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Background: Cervical cancer (CC) is the fourth most commonmalignancy among

women globally and serves as the main cause of cancer-related deaths among

women in developing countries. The early symptoms of CC are often not apparent,

with diagnoses typically made at advanced stages, which lead to poor clinical

prognoses. In recent years, numerous studies have shown that there is a close

relationship betweenmast cells (MCs) and tumor development. However, research

on the role MCs played in CC is still very limited at that time. Thus, the study

conducted a single-cell multi-omics analysis on humanCC cells, aiming to explore

the mechanisms by which MCs interact with the tumor microenvironment in CC.

The goal was to provide a scientific basis for the prevention, diagnosis, and

treatment of CC, with the hope of improving patients’ prognoses and quality of life.

Method: The present study acquired single-cell RNA sequencing data from ten

CC tumor samples in the ArrayExpress database. Slingshot and AUCcell were

utilized to infer and assess the differentiation trajectory and cell plasticity of MCs

subpopulations. Differential expression analysis of MCs subpopulations in CCwas

performed, employing Gene Ontology, gene set enrichment analysis, and gene

set variation analysis. CellChat software package was applied to predict cell

communication between MCs subpopulations and CC cells. Cellular functional

experiments validated the functionality of TNFRSF12A in HeLa and Caski cell lines.

Additionally, a risk scoring model was constructed to evaluate the differences in

clinical features, prognosis, immune infiltration, immune checkpoint, and

functional enrichment across various risk scores. Copy number variation levels

were computed using inference of copy number variations.

Result: The obtained 93,524 high-quality cells were classified into ten cell types,

including T_NK cells, endothelial cells, fibroblasts, smoothmuscle cells, epithelial

cells, B cells, plasma cells, MCs, neutrophils, and myeloid cells. Furthermore, a

total of 1,392 MCs were subdivided into seven subpopulations: C0 CTSG+ MCs,

C1 CALR+ MCs, C2 ALOX5+ MCs, C3 ANXA2+ MCs, C4 MGP+ MCs, C5 IL32+
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MCs, and C6 ADGRL4+ MCs. Notably, the C2 subpopulation showed close

associations with tumor-related MCs, with Slingshot results indicating that C2

subpopulation resided at the intermediate-to-late stage of differentiation,

potentially representing a crucial transition point in the benign-to-malignant

transformation of CC. CNVscore and bulk analysis results further confirmed the

transforming state of the C2 subpopulation. CellChat analysis revealed

TNFRSF12A as a key receptor involved in the actions of C2 ALOX5+ MCs.

Moreover, in vitro experiments indicated that downregulating the TNFRSF12A

genemay partially inhibit the development of CC. Additionally, a prognosis model

and immune infiltration analysis based on the marker genes of the C2

subpopulation provided valuable guidance for patient prognosis and clinical

intervention strategies.

Conclusions: We first identified the transformative tumor-associated MCs

subpopulation C2 ALOX5+ MCs within CC, which was at a critical stage of

tumor differentiation and impacted the progression of CC. In vitro experiments

confirmed the inhibitory effect of knocking down the TNFRSF12A gene on the

development of CC. The prognostic model constructed based on the C2 ALOX5

+MCs subset demonstrated excellent predictive value. These findings offer a

fresh perspective for clinical decision-making in CC.
KEYWORDS

single-cell RNA-sequencing, cervical cancer, tumor heterogeneity, prognosis,
cancer immunotherapy
Introduction

Cervical cancer (CC) is among the most common malignancies,

with the global statistics report for 2020 showing approximately

600,000 new cases of CC annually, leading to over 340,000 deaths.

These figures place CC fourth in the incidence and mortality

spectrum for women globally. More than 85% of these instances

happen in countries with low and middle incomes, where the

mortality rate is six times higher than in developed countries (1).

The incidence and mortality rates of CC have declined in recent

years because of enhanced early screening and wider administration

of the HPV vaccine. However, there has been a rise in the incidence

of CC among young women, indicating that it continues to be a

significant public health concern (2). Furthermore, due to the

atypical early symptoms of CC, most patients are diagnosed in

advanced stages, posing significant challenges to treatment.

The primary method of treating locally advanced CC according

to the 2024 NCCN recommendat ions i s concurrent

chemoradiotherapy (CCRT). Nevertheless, recurrence or

metastasis affects about 50% of individuals following therapy (3).

Research has indicated that the likelihood of cancer returning in

patients with locally advanced CC stages IB-IIB after CCRT is

between 10% and 20%, however it increases to 50% to 70% for

stages IIB-IVA (4). In addition, the use of carboplatin and paclitaxel

as adjuvant chemotherapy after radiation does not result in a
02
substantial increase in overall survival (OS) or progression-free

survival (5).

The progress in cancer treatment has been significant due to

advancements in tumor immunology, immunotherapy, andmolecular

targeted therapies. Immune checkpoint blockade (ICB) therapy has

been used to treat several solid cancers, such as lung cancer and

melanoma, by targeting important molecules such CTLA-4, PD-L1,

and PD-1. In addition, ICB therapy shows promising potential in cases

of recurrent or metastatic CC. Studies suggest that ICB monotherapy

increases OS by 3.5 months compared to chemotherapy alone.

Furthermore, when ICB is combined with chemotherapy, with or

without anti-angiogenic treatment, it can extend OS by almost one

year (6). In addition, molecular targeted therapeutics are being

investigated in the context of CC. In vitro studies have confirmed

that pathways such as VEGF, EGFR/HER2, and PI3K/AKT/mTOR

are strongly linked to a negative prognosis in CC patients (7).

However, apart from Bevacizumab, the outcomes of phase II trials

for other targeted therapies have not been encouraging, failing to

progress to phase III trials (8). Moreover, immunotherapy and

molecular targeted therapies struggle to sustain long-term efficacy in

clinical settings due to tumor heterogeneity and the onset of primary

or acquired drug resistance. Indeed, data indicate that more than 50%

of patients initially responsive to ICB therapy exhibit disease

progression within two years (9). Consequently, despite advances in

immunotherapy, the treatment and survival outcomes for CC patients
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continue to be worrisome, highlighting the need for new

immunotherapeutic strategies.

Mast cells (MCs), widely distribute across all tissues, are known

to secrete a plethora of vasoactive mediators and pro-inflammatory

factors (10). MCs, which are a component of the innate immune

system, play an important part in the manifestation of chronic

inflammatory disorders that are linked to cancer. Furthermore, they

are an essential component of the inflammatory milieu that controls

the genesis and progression of tumors. Studies investigating the

function of MCs in cancer have shown varied results: commonly,

MCs appear to facilitate tumor cell growth, often enhancing the

progression of cancers, including thyroid, gastric, and lung cancers.

Nevertheless, in cases such as breast cancer, MCs have the ability to

stimulate the attraction of immune cells, which might potentially

have an anti-tumor effect (11). Furthermore, MCs may play a non-

contributory role in tumors such as renal cell carcinoma, potentially

acting as mere inert bystanders (12). Similarly, early studies

investigating the association between MCs and CC have yielded

contradictory results. Graham et al. observed a decrease in MC

count with tumor progression (13) whereas another study found no

significant difference in the number of MCs between grades I-III of

cervical intraepithelial neoplasia, but a notable increase in MCs

numbers in infiltrating CC suggested that MCs played a role in

promoting the progression and dissemination of tumor around and

within the cervix (14). Consequently, it is imperative to investigate

the interactive mechanisms between CC and MCs.

