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Background: Existing epidemiological data indicated a correlation between

thyroid cancer (THCA) and the risk of secondary primary malignancies (SPMs).

However, the correlation does not always imply causality.

Methods: The Mendelian randomization (MR) analyses were performed to

investigate the causal relationships between THCA and SPMs based on

international multicenter data. Odds ratios (ORs) with 95% confidence intervals

(95% CIs) were calculated. The Cancer Genome Atlas (TCGA) was used to explore

potential mechanisms shared by THCA and bladder cancer (BLCA).

Results: Summary datasets of genome-wide association studies (GWAS) on 30

types of cancers were obtained from the United Kingdom Biobank (UKB) and

FinnGen database. Meta-analysis of the UKB and FinnGen results revealed that

THCA was significantly positively correlated with BLCA (OR = 1.140; 95% CI,

1.072-1.212; P < 0.001). Four genes, including WNT3, FAM171A2, MLLT11, and

ULBP1, were identified as key genes shared by both TCHA and BLCA. Correlation

analysis indicated that THCA may increase the risk of secondary BLCA through

augmentation of N2 neutrophil infiltration.

Conclusions: This study showed that THCA was causally related to BLCA. It is

recommended to conduct more rigorous screenings for BLCA during the follow-

up of THCA patients.
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Introduction

Thyroid cancer (THCA) is the most common malignancy in the

endocrine system (1). Surgery is the primary treatment approach

for THCA, usually accompanied by postoperative radioactive iodine

(RAI) and endocrine therapy (2, 3). There are two major

pathological types: papillary, follicular, medullary and anaplastic

THCA (4). Papillary and follicular TCHA collectively refer to as

differentiated THCA, which has a favorable prognosis with 10-year

survival rate > 90% (5). The prolonged survival period in THCA

patients may lead to the emergence of secondary primary

malignancies (SPMs). Epidemiological findings revealed that

previous diagnosis of THCA increased the risk of SPMs (6–9).

However, there were some inconsistencies among epidemiological

conclusions (10). On the other hand, epidemiological correlation

doesn’t necessarily indicate causality. Therefore, it is necessary to

investigate the true causality between THCA and SPMs.

Mendelian randomization (MR) analysis is a statistical method

that uses genetic variants as instrumental variables to assess causal

relationships. In comparison to observational or epidemiological

studies, MR demonstrates excellent performance in inferring

causality (11, 12). When the sample size is small, epidemiological

approaches might not yield statistically significant outcomes.

However, MR can assess the impact of genotypes randomly

allocated in nature on phenotypes, allowing for the accurate

determination of causal relationships between exposure and

outcome (not mere correlation). Currently, more and more

studies have been focusing on the causality between various

biological factors and diseases using the MR method (13).

In the present study, we used the genome-wide association

study (GWAS) summary datasets to investigate the causal

relationships between THCA and common malignancies

systematically. This would provide the basis for a more profound
Frontiers in Immunology 02
understanding of potential connections between diseases and better

management of THCA patients.
Methods

Study design

The design and analysis workflow were shown in Figure 1. There

were two sections in the present study. The first section was to

investigate the relationships between THCA and SPMs. Instrumental

variables employed in the study were single nucleotide polymorphisms

(SNPs), which refer to the DNA sequence variations caused by changes

in a single nucleotide at the genomic level. The exposure factor was

THCA and the outcomes were commonmalignancies from the United

Kingdom Biobank (UKB) (http://www.ukbiobank.ac.uk) and FinnGen

database (https://www.finngen.fi/en). MR analyses were performed,

and a final conclusion was reached by conducting a meta-analysis

on the MR results from the UKB and FinnGen databases. Based on

the comprehensive analysis in the first section, we found that THCA

was significantly positively correlated with bladder cancer (BLCA).

The second section was to search for possible mechanisms between

THCA and BLCA. The Cancer Genome Atlas (TCGA) database

(http://tcga-data.nci.nih.gov/tcga/) was used to obtain the bulk

RNA-seq data of THCA and BLCA. Two different statistical

approaches, including differentially expressed gene (DEG) and

weighted gene co-expression network analysis (WGCNA), were

used to identify shared genes between THCA and BLCA.

