are shown in Figure 1. Collectively, we

found that in LC and EBV-infected samples, several genes were

dysregulated. Detection of gene expression within the samples is

important because it enables us to get more explicit details about the

expression pattern of each replicate. Therefore, we selected the top

genes from the genome-wide mRNA samples and plotted them in

an expression heatmap (Supplementary Figure S1). The selection of

genes was based on the log2FC and p-values, together. Among the
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top 30 genes, 25 genes were found to be upregulated in non-LC

samples while 5 genes [FST (65), OR7D2 (66), SERPINE1 (67),

TMEM176A (68), and TMEM176B (69)] were dysregulated in the

LC sample cluster. The association of these five genes with LC/

COVID-19 has been previously reported by various scientists via

bulk RNA-Seq and genomic data analysis. A clinical genomic data

study has reported that follistatin (FST), which is an inhibitor of the

follicle-stimulating hormone (FSH), has been upregulated (36).

In EBV samples, the top 20 genes were plotted, and 18 genes

were found to be downregulated on the 4th day of post-EBV

infection samples, while two genes ZBED2 and RGS16 were

among the upregulated ones in EBV-infected samples.
3.2 Protein–protein interaction analysis of
common genes and identification of
hub genes

Significant DEGs from both samples (7,609 genes from EBV

samples and 839 genes from LC samples) were intersected; 357

common/overlapped DEGs between two samples were extracted

and considered as the common signature genes between both

diseases. The intersection criteria were based on the gene names

and were plotted in a Venn diagram as shown in Figure 2A. The

enrichment analysis of the cDEGs showed that only five genes were

functionally enriched in glutathione transferase activity with an

FDR of 4.1E-03 and 24 genes were enriched in calcium ions binding

with an FDR of 1.5E-03. The common genes were subjected to PPI

analysis using the STRING website. The network with the

interaction score > 0.4 from the STRING server was exported to

cytoscape's plugin CytoHubba to identify hub and neighboring

genes. A total of 125 genes were involved in the formation of PPIs

(Supplementary Figure S2). Out of these 125 genes, 43 were

classified as hub genes [with more frequent edges (degree > 5)

and strings] predicted by CytoHubba using multiple built-in
Frontiers in Immunology 05
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genes were classified as neighboring genes as shown in Figure 2B.

The hub genes were further broken down into clusters via the

MCODE plugin. Out of the 43 hub genes, 28 were clustered together

in cluster 1, while the rest of the genes were clustered together in

cluster 2 as shown in Figure 3. In cluster 1, CCL2, MMP2, IL6,

CXCL8, CCL20, NRCN1, and CDH2, had the highest number of

edges. In cluster 2, NEK2, TOP2A, CDCA2, CEP55, DEPDC1,

DIAPH3, PBK, and DLGAP5 had the highest number of edges.

These genes were highlighted with a purple bubble as presented in

Figure 3A. Since these genes have an ability to interact frequently, it

is worthy to study in detail their role in generating any pathogenic

association between LC and EBV reactivation.

We were interested to determine their role in biological

pathways. Most of the genes exhibit their biological involvement

in the pathways shared by LC and EBV infection, for example, the

behavioral maintenance-related pathways. Hub genes were

subjected to GO analysis; functional analysis, including biological

process, cellular components, and molecular functions, and KEGG

pathway analysis were performed as plotted in Figure 3B. It was

found that the hub genes were involved in the following GO terms:

(1) growth factor receptor binding, (2) maintain external

encapsulating structure, (3) protein kinase B signaling, (4) social

behavior associated, (5) regulation of chemotaxis, (6) regulation of

biological processes involved in symbiotic interactions, and (7)

cellular response to fibroblast growth factor stimulus.
3.3 Differential expression of hub genes in
LC and EBV and analysis of
transcription factors