In recent years, single-cell sequencing technology has come to be

as a burgeoning technique, enabling multifaceted analysis at the

single-cell resolution of the genome, proteome, epigenome, and

spatial transcriptome (15–18). By elucidating the features,

developmental trajectories, and underlying mechanisms of distinct

cellular subgroups, it has furnished novel insights into the realm of

tumor biology, facilitating the refinement of therapeutic strategies

and propelling the progress of personalized medicine. The

composition of CC tissue represents a complex ecosystem

comprising diverse cellular subgroups, including immune cells,

EPCs, and MCs (19). The tumor microenvironment (TME) and

tumor heterogeneity have significant impacts on the onset (20),

advancement and prognosis of CC. However, the full extent of

MCs heterogeneity within the TME of CC remains incompletely

elucidated (21). We thus seek to investigate the cellular heterogeneity

within the tumor and expose its complex cellular states by using

single-cell RNA sequencing (scRNA-seq) analysis on a CC dataset

derived from the ArrayExpress database. It is our aspiration to offer

fresh perspectives on the diagnosis, management, and prognosis of

CC to improve patient outcomes and raise survival rates.
Method

Acquisition of single-cell data

The single-cell data for CC was acquired from the ArrayExpress

database (https://www.ebi.ac.uk/arrayexpress/), under the dataset

accession number E-MTAB-12305 (22). Bulk RNA sequencing data

for CC was acquired from of the University of California Santa Cruz
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(UCSC, https://xena.ucsc.edu/) Xena. As we utilized publicly

available database information in our study, ethical approval was

not required.
Filtering and processing of the raw data

To analyze scRNA-seq data, we utilized R software (4.2.0) along

with the “Seurat” software package (4.3.0) (23). To enhance the

accuracy and reliability of the scRNA-seq data, we utilized the

“DoubletFinder” software package (version 2.0.3) (24) for quality

control, detection, and filtration of probable low-quality and aberrant

cells (25, 26). The nFeature parameter must have a value within the

range of 300 to 6000, whereas the nCount parameter must have a

value within the range of 500 to 100,000. The proportion of genes

related to red blood cells in the cell was less than 5% of the total

number of genes. Furthermore, cells with mitochondrial gene

expression exceeding 25% of the overall expression were excluded.

In order to analyze the filtered samples, we utilized the Seurat

package’s “NormalizeData” and “FindVariableFeatures” functions

to normalize the data and identify the top 2000 genes with high

variability (27–29). Afterwards, we utilized the “ScaleData” function

to normalize the analyzed data and then addressed batch

discrepancies among datasets by employing principal component

analysis with the harmony R package (version 0.1.1) (30–32).

Ultimately, we conducted dimensionality reduction and clustering

using the most important 30 principal components.

The analysis of copy number variation (CNV) in scRNA-seq data

was conducted using the inferCNV R package (version 1.6.0)

obtained from the GitHub repository of the Broad Institute

(https://github.com/broadinstitute/inferCNV). This software

package enables the distinction between cancerous and healthy

cells by analyzing the chromosomal locations and gene expression

levels to determine copy number variations. Cells with high CNV

scores were defined as Tumor-EPCs.
The identification of differentially
expressed genes (DEGs) and cell types

We utilized the “FindClusters” and “FindNeighbors” functions

in Seurat to carry out cell clustering (33). We used the Seurat

function “FindAllMarkers” to detect DEGs in each cluster. Most of

the identified marker genes for cell clusters were obtained from the

CellMarker (http://xteam.xbio.top/CellMarker/), in addition to

some citations from past research. Cell annotation was conducted

through manual curation. Afterward, we utilized the UMAP

technique to visualize the data.
Slingshot pseudotemporal analysis

Version 2.6.0 of the Slingshot software program was used to

infer the cell lineage during the differentiation of the MCs

subpopulations (34). The function “getLineages” was utilized to

calculate the levels of cellular expression for every lineage.
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Cellular stemness analysis

In order to assess the scores of gene sets in single-cell

transcriptomic data, we employed the AUCell method. We utilized

the AUCell package and employed the “AUCell_buildRankings”

function to rank the stemness gene set based on the magnitude

of scores.
Functional enrichment analysis

We conducted a functional analysis using the ClusterProfiler R

software package based on Gene Ontology (GO) analysis and Kyoto

Encyclopedia of Genes and Genomes (KEGG) (35–38). In order to

perform gene set enrichment analysis (GSEA), we took into account

the collective gene expression patterns within the gene sets. For this

research, we employed the Molecular Signatures Database

(MSigDB, https://www.gsea-msigdb.org/gsea/msigdb) to identify

pathways that showed a significant enrichment (39–41).
Cell communication

The CellChat R package (version 1.6.1) (42) was utilized for

quantitatively inferring and analyzing cellular interactions from

scRNA-seq data. The “netVisual_diffInteraction” function was used

to analyze variations in the strength of intercellular communication,

while the “identifyCommunicationPatterns” function was utilized

to determine the quantity of communication patterns. Scatter plots,

heatmaps, and various visualization techniques were utilized to

analyze the signals coming in and out of every cell visually (43).

The CellChat database (http://www.cellchat.org/) was

subsequently utilized to identify signaling pathways and receptor

pairings associated with specific types of MCs that are relevant to

cancer. The “netVisual_bubble” function was employed to assess

the probability of communication between ligand-receptor pairings

regulated by distinct cell clusters and those originating from

dissimilar cell clusters.
Development and validation of the
prognostic prediction model

First, we filtered the most important prognostic genes using

univariable Cox analysis and least absolute shrinkage and selection

operator (LASSO) regression analysis (44–46). We next computed

the hazard coefficients for every prognostic gene by multivariable

Cox regression analysis (47–50). This enabled us to establish a risk

scoring model (Risk score = on
i Xi� Yi, where X represents the

coefficient and Y represents the gene expression level) (51–53). On

the basis of the optimal cutoff values that were determined by the

“surv_cutpoint” function, we organized the data into groups. We

analyzed the predictive results for various groups of patients by

performing survival analysis on the risk scoring model we

developed with the R package ‘Survival’ (version 3.3.1) and

displaying the survival curves with the “ggsurvplot” function
Frontiers in Immunology 04
(54, 55). By plotting receiver operating characteristic (ROC)

curves with the “timeROC” package (version 0.4.0), we evaluated

the predictive model’s accuracy (37, 56–59).

In addition, we performed a multivariable Cox regression

analysis to validate the independent predictive value of the risk

score. Furthermore, we created a nomogram to predict the OS at 1,

3, and 5 years. The accuracy of the nomogram’s predictions was

verified by the utilization of the C-index and calibration curves.
Immune microenvironment analysis

We utilized the CIBERSORT R package (version 0.1.0) to calculate

immune-related scores for 22 immune cell types (60–62). Afterward,

we utilized three different tools “CIBERSORT”, “ESTIMATE”, and

“Xcell” to thoroughly assess the immune surroundings of the patients

(63, 64). Additionally, we analyzed variations in levels of immune cell

infiltration and the expression of genes related to immune checkpoints.