Immunoinfiltration analysis was performed to identify possible

mechanisms. The study was approved by the Institutional Review

Board of Shanghai Tenth People’s Hospital. Data acquisition was

completely dependent on public databases and informed consent

was not required. The present study followed STROBE criteria.
FIGURE 1

Design and analysis workflow.
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Exposure and instrumental variables

Initially, the GWAS summary datasets of THCA were obtained

from the GWAS Catalog (https://www.ebi.ac.uk/gwas/downloads/

summary-statistics). GWAS summary datasets refer to a

comprehensive collection of big data generated from GWAS

studies, typically encompassing statistical outcomes for millions of

SNPs. However, it was difficult to identify stable and reliable

instrumental variables due to the small sample sizes of THCA

datasets. Thus, we used the THCA dataset from The Polygenic

Score (PGS) Catalog (https://www.pgscatalog.org/, PGS Publication

No.: PGP000262). There were 6,699 THCA cases and 1,613,655

controls, which were sufficient to identify effective and stable

instrumental variables. The screening criteria of instrumental

variables were as follows: (1) The genome-wide significance was

set at a P-value of 5 × 10–8. (2) To ensure independence between

instrumental variables, the clustering distance threshold was set at

10,000 kb and linkage disequilibrium correlation coefficient r2 was

set to 0.001. (3) SNPs associated with confounding factors were

removed. Common confounding factors include diabetic condition,

hypertension, alcohol consumption, tobacco use, and body mass

index (14–16). The exclusion of confounding factors improved the

objectivity and accuracy of causal relationships. (4) SNPs with F-

statistic greater than 10 were considered as strong instrumental

variables. The F-statistic was estimated using the formula: F = (Beta/

SE)2. Beta represents the estimated effect size of the relationship

between the SNP and exposure, and SE denotes the standard error

of the Beta value. (5) There was no correlation between

instrumental variables and outcome. SNPs directly associated

with cancer were eliminated and detailed list was presented in

Supplementary Table 1.
Pan-cancer GWAS data

GWAS summary datasets of common malignant neoplasms of

eight human organ systems were obtained from the UKB and

FinnGen database, including integumentary system, genital system,

urinary system, nervous system, digestive system, respiratory system,

circulatory system, and motor system. There was a total of 30 and 26

cancer types available in the UKB and FinnGen database,

respectively. Detailed data of each cancer can be found in

Supplementary Tables 2, 3.
MR analysis and meta-analysis

Diverse common analytical methods were used to perform MR

analyses, including MR Egger, simple mode, inverse variance

weighting (IVW), weighted mode, and weighted median. Of

these, the IVW was the primary analytical method according to

previously published literature (17, 18). MR Egger regression

analysis was performed to detect the presence or absence of

pleiotropy. If there was pleiotropy, the MR Egger method was

applied (19). The MR Egger method is effective in addressing
Frontiers in Immunology 03
pleiotropy issues within genetic correlations and allowing for

more accurate estimation of causal effects. It should be noted that

“action = 2” should be selected in the “harmonise_data” function to

reduce analytical bias caused by inconsistent alleles. The Cochrane

Q value was used to detect the presence or absence of heterogeneity.

If there was heterogeneity, the weighted median method was

applied (20), because it took into account the weights of all

individual SNP effects, thereby reducing the bias in estimation

results. Additionally, the MR pleiotropy residual sum and outlier

(MR-PRESSO) method was applied to detect the presence or

absence of outliers. The MR analysis was done with the R

package “TwoSampleMR” (version 0.5.7) (21).

The final conclusion was derived from the meta-analysis of MR

results from the UKB and FinnGen databases, and was presented as

odds ratios (OR) with corresponding 95% confidence intervals

(95% CI). If there was significant heterogeneity between two

cohorts (P < 0.05 or I2 > 50%), a random-effect model was

employed, whereas a common-effect model was utilized if

heterogeneity was not significant (P > 0.05 and I2 < 50%). The

meta-analysis was done with the R package “meta” (version 6.5-0)

(22). To be clear, four cancers were missing in the FinnGen

database, including hepatocellular cancer, extrahepatic bile duct

cancer, non-Hodgkin lymphoma, and hepatic bile duct cancer.