Since hub genes have gained a great functional importance, we

have identified their individual gene expression in both LC and EBV

samples. We chose the list of genes with frequent edges and
FIGURE 1

Identification of differentially expressed genes (DEGs) in LC and EBV-infected RNA-Seq data. Up and down regulated genes are represented by a
single dot. (A) DEGs from 8th month post-SARS-CoV-2-infected PBMCs (42). (B) DEGs from 4th day post-EBV-infected PBMC samples (43). Log2FC
values are plotted on the x-axis and −Log10 p-values are shown on the y-axis. Green dots represent the genes that are greater than log2FC>1, gray
dots are non-significant genes, red dots show the genes that fulfill the criteria of p-values< 0.05 and log2FC collectively, and blue dots represent
genes with p-value<0.05 only.
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investigated their individual gene expression in both LC and EBV

samples. We selected the genes with dense edges (degree > 5) and

identified their gene expression in both conditions. We have found

that CDCA2, CEP55, CKAP2L, DEPDC1, DIAPH3, DLGAP5, E2F8,

FGF1, NEK2, PBK, and TOP2A were upregulated in both LC and

EBV infection. Only CCL2, CHI3L1, and EGR2 showed the opposite

expression, i.e., higher gene expression in EBV sample and lower gene

expression in LC. The expression of MMP2 and RETN was

upregulated in LC- and downregulated in EBV+ infection samples.

On the other hand, CCL20, CCL3, CXCL8, DEPDC1, DIAPH3,

DLGAP5, E2F8, IL6, LCN2, and OLR1 were depleted in both EBV+

infection samples and LC data. The expression was calculated on the

basis of FC value. The range that we observed was from −6 to +6. In

EBV infection, CDCA2, CEP55, CKAP2L, DEPDC1, DIAPH3,

DLGAP5, FGF1, PBK, TOP2A, CCL3, LCN2, MMP2, OLR1, IL6,

and LCN2 were the genes exhibiting a significant change of expression

(based on log2FC) as compared to others. However, in LC samples,

only the FGF1 gene was observed to produce a higher log2FC as shown

in Figure 4A. The gene expression is controlled by the TFs.

Next, we performed the TF enrichment analysis in selected hub

genes. It was found that out of 22 genes, only 17 were enriched with

multiple TFs and most of the genes shared a common TF. For
Frontiers in Immunology 06
example, the TF ARNTL2 controlled multiple genes such as EGR2,

CCL2, DLGAP5, CEP55, E2F8, PBK, TOP2A, DEPDC1, CDCA2,

NEK2, CKAP2L, DIAPH3, CXCL8, and IL8. Additionally, we have

found that TFs belonging to the Zinc-finger protein family and MYB

transcription family were among those associated with the 10 hub

genes. Previous studies have also shown the association of these

family protein with COVID-19's manifestations and EBV infection as

shown in Figure 4B. DLGAP5, CEP55, E2F8, PBK, TOP2A,

DEPDC1, CDCA2, NEK2, CKAP2L, and DIAPH3 were reported

as the genes associated with the MYB and ZNF-TF families. Three

members of the ZNF-TF family, i.e., ZNF-215, ZNF-2670, and ZNF-

219, were predicted as the main TFs controlling the hub genes. In the

MYB family, MYBL1 and MYBL2 were the members identified as the

TFs showing the regulatory association with the hub genes. Since hub

genes are the key genes that are involved in controlling various

biological functions, it is essential to monitor their gene expression.

We identify the expression of hub genes and found that their

expression changes depending on EBV and LC conditions.

Furthermore, we identify the TFs involved in controlling these

hub genes; common TFs are shared by the genes that co-regulate in

EBV or LC, suggesting that these genes shared a common

transcriptional machinery. For example, the TF ARNTL2 is
FIGURE 2

Identification of common DEGs between LC and EBV-infected samples and PPI analysis. (A) Venn diagram showing the common genes between LC
and EBV samples. (B) The circos plot represents the PPI networks of common genes having an interaction score > 0.4 (medium interaction score)
created by the STRING database. The left panel shows the hub genes predicted by the Cytohubba plugin and the right panel indicates the
neighboring genes or non-hub genes. Each green line shows one string and purple circles show the nodes.
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associated with 14 out of 17 hub genes in the list (Figure 4B), and it

was observed that these genes were either upregulated or

downregulated together in EBV and LC.