We next ran correlation studies between OS, risk scores, immune cells,

and model genes (65). We also evaluated the response to tumor

immune therapy using Tumor Immune Dysfunction and Exclusion

(TIDE, http://tide.dfci.harvard.edu) program.
Cell lines and cell culture

The HeLa and Caski cell lines were obtained from the Cell

Resource Center at the Shanghai Institute for Biological Sciences,

which is part of the Chinese Academy of Sciences. The cells were

cultured individually in RPMI 1640 media supplemented with 10%

fetal bovine serum (FBS) (Gibco BRL, USA), and 1% penicillin-

streptomycin. The cell lines were cultivated under conventional

conditions, with a temperature of 37°C and a 5% CO2 atmosphere.
siRNA knockdown

RNA constructs (GenePharma, Suzhou, China) helped to

knockdown TNFRSF12A. On a 6-well plate set at a 50% density,

the cells were planted. They then underwent knockdown (si-

TNFRSF12A-1 and si-TNFRSF12A-2) and negative control (si-

NC) transfecting. Lipofectamine 3000RNAiMAX (Invitrogen,

USA) was used for transfection under manufacturer directions.

Every si-RNA (RIbbio, China) was transfected into cells.

Supplementary Table S1 shows the siRNA sequence from 5’ to 3’.
Cell viability assay

Transfected cell viability was assessed with the Cell Counting

Kit-8 (CCK-8, A311-01, Vazyme) (66). The suspension of cells was

placed in a 96-well dish with 5×103 cells in each well and left to

incubate for 24 hours. Afterward, 10 microliters of CCK-8 labeling

reagent were added to every well, followed by incubation of the plate

at 37 degrees Celsius in a light-shielded setting for a duration of 2

hours. Cell viability was evaluated by measuring the absorbance at
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450 nm over a period of four days. Mean optical density values were

determined and graphically represented using a line graph.
Quantitative polymerase chain
reaction (qPCR)

RNA extraction was performed using the Trizol reagent, and

reverse transcription was carried out using the PrimeScript™ Kit.

The qPCR reaction was conducted using SYBR Green premix (67).

The primer sequences used were listed in Supplementary Table S1.
Wound-healing assay

The cells that had been successfully transfected with stable

genetic material were placed in a 6-well plate and grown in a

controlled environment within a cell culture incubator until they

reached full coverage of the plate. With a sterile 200 mL plastic

pipette tip, the cells in each culture well were delicately scraped and

then rinsed with PBS to eliminate any cell debris. Afterwards, the

cells were placed in a culture medium without serum and incubated.

Photographs of the scratch injuries were taken at 0 hours and 48

hours, and the width of the scratches was quantified using the

Image-J software. The wound healing percentage was determined

by applying the formula: (the scratch area in 0-48 hours × 100)/the

area in 0 hours.
Transwell assays

The cell migration capacity was evaluated using a Transwell test.

The top compartment of a 24-well plate was covered with a matrix

gel solution (BD Biosciences, USA), and the cell mixture was placed

in the top compartment, while a culture medium containing 10%

FBS was added to the bottom compartment. The plates were

subsequently placed in a cell culture incubator and kept there for

a duration of 48 hours. Following the removal of cells from the

upper chamber, the surviving cells on the lower surface were treated

with 4% paraformaldehyde for fixation and then stained with 0.1%

crystal violet (Solarbio, China). The cells in five randomly selected

fields of vision were quantified using an optical microscope.
5-Ethynyl-2’-deoxyuridine
proliferation experiments

The HeLa and Caski cell lines that were transfected were placed

into a 6-well cell culture plate with 5×103 cells in each well.

Following a 24-hour incubation period at ambient temperature,

the EdU working solution was introduced into the cell culture

medium and left to incubate for 2 hours. Afterwards, the cells were

rinsed twice with PBS and then treated with a 4% paraformaldehyde

solution for 15 minutes to immobilize them. Next, the cells were

subjected to treatment with glycine at a concentration of 2 mg/ml
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and 0.5% Triton X-100 for a duration of 15 minutes. Ultimately, the

cells were subjected to a treatment involving the addition of 1 ml of

1X Apollo and 1 ml of 1X Hoechst staining reaction solution, which

lasted for a duration of 30 minutes. Cell proliferation was assessed

by capturing images using a fluorescence microscope.
Statistical analysis

We performed statistical analysis using the R software (version

4.2.0). The statistical significance of the data was determined by

calculating the p-values. The levels of significance were marked with

asterisks: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. "ns"

was used to say that there was no significant difference.
Result

Single-cell analysis of the primary cell
types in CC

We performed scRNA-seq analysis on 10 CC samples to explore

the heterogeneity of cell types. Following quality assurance, a

combined 93,524 cells were collected from 2 High Squamous

Intraepithelial Lesion (H) specimens, 1 Metastatic Lymph Node

(L) specimen, 4 Cervical Tumors (T) specimens, and 3 Normal

Cervix (N) specimens. After batch effect removal, UMAP

dimensionality reduction clustering was applied to high-quality

cells to visualize distinct groupings (H: High Squamous

Intraepithelial Lesion, L: Metastatic Lymph Node, T: Cervical

Tumors, N: Normal Cervix) (Figure 1A). Using known marker

genes for typical cell types, we annotated the 93,524 high-quality

cells, resulting in 10 cell types: T_NK cells, endothelial cells (ECs),

fibroblasts, smooth muscle cells (SMCs), epithelial cells (EPCs), B

cells, plasma cells, MCs, neutrophils, and myeloid cells. The cell

cycle distribution differences among these cell types were shown

(Figure 1B). Our observation of MC infiltration in CC tissues

primarily consisted of H and N clusters, leading us to hypothesize

that MCs could be involved in the conversion of tumoral

epithelium. The bar graph on the left illustrates the relative

proportions of the ten distinct cell types across different tissue

types (H, L, T, N), while the bar graph on the right showcases the

relative proportions of different cell types at various stages of the cell

cycle (Figure 1C).