Thus, MR analysis cannot be conducted on the causal

relationships between THCA and these cancers, and the final

conclusion was simply based on the UKB results.
Investigation of shared genes and
mechanisms between THCA and BLCA

RNA sequence data for THCA and BLCA were downloaded

from the TCGA database. The TCGA THCA cohort contains 510

tumour samples and 58 normal samples, while the TCGA BLCA

cohort contains 408 tumour samples and 19 normal samples.

Searching for DEGs is the most commonly used research method

for investigating potential pathogenic pathways in cancer. A 1.5-

fold difference with a P-value < 0.05 was used as the criterion for

screening DEGs. The DEG analysis was done with the R package

“limma” (version 3.40.2), which calculated the statistical

significance and fold change for each gene (23). Meanwhile, the

WGCNA method was also applied, which clustered co-expressed

genes into modules and facilitated the study of gene function and

biological processes. The primary advantage of WGCNA lies in its

capacity to convert gene data into biologically significant

information, thereby providing clues for understanding the

molecular mechanisms of diseases and discovering new

biomarkers. The WGCNA analysis was done with the R package

“wgcna” (version 1.72.5) (24). The overlapped genes between DEGs

and WGCNA were considered key genes shared by THCA

and BLCA.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analysis were done with the R

package “ClusterProfiler” (version 3.18.0) (25). This tool was

primarily employed to assess whether a set of genes was significantly
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enriched within specific biological categories. Immune cell infiltration

was estimated by the Microenvironment Cell Populations-counter

(MCPcounter) algorithm from TIMER2.0 (http://timer.cistrome.org/).

The is a method for estimating the relative abundance of various

cellular subpopulations in tumor tissues based on transcriptomic

data (26). It utilizes marker genes of specific cell types and linear

regression models to estimate the content of different cell types in

samples. Gene correlation analysis was performed using Gene

Expression Profiling Interactive Analysis (GEPIA, http://

gepia.cancer-pku.cn/) based on the Pearson method.
Statistical analyses

Statistical analyses were done with R statistical software (version

4.3.1, The R Foundation for Statistical Computing, Vienna, Austria).

A p-value less than 0.05 was considered statistically significant. The

false discovery rate (FDR) method was applied to correct P-values.
Results

After rigorous screening, a total of 19 SNPs were identified as

instrumental variables referring to THCA (Supplementary Table 4).

Subsequently, we investigated the causal relationships between

THCA and cancers using the UKB and FinnGen cohorts.
UKB cohort

There was a total of 30 cancer types in the UKB cohort.

According to the MR analysis, there was a significant increase in

the risk of four cancers (Figure 2), including chronic lymphocytic

leukemia (OR = 1.202; 95% CI, 1.022-1.413; P = 0.026),

hepatocellular cancer (OR = 1.509; 95% CI, 1.040-2.189; P =

0.030), bladder cancer (OR = 1.159; 95% CI, 1.063-1.263; P =

0.001), and ovarian cancer (OR = 1.368; 95% CI, 1.062-1.762;

P =0.032). After FDR correction, THCA was still positively related

to BLCA (P = 0.002). For cancers with P < 0.05 and PFDR-adjusted >

0.05, we considered a potential causal relationship between THCA

and them. In addition, THCA had a negative causality with brain

malignancy (Figure 2, OR = 0.680; 95% CI, 0.488-0.948; P =0.042),

indicating the protection of THCA against brain malignancy.