3.4 Molecular docking with bioflavonoids

In this study, we have shortlisted the hub genes that have a direct

association with SARS-CoV-2 infection-related diseases and EBV
Frontiers in Immunology 07
infection. The selection criteria were solely based on the literature

survey. We have used Lectin-like Ox-LDL receptor 1 (OLR1) and

searched their corresponding proteins (PDB ID: 7XMP) from PDB

with 1.27 Å resolution (Figure 5). The protein was docked against

biological active compounds mainly in the bioflavonoid library. It was

previously reported that bioflavonoids have a strong antiviral and

antitoxic ability (70). The top five drug/compounds were used for

further analysis (Supplementary Figure S3). In the OLR1–apigenin
FIGURE 3

Hub genes clustering based on the number of nodes and enrichment analysis. (A) Clustering analysis was performed by applying different modules in
MCODE, (degree of connection) was applied, and two clusters were detected. The size of a ball indicates the number of associated nodes (smallest
degree = 5); a higher number has a bigger size (highest degree = 25). Each green line show one string and purple circles show the nodes.
(B) Enrichment analysis of hub genes, in which each green ball represents the hub gene and its involvement in various biological functions;
significant terms were assessed using adj. p-value<0.05. The size of the node indicates the significance of GO terms. The yellow line shows the
nodes interacting with each other.
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complex, the binding energy was −7.6 kcal/mol, and Ser207 and

Arg209 mainly formed hydrogen bonds with apigenin (Figure 6A).

Amentoflavone docked with OLR1 protein and showed a binding

energy of −8.3 kcal/mol. Two amino acids, Phe158 and Phe261, were

involved in pi bonds, while Ser159 and Tyr179 formed conventional

hydrogen bonds as shown in Figure 6B. In the OLR1–ilexgenin A

complex, the binding energy was −7.6 kcal/mol. A total of 13 amino

acids were involved in the interaction formation. Out of these 13

bonds, two residues, i.e., Trp217 and Glu218, formed hydrogen bonds

as represented in Figure 6C. In the OLR1–myricetin complex, the

binding energy was −6.5 kcal/mol and a total of 16 amino acids were

involved in the interaction formation. Out of these 16 bonds, three
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amino acid residues, i.e., Val230, Leu223, and Pro211, formed

hydrogen bonds and the three-dimensional view and bound

residues are shown in Figure 6D. In the OLR1–orientin complex,

the binding energy between ligand and receptor was −7 kcal/mol. A

total of 15 amino acids were involved in the interaction formation.

Three residues, i.e., Pro211, Val230 and Leu223, formed hydrogen

bonds, and three amino acids, Tyr213, Pro214, and Trp215, formed

the pi bonds. Other residues such as Ser212, Arg208, Pro225, Pro222,

Leu216, His226, Phe228, and Arg229 were bound with orientin via

van der Waals interactions as presented in Figure 6E. Overall, a

variety of bonding was observed, such as hydrogen bonding, van der

Waals interactions, sulfur interactions, pi bonds, and C–H bonding; a

detailed list of bonding is shown in Table 1.
3.5 Molecular dynamics simulations
analysis of OLR1 protein and complexes

The molecular changes and stability of small-molecule

inhibitors–OLR1 complexes were investigated from their

corresponding 100-ns MD simulation trajectories. The trajectories

obtained from 100-ns simulations for the hub gene protein

complexed with apigenin, amentoflavone, ilexgenin A, myricetin,

and orientin systems were prepared using the Antechamber of the

Amber program (62). The atom-positional RMSD generated by

roto-translational least-squares fitting is perhaps the most widely

used for structural comparison and stability measure.

We analyzed the structure stability of the backbone of protein in

the complexes and in unbound form. The structure remained intact

throughout the simulation time of 100 ns (Figure 7). RMSD plots of

OLR1 complexed with the five ligands showed the fluctuations

ranging between ~0.1 and 0.4 Å. All the five ligand-bound

complexes up to 100 ns remain intact. However, the protein

bound with myricetin showed some fluctuation from ~60 to 70

ns comparatively. Later, another fluctuation was observed at 75 to

80 ns followed by a stable conformation. After myricetin, orientin
FIGURE 5

OLR1 protein structure. The 3D structure of OLR1 gene encoded
protein (PDB ID: 7XMP) was retrieved from RCSB PDB. The ribbon
representation of OLR1 is visualized in UCSF chimera. The start and
end of the protein structure is labeled “S” and “E”, respectively.
FIGURE 4

Individual gene expression and TF analysis. (A) Hub gene expression in EBV and LC samples. Pink represents EBV infection samples, and forest green
indicates the LC samples. (B) TF-enrichment analysis for the hub genes. The red box represents the presence of TF, and the white box represents
the absence of TF.
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FIGURE 6