In addition, an expression bubble plot was utilized to depict the

expression levels of the top 5 marker genes for each cell type

(Figure 1D). By examining the distribution patterns and levels of

expression of nCount_RNA, nFeature_RNA, S.score, and G2M.score

in various cell types, we may gain a deeper understanding of the

differences between these cell types (Figures 1E, F). The violin plots

demonstrate that the tumor group displays elevated amounts of

nCount_RNA, nFeature_RNA, S.score, and G2M.score, suggesting a

heightened cellular proliferation within this group (Figure 1G). The

DEGs across the 10 cell types are illustrated in the UMAP

plots (Figure 1H).
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Visualization of MCs subpopulations in CC

After performing dimensionality reduction and clustering, a total

of 1392 CC-associated MCs were obtained. The UMAP plot

illustrated the origins of the 10 samples and the removal of batch

effects in CC cells (Figure 2A).We identified seven distinct subgroups
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of MCs and annotated them based on their respective cell marker

genes: C0 CTSG+ MCs (555), C1 CALR+ MCs (371), C2 ALOX5+

MCs (207), C3 ANXA2+ MCs (98), C4 MGP+ MCs (84), C5 IL32+

MCs (39), and C6 ADGRL4+ MCs (38). Using the UMAP plot

combined with pie charts depicting cell proportions, we showcased

the distribution of these seven MCs subgroups across different groups
FIGURE 1

Single-cell landscape of CC. (A) The UMAP plots of the single cell spectrum depicted in this paper is presented. The plots exhibited distinguished
coloration based on the sample source (on the left) and tissue type (on the right). (B) UMAP plot on the left annotated cell types (T_NK cells, ECs,
SMCs, EPCs, B cells, plasma cells, MCs, neutrophils, and myeloid cells) based on known lineage-specific marker genes (represented by colors). On
the right, the UMAP plot depicted the distribution of cells in different cell cycle phases (G1, G2M, S). (C) Bar graphs depicted the relative proportions
of the ten distinct cell types across various tissue types (left) and cell cycle (right). (D) Bubble plot visually represented the expression levels of
diverse marker genes according to annotated cell types. The coloration of the bubbles is determined by normalized data, while the size of the
bubbles denotes the proportion of gene expression. (E) UMAP plots illustrated the distribution of nCount_RNA, nFeature_RNA, G2M.score, and
S.score across ten distinct cell types within CC. (F, G) Violin plots depicted the expression levels of nCount_RNA, nFeature_RNA, G2M.score, and
S.score across ten cell types (F) as well as various tissue types (G) in the context of CC. . ****P < 0.0001. (H) UMAP plots showed DEGs across
distinct cell types in the context of CC.
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(H, L, T, N) and cell cycle phases (G1, S, G2M) (Figure 2B). Among

them, subgroups C0, C4 and C6 predominantly originated from

normal tissues, while subgroups C1, C2, C3 and C5 had a higher

proportion of tumor tissue representation. Subsequently, we utilized

box plots to display the distribution of MCs from different tissue

types within each subgroup (Figure 2C). The results revealed that

Normal Cervix mainly clustered in subgroups C0, C4, and C6, while

Cervical Tumors were predominantly concentrated in subgroup C1,

with some presence in subgroups C2 and C3. High Squamous

Intraepithelial cells were primarily distributed in subgroups C0, C1,

and C2, with a smaller portion found in subgroup C3. A bar graph

was employed to demonstrate the proportions of cell cycle phases

across the different MCs subgroups of CC (Figure 2D), indicating no

significant differences among the seven subgroups in terms of cell

cycle distribution (G1, S, G2M).

We utilized inferCNV to identify chromosomal CNVs within cells,

aiming to investigate the malignancy level of tumors and abnormal

states of cells (68). This approach assists in distinguishing tumor cells

from normal cells and identifying clusters of abnormal cells within

tumor cells. The heatmap displays the CNV profiles of EPCs inferred

using ECs as a reference (Supplementary Figure S1A). The results

indicate the presence of abnormal chromosomal copy number

amplifications or deletions in malignant EPCs of CC. In

Supplementary Figure S1B, the inferred CNVs of each cell

subpopulation are illustrated. Next, we employed UMAP plots to

visualize the CNV scores, nCount_RNA, S.score, and G2M.score of

the MCs subgroups. The results were presented using violin plots

(Figures 2E, F). The C2 ALOX5+ MCs subgroup displayed the highest

CNV score, indicating a greater occurrence of copy number variants in

comparison to other subgroups. This suggests a possibly higher level of

malignancy. On the other hand, the C3 ANXA2+ MCs subgroup

displayed a higher nCount_RNA score, suggesting a relatively active

cellular proliferation state. In Figure 2G, the top 5 marker genes’

differential expression was highlighted within the MCs subgroups. The

findings showed that the leading 5 marker genes in the C2 ALOX5+

MCs subgroup were similarly present in other MCs subgroups.

We ultimately employed bar graphs to exhibit the levels of

marker genes expression in different subcategories (Figure 2H).
Slingshot analysis of proposed temporal
trajectories of MCs subpopulations

To infer the lineage trajectory and pseudotime sequence of MCs,

we employed slingshot analysis to assess the distribution of MCs

differentiation trajectories across all MCs, visually represented

through UMAP plots (Figure 3A). We found 3 cell lineage

trajectories of the MCs subpopulations (Figures 3B, C). Lineage 1

followed the path C5 → C1 → C0 → C2 → C3; Lineage 2 followed the

path C5 → C1 → C0 → C2 → C6; Lineage 3 followed the path C5 → C1 →

C0 → C4. Slingshot analysis revealed that the differences among the

three trajectories mainly reside in the middle to late stages. Combined

with the analysis results depicted in Figure 2C, the C3 subpopulation

was positioned at the end of Lineage1, predominantly present in CCs.

On the other hand, although the C4 and C6 subpopulations were

located at the ends of lineage3 and lineage2, respectively, they exhibited
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a significantly higher proportion in the normal cervix. Therefore, we

inferred that lineage1 represents the differentiation line of MCs

associated with the tumor. Moreover, we noted that both lineage1

and lineage2 pass through the C2 subpopulation at the late stage of

differentiation, but with different endpoints. From this observation, we

speculated that the C2 subpopulation likely plays a crucial role in the

differentiation of tumor-associated MCs. Subsequently, Gene Ontology

Biological Process (GO-BP) enrichment analysis was employed to

validate the biological processes associated with the three lineage

paths of MCs subpopulations (Figure 3D). The enrichment results

indicated the following: C1: leukocyte immune, mediated immunity

and lymphocyte antigen presentation; C2: cell-substrate, muscle; C3:

smooth, proliferation; C4: humoral, tight, junction. The dynamic

trends plot depicted the changes in expression levels and distribution

patterns of marker genes for various subpopulations of MCs over three

differentiation trajectories in pseudotime (Figure 3E).
Expression of stemness gene sets in
MCs subpopulations

To examine the expression of stemness genes in distinct subgroups

of MCs and comprehend their ability to differentiate, we employed a

bubble plot to visually represent the variation in expression of stem cell

genes across these subgroups. The results demonstrated the expression of

stem cell genes CD44, CTNNB1, EPAS1, HIF1A, KDM5B, KLF4, and

HIF1A in distinct tissue types and subpopulations of MCs, as shown in

Figure 4A. Subsequently, we undertook further analysis to assess the

variations in cellular stemness among different subpopulations

(Figure 4B). The results demonstrated that C2 ALOX5+MCs exhibit a

lower level of cell stemness, suggesting a higher degree of differentiation.

The violin displayed the variations of cellular stemness across different

cell cycles and tissue types (Figure 4C). The above findings suggested

that the Normal Cervix tissue exhibits the highest level of cell stemness.

Consequently, we could deduce that the remaining three tissue types

may have undergo differentiation that originated from the Normal

Cervix. Moreover, there was no significant disparity in cellular

stemness between different cell cycles. Finally, the stemness genes with

relatively elevated expression levels in Figure 3A were showcased in all

MCs through UMAP plots and contour plots (Figure 4D).
Enrichment analysis of MCs
subpopulations in CC

First, the differential gene expression patterns among the MCs

subgroups were shown using volcano plots in Figure 5A.