Sensitivity analysis showed that there was potential pleiotropy for

brain malignancy (Figure 2, P = 0.033) and ovarian cancer (Figure 2,

P = 0.043). The MR outcomes yielded by the MR Egger method were

selected. There was no evidence of the presence of heterogeneity and

outliers. Detailed MR results were presented in Supplementary Table 5.
FinnGen cohort

There was a total of 26 cancer types in the FinnGen cohort. MR

analysis demonstrated that THCA had a positively causal effect on

five cancers (Figure 3), including malignancy of bronchus and lung

(OR =1.103; 95% CI, 1.010-1.204; P = 0.029), rectal cancer (OR =
Frontiers in Immunology 04
1.117; 95% CI, 1.017-1.227; P = 0.020), brain malignancy (OR =

1.193; 95% CI, 1.027-1.386; P = 0.021), kidney cancer (OR = 1.175;

95% CI, 1.065-1.296; P = 0.001), and bladder cancer (OR = 1.120;

95% CI, 1.026-1.222; P = 0.011). After FDR correction, THCA was

significantly related to an increased risk of brain malignancy (P =

0.021), kidney cancer (P = 0.002), and bladder cancer (P = 0.011).

There was a potential causal relationship between THCA and

malignancy of bronchus and lung (PFDR-adjusted = 0.058) and

rectal cancer (PFDR-adjusted = 0.120). Surprisingly, there were

contradictory outcomes regarding the causal relationship between

THCA and brain malignancy in the UKB and FinnGen cohorts.

Sensitivity analysis showed that there was potential

heterogeneity for cervical cancer (Figure 3, P = 0.044) and

malignant melanoma (Figure 3, P = 0.046). The MR outcomes

yielded by the weighted median method were selected. There was no

evidence of pleiotropy. MR-PRESSO indicated the presence of

outliers (rs34393407 and rs7027030) for malignancy of bronchus

and lung, and the results presented above were based on data with

outliers removed. Detailed MR results were presented in

Supplementary Table 6.
Meta-analysis

Meta-analysis was conducted for all types of cancer with P <

0.05 in the UKB or FinnGen database, including chronic

lymphocytic leukemia, bladder cancer, ovarian cancer, brain

malignancy, kidney cancer, rectal cancer, and malignancy of

bronchus and lung (Figure 4). To be clear, hepatocellular cancer

was not included owing to the lack of data in the FinnGen database.

We found that THCA was positively related to BLCA after the

meta-analysis (Figure 4A, OR = 1.140; 95% CI, 1.072-1.212; P <

0.001). There was no significant causality between THCA and the

other cancers (Figures 4B–G, P > 0.05).
Shared genes and potential mechanisms
between THCA and BLCA

First, the WGCNA analysis was performed to identify co-

expressed genes between THCA and BLCA. For THCA, the

condition for softpower was set as 6 (Figure 5A) and a total of 13

modules were generated (Figures 5B, C). The ME black module

(including 477 genes) exhibited the strongest positive correlation with

THCA (Figure 5C; Supplementary Table 7, r = 0.61, P = 4 × 10–59).

Similarly, the condition for softpower was set as 4 (Figure 5D) and a

total of 23 modules were generated for BLCA (Figures 5E, F). TheME

yellowmodule (including 1720 genes) exhibited the strongest positive

correlation with BLCA (Figure 5F; Supplementary Table 8, r = 0.53,

P = 1 × 10–32). The overlapped genes in the black module of

THCA and yellow module of BLCA were considered as hub genes

shared by THCA and BLCA, whose number was 34 (Figure 5G;

Supplementary Table 9).

Next, DEGs were further screened (difference > 1.5-fold change;

P < 0.05). A total of 1158 and 2538 up-regulated genes were

identified in the TCHA and BLCA cohort, respectively
frontiersin.org
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(Figures 5H, I; Supplementary Tables 10, 11). The number of

overlapped genes between TCHA and BLCA was 328 (Figure 5J;

Supplementary Table 12). Ultimately, we took the intersection of

WGCNA and DEG results, and identified four shared genes

between TCHA and BLCA, including WNT3, FAM171A2,

MLLT11, and ULBP1 (Figure 5K). Additionally, we adopted an

alternative analytical method by performing DEG analysis directly

within the modules significantly associated with the diseases

(THCA or BLCA), and also identified the same four shared genes

(Supplementary Figure 1).