Binding analysis of OLR1 protein and small molecules. (A) The surface view of docked complex (left panel) between Apigenin and OLR1 protein (PDB
ID: 7XMP). The ligand is shown in black and the receptor protein is shown in gray. (B) Amentoflavone and OLR1 protein. The ligand is shown in deep
red. (C) The surface view of the docked complex (left panel) between Ilexgenin A and OLR1 protein. The ligand is shown in deep green. (D) Myricetin
and OLR1 protein. The ligand is shown in light blue. (E) Orientin and OLR1 protein. The ligand is shown in pink. The bound amino acids are labeled in
black. Two-dimensional representation of docked residues is shown in the right panel. The drug molecules are shown in “stick” representation. The
bound residues are shown in different colors, each color representing different types of interactions. The dotted lines represent the bonds.
TABLE 1 Docking results for lectin like Ox-LDL receptor 1 (PDB ID: 7XMP).

Sr.
no.

Compound
(Pubchem CID)

Binding affinity
(kcal/mol)

Interactions at the binding site

H-bond
interaction

Van der Waals interactions Other
interactions

1 Apigenin (5280443) −7.6 Ser207, Arg209 Ser240, Glu166, Trp165, Arg208, Pro214, Tyr213,
Gly220, Glu218

Cys256, Leu216

2 Amentoflavone (5281600) −8.3 Ser159, Tyr197 Asp147, Ile149, Ser198, Phe202, Phe200, Ser160 Phe261,
Phe158, Ala194

3 Ilexgenin A (21672638) −7.6 Trp217, Glu218 Arg208, Leu216, Glu218, Gly220, Asp219, Trp165,
Glu166, Cys256, Cys243, Ser240

Arg209

4 Myricetin (5281672) −6.5 Val230,
Leu223 Pro211

Ala233, Arg229, Phe228, His226, Leu216, Pro222,
Pro225, Arg208, Ser212

Trp215,
Tyr212, Pro214

5 Orientin (5281675) −7 Pro211,
Leu223, Val230

Ser212, Arg208, Pro225, Pro222, Leu216, His226,
Phe228, Arg229, Ala233

Trp215,
Tyr212, Pro214
F
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showed slight fluctuations; overall, the complexes exhibit the

compactness of a complex structure. From the RMSD analysis of

ligands, all ligands remained intact up to 25 ns, and no motion was

observed, except for the ilexgenin A, which showed larger

fluctuations in RMSD values, from 0.5 to 1 nm. It remained

steady at the same value until 80 ns. It was also observed that the

ligands' moment comes down to nearly ~0.6 nm and then remained

steady until 100 ns. After ilexgenin A, the second ligand apigenin

showed changes in ligand moment from ~30 to 60 ns. It remained

steady until the end of simulation. The third ligand amentoflavone

showed changes in ligand moment from 45 to 65 ns. Overall, the

fluctuation rate was from 0.0 to 1.5 nm, while the other ligands did

not exhibit any significant changes in moment (Figures 7A, B).

The RMSF analysis, as depicted by the RMSF graph (Figure 7C),

elucidates the dynamic characteristics of specific regions within a

protein structure. The RMSF graph shows that amino acid residues

of the protein exhibit a higher degree of movement or flexibility.

Quantitatively, these fluctuations were observed to extend up to 0.8

nm. Overall, the fluctuations reached 0.2 nm. Further inspection of

the RMSF data reveals that the residues constituting the active site,

as well as those in its vicinity, demonstrate considerable stability,

with an average RMSF value of approximately 0.17 nm.

Additionally, the analysis highlights a specific loop region,

spanning from His226 to Cys243, exhibiting fluctuations up to

0.3 nm.

All five complexes showed a similar pattern in terms of Rg

value. A noteworthy observation from the analysis is that all five

complexes exhibited a consistent pattern regarding their Rg values

(Figure 7D). This consistency in Rg values across the different

complexes suggests a level of long-term stability and compactness

within their structures, indicating that, despite the dynamic

environment of the MD simulations, these complexes maintain

their structural integrity over time. Specifically, the myricetin
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complex was identified to exhibit notable fluctuations from 60 to

80 ns within the MD simulation trajectory.