To further demonstrate the enrichment of DEGs in biological

processes, we performed GO-BP enrichment analysis on DEGs in the

MCs subpopulations. Figure 5B displayed the top five enrichment

entries for different MCs subgroups, revealing unique pathways of

enrichment among the seven subgroups. The results demonstrated

distinct enrichment pathways among the seven MCs subgroups. The

C0 CTSG+ MCs subgroup was primarily associated with pathways

such as cytoplasmic translation, negative regulation of ubiquitin

protein ligase activity, positive regulation of signal transduction by
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FIGURE 2

Visualization of MCs subpopulations in CC. (A) UMAP plot demonstrated the origin of the samples and the clustering of 1392 high-quality cells using
the downscaling technique through the Seurat method. (B) The cells were annotated according to recognized lineage-specific marker genes
(indicated by color): C0 represented CTSG+ MCs, C1 represented CALR+ MCs, C2 represented ALOX5+ MCs, C3 represented ANXA2+ MCs, C4
represented MGP+ MCs, C5 represented IL32+ MCs, and C6 represented ADGRL4+ MCs. A pie chart was employed to illustrate the MCs
subpopulation in terms of tissue type and cell cycle. On the left side, the groups (H, L, T, N) were specified, while on the right side, the phases (G1, S,
G2M) were delineated. (C) Box plots depicted the distribution of different tissue types among various subtypes of MCs. (D) Bar graph displayed the
varying cell cycle occupancies of the seven cell subpopulations of MCs in CC. (E) UMAP plots exhibited the distribution of CNVscore, nFeature_RNA,
S.score, and G2M.score across MCs subpopulations. (F) Violin plots demonstrated the expression levels of CNVscore, nFeature_RNA, S.score, and
G2M.score across MCs subpopulations. (G) Bubble plot exemplified the differential expression of top5maker genes within MCs subpopulations and
across distinct tissue types. The coloration of the bubbles signifies the level of gene expression, while the size reflects the proportionate percentage
of gene expression within the subpopulations. (H) Bar graphs illustrated the expression levels of marker genes within each subgroup.
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p53 class mediator. The C1 CALR+ MCs subgroup was enriched in

pathways such as protein folding, regulation of immune effector

process. The enrichment analysis conducted on the C2 ALOX5+

MCs subgroup revealed their close association with immune and

inflammatory processes, including leukocyte mediated immunity,

production of molecular mediator involved in inflammatory

response, positive regulation of immune effector process. The C3

ANXA2+ MCs subgroup showed enrichment in pathways such as

epidermis development, cell-cell junction organization. The C4 MGP+

MCs subgroup was enriched in pathways related to extracellular matrix

organization, collagen fibril organization, and cell-substrate adhesion.

The C5 IL32+ MCs subgroup mainly exhibited enrichment in

pathways such as lymphocyte mediated immunity, leukocyte

mediated cytotoxicity. The enrichment analysis of the C6 ADGRL4+

MCs subgroup revealed pathways related to regulation of angiogenesis,

regulation of vasculature development, epithelial cell migration. Word

cloud plots illustrate the enrichment results of DEGs in different

pathways for the seven MCs subpopulations (Figure 5C).

Additionally, the GSEA enrichment analysis results were visualized

as bubble plots (Figure 5D).

Lastly, we conducted GSEA on the DEGs in the C2 subgroup of

MCs, utilizing GO-BP terms. The results were depicted in
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Figure 5E. It was observed that the pathways associated with

Regulation of lymphocyte-mediated immunity, Vesicle-mediated

transport, Endocytosis and Regulated exocytosis were upregulated

in the C2 subgroup. In contrast, the C2 subgroup exhibited

downregulation of the pathways associated with the cellular

response to stress and the response to hormone.
CellChat analysis among cell subtypes

To enhance our comprehension of the communication network

among various cell types, decipher the intricacy of intercellular

signaling, and investigate the functional and regulatory roles of cell

subpopulations and crucial signaling pathways in physiological and

disease processes, we utilized CellChat for the analysis and

depiction of intercellular communication. Firstly, we constructed

a communication network among all CC cells, including T_NK

cells, ECs, fibroblasts, SMCs, EPCs, B cells, plasma cells, MCs,

neutrophils, and myeloid cells. To determine the extent of cellular

communication, we measured the quantity and intensity of these

intercellular connections (shown by the thickness of the connecting

lines). Higher numbers of intercellular contacts and higher levels of
FIGURE 3

Slingshot analysis of proposed temporal trajectories of MCs subpopulations. (A) UMAP plots demonstrated the distribution of differentiation
trajectories of MCs, fitted by slingshot, across the entire MCs population. Lineage1 nPos:626,44.97%, Lineage2 nPos:694,49.86%, Lineage3
nPos:799,57.4%. (B, C) UMAP plots showed the distribution of the three pseudotemporal trajectories of MCs in all MCs clusters. Solid lines indicate
differentiation trajectories with arrows pointing to the direction of differentiation (from naive to mature). Lineage1: C5→C1→C0→C2→C3; Lineage2:
C5→C1→C0→C2→C6; Lineage3:C5→C1→C0→C4. (D) The results of the GO-BP enrichment analysis confirmed the biological processes
corresponding to the three pseudotemporal trajectories of MCs subpopulations. (E) Kinetic trend plot showcased the fluctuation and dispersion of
marker gene expression in the MCs subpopulations along the three differentiation trajectories in pseudotime. The plot was color-coded according to
cell type.
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communication intensity are shown by thicker lines (Figure 6A). To

examine the coordination and interaction among several cell

subtypes, we employed CellChat to detect overall communication

patterns and important signaling components inside various cell

clusters. This allowed us to establish connections among cell

populations. As a result, we discovered three outgoing signal

patterns (viewing cells as senders) and three incoming signal

patterns (viewing cells as receivers) (Figure 6C). The results

revealed that most outgoing signals from MCs were dominated by
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pattern 1, involving multiple signaling pathways such as TIGIT,

TNF, SPP1, and TWEAK. The incoming signals from all tumor cells

exhibited pattern 3, including but not limited to CD96, CEACAM,

and AGRN signaling pathways.

Next, to identify the key incoming and outgoing signals

associated with the C2 ALOX5+MCs subpopulation and other

cell subpopulations, we also identified receptor-ligand signaling

related to the communication pathways (Figures 6B, D). The

results showed that as secretory cells, the ligands associated with
FIGURE 4

Expression of stemness gene sets in MCs subpopulations. (A) Bubble plot demonstrated the differential expression of stemness genes across various
MCs subpopulations and tissue types. The size of the bubbles indicates gene expression score and the color represents the normalized data.
(B, C) Violin plots demonstrated the AUC value of stemness genes in different MCs subpopulations (B), cell cycle and tissue types
(C). *P < 0.05, and ****P < 0.0001 indicated a significant difference and "ns" indicated a non-significant difference. (D) UMAP plots showed the
spatial arrangement of stemness genes among various subtypes of MCs, presented through the visualization of contour density.
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the output of C2 ALOX5+MCs were mainly MIF, CD45, and

TWEAK. Regarding the input pathways in target cells, the

receptors associated with C2 ALOX5+MCs were primarily CD99,

SELE, and SPP1, while the receptors related to tumor cells included

TWEAK, CEACAM, and CD96. Figure 6E displayed a scatter plot

that showcased the communication network analysis of pathways

associated with tumor interaction, both in all cells and specifically

within the C2 subgroup of MCs.
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In addition, we chose C2 ALOX5+MCs as the source and tumor

cells as the targets to study the interactions between MCs and tumor

cells. The circular plot displayed the number (Figure 6F)

and strength (Figure 6G) of cell-cell interactions between C2

ALOX5+MCs as the source and tumor cells as the targets.