Using these four shared genes, we conducted GO and KEGG

enrichment analysis. However, there were no significant GO terms

or KEGG pathways identified. Thus, we further investigated

whether these genes had an effect on immune cell infiltration.

According to the “MCPcounter” algorithm, these four genes were

indeed significantly associated with immune cell infiltration
Frontiers in Immunology 05
(Figure 6A). Among different immune cells, all four genes in both

THCA and BLCA showed significantly positive correlations with

neutrophils (P < 0.05), indicating that these genes may exert

biological functions by increasing the infiltration of neutrophils.

Increasing literature has indicated that neutrophils could be

classified into two functional categories: anti-tumor N1

neutrophils and pro-tumor N2 neutrophils (27). The former was

dominated by the type I IFN signaling pathway, while the latter was

dominated by the TGFb signaling pathway. Therefore, we evaluated

the relationships between shared genes and key markers of these

pathways. TGFB1, a key gene in the TGFb signaling pathway, was

shown to be positively correlated with the majority of shared genes

(Figure 6B). Conversely, IFNG, a key gene in the type I IFN

signaling pathway, showed a negative or no correlation with

shared genes (Figure 6C). These findings indicated that shared

genes between THCA and BLCA were positively associated with
FIGURE 2

MR results from the UKB database.
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increased infiltration of N2 neutrophils. Overall, it is reasonable to

speculate that THCA may increase the risk of secondary BLCA

through augmentation of N2 neutrophil infiltration.
Discussion

The MR analysis provided us with a reliable tool for assessing the

risk of SPMs in THCA patients. Using the GWAS summary datasets

with a large sample size, we found that THCA caused an increase in

risk for a considerable proportion of cancer types, including chronic

lymphocytic leukemia, BLCA, ovarian cancer, kidney cancer, rectal
Frontiers in Immunology 06
cancer, and malignancy of bronchus and lung, and hepatocellular

cancer. These findings were generally consistent with a number of

epidemiological studies (28, 29). However, after adjusting P-values or

conducting the meta-analysis, the elevation in risk for most SPMs was

no longer statistically significant with the exception of BLCA. This

suggests that most SPMs following THCA are likely caused by factors

other than genetic variants. However, more researches are necessary

to study the risk of specific-site cancers following THCA, with the

aim of formulating evidence-based monitoring guidelines and

reducing the overall mortality from THCA.

Our study demonstrated that THCA was significantly associated

with an increased risk of BLCA, which was confirmed by several large-
FIGURE 3

MR results from the FinnGen database.
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sample observational studies. A retrospective analysis from the Taiwan

Cancer Registry indicated a notable increase in the risk of multiple

malignancies including BLCA (30). Upon stratification by age of

diagnosis and follow-up duration, it was observed that patients with

younger age (less than 50 years) exhibited a higher susceptibility to

SPMs including BLCA, particularly within the initial five-year period

after diagnosis. Another South Korea study also demonstrated that there
Frontiers in Immunology 07
was a greater risk of BLCA (standardized incidence ratio [SIR]: 1.54) in

patients with a history of THCA (31). Furthermore, it was observed that

frequent (2 times or more) medical radiation exposure from computed

tomography (CT) or positron emission tomography-CT (PET-CT) was

an independent risk factor for developing a secondary BLCA in female

patients with THCA, but not in males. Additionally, RAI therapy did

not promote the risk of secondary BLCA in THCA patients of both
FIGURE 4

Meta-analyses of the UKB and FinnGen cohorts. (A) bladder cancer; (B) chronic lymphocytic leukemia; (C)ovarian cancer; (D) brain malignancy;
(E) kidney cancer; (F) malignancy of bronchus and lung; (G) rectal cancer.
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genders (P = 0.397). These indicated that only a small portion of the

elevated risk of BLCA could be attributed to radiation exposure. Akslen

et al. (32) conducted a nationwide study with a follow-up period of up to

30 years in Norway, and found a significantly increased risk of

secondary urogenital cancers (e.g. BLCA and testis cancer) in male

patients with THCA. However, they cannot explain this phenomenon.