The number of hydrogen bonds formed between ligands and

protein target is shown in Figure 8. Myricetin and orientin formed

high average numbers of hydrogen bonds compared to the other

ligands. Myricetin formed five hydrogen bonds and orientin formed

six hydrogen bonds with OLR1, whereas apigenin, amentoflavone,

and ilexgenin displayed three, four, and four average hydrogen

bonds, respectively. The average amount of hydrogen bonds

produced over the whole simulation time may be helpful in

determining which molecule is continually producing the greatest

number of hydrogen bonds. Furthermore, we have identified the

individual residues involved in the hydrogen bond formation across

100 frames. The residues mainly involved in two kinds of hydrogen

bonding, such as bonding between backbone and side chain or

bonding between side chain and side chain, were observed and are

shown in Supplementary Figure S4. Among all the complexes, the

number of residues involved in the hydrogen formation varies based

on the attached ligands. Additionally, the lifetime of these hydrogen

bonds was also examined, with specific criteria for analysis,

including a cutoff radius of 0.35 nm and an angle cutoff of 120° (71).

The MMPBSA net binding energy order from the highest to

lowest stability was as follows: amentoflavone −18.48 kcal/mol,

myricetin −14.13 kcal/mol, orientin −13.75 kcal/mol, ilexgenin A

−11.07 kcal/mol, and apigenin −9.55 kcal/mol (Figure 9). Among all

five complexes, amentoflavone, myricetin, and orientin had

minimum binding energy, indicating these compounds as

effective inhibitors (72). The lower binding energies for these

complexes suggest that they have a higher potential to effectively

inhibit the target (73), making them significant candidates

for further investigation in drug discovery efforts against the

OLR1. The complete details of binding energies are given in

Supplementary Table S3.
FIGURE 7

Protein and ligand complex stability analysis. (A) RMSD of OLR1 protein backbone, (B) RMSD of bound ligands. The y-axis shows the fluctuation
values in nanometers (nm), and the x-axis represents the simulation time frames in nanoseconds (ns). (C) RMSF of protein backbone, the x-axis
represents the total number of residues, which are 127 (141–270). (D) Radius of gyration. The y-axis shows the fluctuation values in nanometers
(nm), and the x-axis represents the simulation time frames in nanoseconds (ns). Each ligand is represented by the different colors.
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PCA was applied to calculate the motion of OLR1 protein in the

bound and unbound state with the ligands (63). Additionally, the

correlations between the conserved region of the protein were

determined by computing a dynamic cross-correlation matrix

(DCCM) (63) (Supplementary Figure S5). The PC1, PC2, PC3,

and eigenvalues of apo were plotted against the respective

eigenvector index for the first 20 modes of motion. Overall

protein movement was controlled by eigenvectors, especially the

higher ones, and the top five eigenvectors in our system

demonstrated dominant movements with eigenvalues of 16.6%–

60.6% while the remaining eigenvectors had lower eigenvalues.

According to the PCA plot, the PC1 cluster retained the highest

variability of 16.62%, PC2 exhibited 9.75% variability, while PC3

showed minimal variability (8.67%) (Supplementary Figure S6).
4 Discussion

The pathogenic association between EBV infection and LC has

been previously reported by various studies (28) using clinical

findings. It is believed that LC occurs as the result of the SARS-

COV-mediated EBV reactivation mainly in the COVID-19 recovered

population (74). However, their genomic bases of pathogenic
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correlation need to be deeply explored; moreover, it is imperative

to identify the key genes and their role in molecular pathways that

could possibly act as biomarkers under LC conditions. The

significance of association between COVID and EBV has been

previously heightened by the studies of hospitalized COVID

patients showing that reactivated EBV significantly increased

mortality when compared to EBV-negative patients (75, 76).

Recently, apart from the molecular techniques, NGS data have

provided huge support to predict the genes and drug targets in

similar scenarios (39, 77, 78). Hence, in this study, we have attempted

to integrate the whole genome transcriptomic data of independent

LC- and EBV-infected PBMCs to detect the key DEGs. A total 357

cDEGs were detected between EBV and LC samples. As it is crucial to

understand the interaction network of genes within the cell (79),

these genes were subjected to PPI analysis using the STRING

database (50). Out of 357 cDEGs, only 125 genes were involved in

the interaction's formation (interacting score > 0.4). The rationale for

considering cDEGs was to exclude sample-specific DEGs and focus

on the shared transcriptomic profile, as this shared profile potentially

reflects the regulation of common key biological pathways in the cell

(80). Furthermore, we identified the 22 hub genes using the

cystoscope plugin CytoHubba (52) and MCODE (54), followed by

the enrichment analysis with ClueGo. Our enrichment results were
FIGURE 8

Hydrogen bond analysis between OLR1-receptor and bioflavonoid molecules. (A) OLR1–Apigenin, (B) OLR1–Amentoflavone, (C) OLR1–Ilexgenin A,
(D) OLR1–Myricetin, and (E) OLR1–Orientin. The time frames of MD are plotted on the x-axis, and the number of hydrogen bonds is shown on the y-axis.
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consistent with previously reported studies (81). Since, during the