Combining the results from CellChat analyses, we found that the

TWEAK signaling pathway exhibited strong interaction between

ligands and receptors. The scatter plot revealed the cell-cell
FIGURE 5

Enrichment analysis of MCs subpopulations in CC. (A) The volcanic plots provided descriptions of DEGs within each subgroup. (B) Heatmap showed
the top5 enriched entries of GO-BP enrichment analysis for seven MCs subpopulations of differential genes. (C) Word cloud diagrams showed the
results of GO-BP pathway in seven MCs subpopulations. (D) Based on the GO-BP entries, the results of enrichment analysis of differential genes in
subpopulations of MCs were visualized using a bubble plot through GSEA. The size of the bubbles represents the number of genes enriched, while
the color indicates the significance level. (E) The results of GSEA were presented, based on the GO-BP entries, showcasing the enriched pathways
associated with differential genes in the C2 subpopulation of MCs.
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communication patterns of the TWEAK signaling pathway,

emphasizing the significance of C2 CRYAB+MCs in this route

(Figure 7A). Using the network centrality analysis of the TWEAK

signaling network, we determined that the C2 MCs subpopulation

had the highest level of importance as a sender in the TWEAK

signaling pathway. Conversely, tumor cells were identified as the

most significant receivers (Figures 7B, C). Significantly, the ligand-
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receptor pair TNFSF12 - TNFRSF12A was identified as a key

element in the TWEAK communication network (Figures 7D, E).

The circular and layered diagrams depicted the deduced network

of cell-cell communication in TWEAK signaling (Figures 7F, G).

All cell types identified in the CC tissue were examined as

potential source cells for the TWEAK signaling pathway. The

findings revealed that C1 CALR+MCs, C2 ALOX5+MCs, C3
FIGURE 6

Presentation of CellChat results. (A) Circle plots depicted the number (top) and strength (bottom) of interactions among all cells in CC. (B) Dot plots
showed the comparison of outgoing signaling patterns of secreting cells and incoming communication patterns of target cells. Higher contribution
score implies the signaling pathway is more enriched in the corresponding cell group. (C) Heatmaps showed the outgoing communication patterns
of secreting cells and incoming communication patterns of target cells, showing the correspondence between the inferred latent patterns and cell
groups, as well as signaling pathways. (D) Heatmaps showed outgoing and incoming signal strength of all cell interactions in CC.
(E) The scatter plot depicted the communication network analysis between all cells and the C2 subpopulation associated with tumor-related
pathways, the color of the dots indicates different cells and the size of the dots indicates the number of cells. (F, G) Screening of the number (F) and
strength (G) of cellular interactions circled plots with C2 ALOX5+ MCs as source and tumor as target.
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ANXA2+MCs, C5 IL32+MCs, myeloid cells, fibroblasts, and SMCs

are capable of targeting tumor cells by releasing TWEAK.
In vitro experimental validation
of TNFSF12A

TNFRSF12A, also known as Tumor Necrosis Factor Receptor

Superfamily Member 12A, was a part of the TNFR superfamily. It

had a diverse function in controlling cellular growth, viability,

migration and apoptosis (69–71). Recent research has highlighted

the significant impact of TNFRSF12A on the development,

advancement, and metastasis of different types of cancer in

humans (72, 73). Nevertheless, the exact function of TNFRSF12A

in CC had yet to be clarified. To this end, we conducted in vitro
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functional assays to determine the impact of TNFRSF12A on CC

cells. For precision and consistency, we performed all tests on two

CC cell lines (HeLa and CaSki). Initially, we assessed the baseline

mRNA expression levels in these cell lines (Figure 8A). Knocking

down TNFRSF12A in these cell lines resulted in a notable reduction

in the viability of tumor cells, as seen by the CCK-8 test (Figures 8B,

C). Moreover, a substantial reduction in cellular proliferation was

confirmed by colony formation and EdU assays following the

TNFRSF12A knockdown in both cell lines (Figures 8D, G). These

results indicated that the silencing of TNFRSF12A reduced tumor

cell activity and proliferation, thereby impeding tumor growth.

Furthermore, scratch and Transwell assays demonstrated a

significant decrease in the migratory and invasive abilities of the

TNFRSF12A-knockdown tumor cells in contrast to the control

group (Figures 8E, F). These investigations collectively affirmed the
FIGURE 7

TWEAK signaling pathway. (A) Scatter plot of cellular communication patterns of TWEAK signaling pathway. The color of the dots indicates different
cells and the size of the dots indicates the number of cells. (B) Heatmap showed the relative importance of each cell group based on the computed
four network centrality measures of TWEAK signaling network. (C) Heatmap showed the centrality scores of TWEAK signaling pathways. (D, E) Violin
and bubble plots demonstrated cellular interactions in the TWEAK signaling pathway. (F, G) Circle plot and hierarchical plot showed the inferred
intercellular communication network for TWEAK signaling. The size of the circle is proportional to the number of cells in each cell group, and the
edge width indicates the communication probability.
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critical significance of the TNFRSF12A gene regulatory network in

the etiology and metastatic capacity of CC.
Construction of a prognostic model
associated with C2 ALOX5+ MCs score

In order to gain a deeper understanding of the key significance of

MCs with high expression of ALOX5 in the prognosis of CC, and to

offer more precise recommendations for clinical practice, we have

created a risk scoring model. First, a univariate Cox regression analysis

was conducted to identify the top 100 DEGs that are linked to C2

ALOX5+MCs. The study revealed 13 genes that had a significant

correlation with prognosis (P<0.05) (Figure 9A). TINAGL1 and

SLC5A3 exhibited a hazard ratio (HR > 1), signifying that these two

genes are prognostic risk factors, whereas the other genes functioned as

protective factors. To address the problem of multicollinearity among

these genes, we conducted further selection using LASSO regression

analysis. This led to the discovery of five genes that were shown to be

linked with prognosis, as shown in Figure 9B. Afterwards, the

coefficient values were computed using multivariable Cox regression

analysis (Figure 9C).

Afterwards, using the expression levels and regression

coefficients of the five chosen prognostic-related genes, we

computed the ALOX5+MCs score for each patient using the

following formula: ALOX5+MCs score = (0.24) × (TINAGL

expression level) + (0.12) × (SLC45A3 expression level) +

(-0.19) × (CD52 expression level) + (-0.21) × (PTPN6 expression

level) + (-0.42) × (CLNK expression level). The ALOX5+MCs risk

score (AMRS) was utilized to classify the participants into high-risk

and low-risk groups, based on the optimal cutoff value. The curve

plot and scatter plot illustrated the disparities in risk scores and

survival rates between the two groups (Figure 9D), suggesting a link

between higher AMRS and unfavorable prognosis. Furthermore, a

heatmap illustrated the distinct patterns of gene expression

employed in constructing the model (Figure 9E).