Our study provided evidence for the causal relationship between THCA

and BLCA from the genetic perspective, and facilitated a deeper

understanding of potential associations between them. Using an

integrated bioinformatics approach, we identified four shared genes

between THCA and BLCA. MLLT11 (AF1q), as an oncogenic factor in

the thyroid tumorigenesis, also played a significant role in the onset and

progression of BLCA (33–35). Further analysis indicated that an

increased infiltration of N2 neutrophils may be a key factor in the

elevated risk of BLCA secondary to THCA. Numerous studies indicated

that N2 neutrophil infiltration played a crucial role in the progression of

malignant tumors including BLCA and THCA (36–40). In particular,
Frontiers in Immunology 08
there was a distinct subgroup of neutrophils called tumor-associated

neutrophils (TANs), which facilitated the formation andmaintenance of

an immunosuppressive microenvironment by producing

immunosuppressive cytokines (e.g. IL-10 and TGF-b) and inhibiting

effector T cells (41, 42). Moreover, neutrophil-to-lymphocyte ratio, a

common systemic inflammatory marker, demonstrated high prognostic

values in both THCA and BLCA patients (43–46), which might be a

simple and feasible method of specific surveillance for the BLCA risk

during the postoperative follow-up course of THCA patients. Currently,

the latest American Thyroid Association (ATA) guidelines (2015) only

offered feasible follow-up procedures for recurrence and metastasis of

THCA, but did not provide clear follow-up recommendations for SPMs

(47). Our findings laid the foundation for personalized treatment of

patients with THCA. We recommended implementing targeted

screening for secondary BLCA during the long-term follow-up of

THCA, such as tumor cell detection in urine annually and cystoscopy

every two to three years.
FIGURE 5

Key genes shared by both THCA and BLCA. (A) Softpower of WGCNA for THCA; (B) Module correlation plot of WGCNA for THCA; (C) Module–trait
relationships for THCA; (D) Softpower of WGCNA for BLCA; (E) Module correlation plot of WGCNA for BLCA; (F) Module–trait relationships for
BLCA; (G) Venn diagram of hub genes shared by THCA and BLCA; (H) Volcano map of DEGs between THCA and normal thyroid tissues; (I) Volcano
map of DEGs between BLCA and normal bladder tissues; (J) Venn diagram of DEGs shared by THCA and BLCA; (K) Venn diagram of key genes
shared by THCA and BLCA based on the results from WGCNA and DEGs.
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However, the findings from some large-sample studies were not

consistent with ours. A population-based Surveillance, Epidemiology,

and End Results (SEER) analysis did not detect an increased risk of

BLCA following a diagnosis of THCA (7, 10). Another international

study including 39,002 individuals also yielded negative results (48).

There are two main reasons for the inconsistencies. On one hand,

numerous potential factors may lead to the inconsistency, including the

kind and duration of treatment, follow-up approaches, and
Frontiers in Immunology 09
environmental variance. On the other hand, various populations

exhibit significant differences in the genetic and molecular background.

There were a few limitations in the present study. First, all

GWAS summary datasets were derived from European populations,

which may limit the potential generalization of our conclusions.

Second, bioinformatics approaches were utilized to identify

potential mechanisms shared by THCA and BLCA, yet

experimental validation was not performed. Third, we did not
FIGURE 6

Potential mechanisms shared by both THCA and BLCA. (A) The correlation between shared genes and immunoinfiltration; (B) The correlation
between shared genes and TGFB1 (a key marker of N2 neutrophil infiltration); (C) The correlation between shared genes and IFNG (a key marker of
N1 neutrophil infiltration).
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differentiate between different pathological subtypes of THCA,

limiting its implications for personalized patient management.

Fourth, RAI and radiation therapy were possible confounders for

SPMs in patients with THCA. However, there are currently no

SNPs that have been definitively linked in a causal relationship to

RAI or radiation therapy, potentially leading to some bias.

In summary, we systematically investigated the causal

relationships between TCHA and SPMs, and found that THCA

may increase the risk of secondary BLCA through augmentation of

N2 neutrophil infiltration. This provided the basis for optimizing

the follow-up management of THCA patients.
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