disease condition, hub genes (because of being involved in the key

functions) undergo substantial expression changes (82), we identified

the individual gene expression under LC and EBV conditions. It was

found that all 22 genes significantly changed (log2FC > 1 and

p-value< 0.05) their expression in EBV and LC samples. TF

enrichment analysis revealed that most of the hub genes were

regulated by ZNF and MYB-family TFs. The involvement of these

two TF classes has been previously reported in COVID (83) and EBV

(84). As per our knowledge, there was not a single study available that
Frontiers in Immunology 12
utilized a similar multi-dimensional strategy to identify the

pathogenic connection of LC and EBV infection. However, there is

a vast range of COVID-19-related studies available such as Noor

et al., which predicted the common pathogenic genes' profile between

COVID-19 and HFRS (40). Luo et al. explored the common

pathogenic mechanism between COVID-19 and primary Sjogren's

syndrome (pSS) (77). In our study, the enrichment analysis revealed

the role of hub genes in several immunological, neurological,

and pulmonary system-related pathways. Most of the gene

ontologies have already been reported in accordance with roughly
FIGURE 9

Binding free energy calculations. Energy calculations were performed using the MMPBSA method for each ligand and receptor complex. (A) OLR1–
Apigenin, (B) OLR1–Amentoflavone, (C) OLR1–Ilexgenin A, (D) OLR1–Myricetin, and (E) OLR1–Oreintin. The x-axis indicates the energy level in kcal/
mol and types of energies are plotted on the y-axis.
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COVID and EBV infections (28, 84–87). Because enrichment

analysis comes from the biological intersection of LC and EBV

DEGs, we expect their role in both LC and EBV infection

symptoms simultaneously. These symptoms generally involved, the

psychological problems/neurodegenerative disorders, or the terms

associated with the brain function and the immunological disruption.

Thus, there are existing lines of evidence suggesting that hub genes

have a possible correlation with LC and EBV supported by previously

published studies (15, 33, 88–90). Hub genes are functionally

important and could act as very fine drug targets (91). Therefore,

out of 22 hub genes, we choose one representative gene, OLR1

(oxidized low-density lipoprotein receptor 1), which was not

studied previously with respect to LC-related manifestations. In

COVID-19 patients, OLR1 gene positively expresses and causes

cytokine storms and thrombosis (55). In severe COVID conditions,

OLR1 is primarily involved in the activation of inflammatory

immune responses (92). Considering the important role of hub

genes in the cross-connection between LC and EBV reactivation,

we used OLR1 protein as an important drug target and was docked

against bioflavonoid inhibitors (70) The best five inhibitors, i.e.,

apigenin, amentoflavone, ilexgenin A, myricetin, and orientin, were

screened out by virtual screening (93) based on their binding energies

with OLR1. Several studies have reported the inhibitory and antiviral

activities of these five compounds (72, 94–97).