Figure 9F displayed the Kaplan-Meier curve showing the

contrast in survival rates between the high AMRS group and the

low AMRS group, supporting the conclusion of worse survival

outcomes in the high AMRS group. The model’s predictive accuracy

was assessed by examining its sensitivity and specificity over 1, 3,

and 5 years with ROC curves and AUC values (Figure 9G). The

results indicated that the model had predictive value. Finally,

survival analysis was performed on the five prognostic-related

genes (TINAGL1, SLC45A3, PTPN6, CLNK, CD52) used in the

model (Figure 9H), further confirming that SLC45A3 was risk

factors associated with poorer prognosis in the high AMRS group,

while CD52 was protective factors associated with better prognosis

in the high AMRS group.
Nomogram construction and correlation
analysis of risk scores and modeled genes

In order to confirm the autonomy of the AMRS as a predictive

factor, we performed a multivariable Cox regression analysis that
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included the risk score along with clinical variables such as age, race,

and tumor stages T, M, and N. The findings indicated that AMRS

independently impacts patient prognosis as a risk factor (P< 0.05)

(Figure 10A). To improve the accuracy of predicting patient survival

rates, a nomogram was created using factors such as race, tumor

stage, age, and risk score to forecast the likelihood of survival at 1, 3,

and 5 years. The results indicated that the differences were most

significant in the AMRS group (Figure 10B). Additionally, the

Nomogram’s prediction was confirmed by evaluating the C-index

and ROC curves. The obtained AUC values were 0.837 (1 year), 0.786

(3 years), and 0.755 (5 years), confirming the accuracy of the model

(Figures 10C, D). Similarly, the calibration curves demonstrated that

the nomogram effectively predicted actual survival outcomes

(Figures 10E–G). In addition, scatter plots were employed to

examine the relationship between the five genes included in the

model and the ALOX5+MCs score and OS (Figure 10H), as well as

the variations in gene expression between the high AMRS and low

AMRS groups (Figure 10I). Finally, the correlation analysis showed a

positive association between TINAGL1, SLC45A3, and the risk score,

and a negative correlation with OS. On the other hand, PTPN6,

CLNK, and CD52 demonstrated a negative correlation with the risk

score, and a positive correlation with OS. These findings were

illustrated in Figures 10J, K.
Comparative examination of immune
infiltration in groups with high and low
scores of ALOX5+ MCs

To investigate the differences in immune cell composition

across varying risk score categories of AMRS, we analyzed the

presence of 22 immune cell types in CC patients from the TCGC

database using the CIBERSORT algorithm, as shown in Figure 11A.

Figure 11B displayed the percentages of 13 immune cell categories

that showed variances between the two groups in box plots. The

results indicated that the High AMRS group had a higher

proportion of Macrophages M0, MCs activated, T cells CD4

memory resting, and Dendritic cells activated, while the Low

AMRS group had higher proportions of T cells CD8, T cells CD4

activated, MCs resting, and Macrophages M1.

Subsequently, we evaluated the correlation between immune

cells and AMRS, as shown in Figure 11C. The results demonstrated

a significant positive correlation between AMRS and MCs activated,

Macrophages M0, and a negative correlation with T cells CD8, MCs

resting, among others. The heatmap visualized the correlation

analysis between immune cells, the modeled genes, OS, and the

risk score (Figure 11D), with results displayed in the figure. We

further observed differences in the StromalScore, ImmuneScore,

and ESTIMATEScore, as well as tumor purity between the High

AMRS group and the Low AMRS group (Figure 11E). In particular,

the High AMRS group exhibited lower scores across all three

measures when compared to the Low AMRS group. The

visualization of tumor purity (Figure 11F) indicated that the High

AMRS group had higher tumor purity values than the Low AMRS

group. The TIDE values between the two groups also exhibited

differences (Figure 11G).
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The heatmap displayed in Figure 11H illustrated the differences

in modeled genes, StromalScore, ImmuneScore, ESTIMATEScore,

TumorPurity, and immune cell infiltration levels between the High

AMRS group and the Low AMRS group, as calculated using

CIBERSORT and Xcell algorithms. Furthermore, we compared

the sensitivity of two immunotherapeutic drugs, CTLA4 and PD1,
Frontiers in Immunology 15
in the High AMRS group and the Low AMRS group using box plots

(Figure 11I). The results showed that the sensitivity levels were

generally lower in the High AMRS group compared to the Low

AMRS group, particularly in the groups of CTLA4-neg/PD1-pos

and CTLA4-pos/PD1-pos, with significant differences observed.

The bubble plot (Figure 11J) displays the correlation between
FIGURE 8

In vitro experimental validation of TNFSF12A. (A) The bar graph depicted the initial mRNA expression levels in Hela and Caski cell lines. (B, C) Cell
viability was significantly diminished following the knockdown of TNFSF12A, as demonstrated by the CCK-8 assay. (D) The colony formation assay
revealed that the number of colonies in cells with TNFSF12A knocked out was substantially lower compared to the si-NC group. (E) Scratch assays
indicated that the knockdown of TNFSF12A markedly slowed the migration of Hela and Caski cells. (F) Transwell assays showed that the knockdown
of the TNFSF12A gene significantly reduced the invasiveness of Hela and Caski cells. (G) EdU staining results suggested that the knockdown of the
TNFSF12A gene inhibited the proliferation of Hela and Caski cells. *P< 0.05, **P< 0.01, and ***P< 0.001
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immune checkpoint-related genes and the modeled genes, risk

score, and OS. It indicates a strong positive correlation between

PTPN6, CD52, CLNK, and most immune checkpoints, while

SLC45A3 demonstrated a negative correlation with most immune

checkpoints. Finally, the expression levels of immune checkpoint-

related genes were analyzed, indicating higher expression in the

majority of immune checkpoint-related genes in the Low AMRS

group compared to the High AMRS group (Figure 11K).
Enrichment analysis

To delve deeper into the differences between the High AMRS

group and the Low AMRS group, we analyzed DEGs and showcased

the expression patterns of these unique genes through a volcano plot
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(Figure 12A). Afterwards, in order to obtain a more thorough

comprehension of the biological importance and operational traits of

the distinct genes, we utilized different enrichment techniques to

examine the DEGs in each group. The results of the GO analysis

unveiled a noteworthy enrichment of differential gene expression in

pathways such as digestion, serine-type endopeptidase activity, serine

hydrolase activity, among others (Figure 12C). The genes associated

with these enriched terms are depicted in Figure 12B. Furthermore, the

outcomes of the KEGG enrichment analysis were visually presented

using a bar graph, affirming the significant associations between these

differential genes and pathways such as Graft-versus-host disease,

Antigen processing and presentation, Maturity onset diabetes of the

young, and Natural killer cell mediated cytotoxicity (Figure 12D).