Docking results provided great insight into the binding of

shortlisted inhibitors with OLR1. Out of all five compounds,

amentoflavone was considered as the best docked molecule

with −8.3 kcal/mol energy, and the remaining compounds were in

6–7.7 kcal/mol range. Molecular docking gives insights into the

ligand-receptor binding poses and pinpoints the bound amino

acids with the ligands; however, it overlooks the strength and

conformational modifications of the complex as well as the

individual binding members that occur during the interaction's

formation (98). The conformational stability of the complexes was

further evaluated byMD simulations analyses, i.e., RMSD, RMSF, Rg,

and hydrogen bonding. Comparative RMSD evaluation of ligand-

bound and apo-OLR1 suggested the deviations' amplitude and the

modest change in the average RMSD value of the C-backbone atoms,

which clearly shows that the five OLR1 protein–ligand complex

structures have a stable dynamic behavior. The comparative

residual fluctuations of OLR1 were observed in both bound and

apo form. N-terminus residues (start of protein) remain stable and

did not exhibit any of the fluctuations until the 55th amino acid,

followed by the fluctuations in between nearly 70 and 100 amino

acids. Visual inspection of OLR1 protein suggested that this region

mainly contains the loops that connect the alpha helices, and loops

are considered as a variable structural component and they show a

very dynamic behavior during the simulations (99, 100). Apart from

the secondary structure, it was observed that the residues in the

binding cavity also remained stable. Rg depicts the information about

the compactness, shape, and folding of the four complex structures at

various point scales throughout the 100 ns of MD simulations

trajectory. The interaction between ligand and protein is influenced

by non-covalent interactions including hydrogen bonding,

hydrophobic forces, and ionic bonds. The quantity of hydrogen

bonds and the duration for which they exist are key indicators of
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the stability and binding strength of the complexes (101). All five

complexes exhibited an average four to six hydrogen bonds and

remained stable throughout the course of 100-ns simulations.

Binding free energy is another parameter to estimate the stability of

a complex (102, 103). The binding free energy of each complex was

calculated, and the overall order was amentoflavone > myricetin>

orientin > ilexgenin A > apigenin with the total binding energy of

−18.48, −14.13, −13.75, −11.07, and −9.55 kcal/mol, respectively. The

lowest binding energy is proportional to the high stability of the

complex (102); among all bound complexes, amentoflavone showed

the lowest total binding energy. The highest positive correlation after

the apo form was observed in the amentoflavone-bound complex,

which indicates that, overall, the global changes between amino acids

remained stable. The highest fluctuations (negative correlation) were

observed in apigenin, myricetin, orientin, and ilexgenin A. Thus, all

the MD analyses provided evidence that five inhibitors' compounds

formed stable and dynamic conformations; however, amentoflavone

was ranked as potentially the best inhibitor against OLR1 protein.

Although several previous independent studies have been carried

out to explore the LC and EBV infection-related manifestations, there

is room for studies that could predict the possible pathogenic

biomarker genes and their inhibitors in the context of LC using

integrative bioinformatics methods. Collectively, in this study, for the

first time, we have attempted to explore and detect cDEGs, followed

by hub genes and their associated TF identification using

bioinformatics enrichment methods. Moreover, the hub gene

protein (OLR1) interaction with bioflavonoids was performed using

molecular docking and simulations. Among the five bioflavonoids,

amentoflavone was predicted as the best inhibitor against OLR1.

However, it is important to acknowledge the potential limitations

of this study. First, our findings are primarily based on publicly

available transcriptomic datasets with a limited sample size. This may

not be sufficient to identify all the key genes; thus, an increased

sample size and sequencing depth could enhance the accuracy of

predictions. Second, the statistical tools and models used to analyze

the data may lead to overinterpretation, particularly when making

inferences about causality or functional roles without adequate

validation. Therefore, further in vitro or in vivo experiments would

be valuable to functionally validate the hub genes and inhibitors

predicted to target the hub protein in the clinical context of LC.

In summary, this study offers a valuable in silico framework for

predicting the molecular links between EBV-mediated LC pathogenesis

and may help identify potential marker genes with clinical significance,

as well as inhibitors that could block the active sites of their

corresponding proteins in LC. To sum up, our analysis predicted the

possible genes and their pathways linking EBV reactivation and LC,

elucidating some unknown clues in between. Nonetheless, as this is a

thorough computational work, further case reports and follow-up

experiments of LC patients can corroborate this association.
5 Conclusion

In summary, our results predicted 22 hub genes (CCL2, CCL20,

CDCA2, CEP55, CHI3L1, CKAP2L, DEPDC1, DIAPH3, DLGAP5,

E2F8, FGF1, NEK2, PBK, TOP2A, CCL3, CXCL8, DEPDC1, IL6,
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RETN, MMP2, LCN2, and OLR1) in the EBV infection and LC

collective scenario with a significant change in expression. Through

a series of comprehensive analyses, we predicted the biological roles

of these genes in relation to EBV and LC. Our findings suggest that

these genes are primarily involved in various immune-signaling

pathways, including JAK-STAT signaling, interleukin signaling,

protein kinase signaling, and toll-like receptor pathways, all of

which are connected to LC. Furthermore, we propose an in silico

framework to potentially uncover the clinical significance of hub

genes associated with EBV infection in LC. Moreover, our results

predicted the potential of hub genes as a drug target against

bioflavonoids, which may serve as valuable therapeutic signatures

in the clinical field upon further validation.
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