Moreover, utilizing the enriched GO-BP terms as a basis, GSEA was

conducted, and the results are illustrated in Figure 12E.
FIGURE 9

Construction of a prognostic model associated with C2 ALOX5+ MCs score. (A) Forest plot from univariate Cox regression analysis can be used to
illustrate genes with statistically significant differences (P<0.05) (HR<1: protective factor, HR>1: risk factor). (B) Through LASSO regression analysis,
five genes (non-zero regression coefficients) associated with prognosis were selected. The optimal parameter (lambda) was determined through
ten-fold cross-validation (above), and the LASSO coefficient curve was determined by the optimal lambda (below). (C) Bar graph displayed the Coef
values of the genes utilized for model construction. (D) Curve plots showed risk scores for the high AMRS group and the low AMRS group (top), and
scatter plots showed survival status of both groups over time for survival/death events (bottom). AMRS: ALOX5+ MCs Risk Score. (E) Heatmap
showed differential expression of modeled genes, with color scales based on normalized data. (F) Kaplan-Meier curves showed the survival
difference between the high AMRS group and the low AMRS group. (G) The sensitivity and specificity of 1, 3, and 5-year outcomes were assessed
through ROC curve and AUC values. (H) The Kaplan-Meier curves individually demonstrated the differences in survival among patients grouped
based on the expression levels of five prognostic-related genes (TINAGL1, SLC45A3, PTPN6, CLNK, CD52).
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FIGURE 10

Construction of Risk Score Model for C2 ALOX5+MCs. (A) The Forest plot demonstrated the results of Multivariate Cox regression analysis
integrating risk scores and clinical factors (age, race and tumor clinical stage T, M and N). (B) Nomogram showed the prediction of 1, 3, and 5-year
of OS based on race, tumor clinical stage (T, M, and N), age, and risk score, with the most significant difference in the risk score group. (C) The box-
line plot displayed visualizations of the C-index for cross-validation at 1, 3, and 5 years. (D) ROC curves showed nomogram AUC at 1,3,5 years.
(E–G) Calibration curves validated the accuracy of the nomogram in predicting the 1-year, 3-year, and 5-year survival rates. (H) Heatmap and Scatter
plots demonstrated the correlation between prognostic genes, OS, and genes used in model establishment. (I) Ridge and box plots showed the
expression differences of prognosis-related genes in the high AMRS group and low AMRS group. High and low peaks indicate the patient density of
patients with this gene expression. (J) The scatter plot illustrated the correlation between the risk scores and the genes utilized for model
construction. (K) Scatter plot displayed the correlation analysis between the constructed model genes and the OS. *P < 0.05, and ***P < 0.001.
Frontiers in Immunology frontiersin.org17

https://doi.org/10.3389/fimmu.2024.1434450
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2024.1434450
FIGURE 11

Comparative Analysis of Immune Infiltration between High and Low AMRS Groups. (A) Stacked bar graph illustrated the distribution of 22 immune
cell types between the high and low AMRS groups. (B) Boxplots showed the estimated proportion of 13 immune cells types between the high AMRS
group and the low AMRS group of CC patients. (C) Bar graph showed correlation between immune cells and risk scores. (D) Heatmap showed
correlation analysis between immune cells and construct model genes, OS, and risk scores. (E) The differences in stromal score, immune score, and
ESTIMATE score between the high and low AMRS groups of CC patients. (F) Boxplots showed the level of tumor purity between the high AMRS
group and low AMRS group. *P<0.05, **P<0.01, ***P<0.001, and ****P< 0.0001 indicated a significant difference. (G) The differences in the levels of
TIDE between the high and low AMRS groups. (H) Heatmap showed the difference in modeling genes, StromalScore, ImmuneScore, ESTIMATScore,
TumorPurity, and the level of immune cell infiltration calculated using CIBERSORT, Xcell between the high and low AMRS groups. Color scales are
based on standardized data. (I) Boxplots compared the sensitivity of two immunotherapeutic drugs, ctla4 and pd1, in the high and low AMRS groups.
(J) Bubble plots showed correlations between modeled genes, risk scores, OS, and immune checkpoint-related genes. (K) Boxplots showed the
expression levels of immune checkpoint-related genes in the high AMRS group and low AMRS group. Red: high AMRS group; Green: low
AMRS group.
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Discussion

Single-cell sequencing, as an emerging technology, has

exhibited its unique advantage in uncovering tumor heterogeneity

(74). In recent years, multiple studies utilized this technology to

analyze various solid tumors, providing optimized guidance for

clinical diagnosis and treatment strategies (75–77). MCs, as innate

immune cells, played a role in both tumor suppression and

promotion, with the effects varying depending on the cancer type

(11, 78). Currently, there is ongoing controversy regarding the

impact of MCs on CC. Research has indicated that the risk scores
Frontiers in Immunology 19
derived from prognostic models for CC may correlate with the

infiltration of immune cells such as MCs (79). Additionally, MCs

may facilitate the invasion and metastasis of CC cells by releasing

histamine and cannabinoids (80). However, the mechanisms

underlying the role of MCs in CC remain unclear. Consequently,

we have undertaken an extensive investigation into this area. In this

study, we employed single-cell sequencing technology to

demonstrate the microenvironment landscape of CC, confirming

the existence of immune cells, EPCs, and MCs as distinct cellular

subgroups. Moreover, we observed that the histotype of MCs within

cervical carcinomas was predominantly H-group, which is
FIGURE 12

Enrichment analysis. (A) Volcano plot depicted differential gene distribution between the high AMRS group and low AMRS group. (B, C) Chord and
bar graphs showed the results of GO Enrichment Analysis of differential genes in the high AMRS group and low AMRS group. (D) Bar graph showed
the results of KEGG enrichment analysis of DEGs. (E) The GSEA was conducted to analyze the results of DEGs in the high and low AMRS groups.
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commonly considered to be associated with an elevated risk of CC

progression, leading us to surmise that MCs might be implicated in

the progression of CC.

Subsequently, our analysis of MCs subgroups revealed a particular

subset known as the C2 subgroup, characterized by significantly

upregulated expression of arachidonate 5-lipoxygenase (ALOX5).

ALOX5, a constituent of the lipoxygenase gene family, served a

crucial function in both inflammation and malignancy. ALOX5

affected tumor occurrence and development through catalyzing the

metabolism of arachidonic acid and was closely associated with poor

prognosis in various malignant tumors (81–83). Enrichment analysis

results revealed that subgroup C2 had a crucial impact on several

biological processes, such as the regulation of immune effector

processes, leukocyte-mediated immunity, the production of

molecular mediators involved in inflammatory responses, the

regulation of lymphocyte-mediated immunity, vesicle-mediated

transport, and endocytosis. This demonstrated that subgroup C2

had a key role in immunity and inflammatory responses, and,

according to previous studies, these biological processes were often

closely associated with tumors (84–87). Moreover, our research

discovered that the C2 subgroup had a higher proportion in the H

and T-group compared to other subgroups, and relative to those

subgroups, the C2 subgroup had a higher CNV score. Therefore, we

hypothesized that the C2 subgroup possessed a higher degree of

malignancy and may be correlated with the prognosis of CC.

Analysis results from Slingshot demonstrated that Lineage1 and

Lineage2 represented the differentiation trajectories of tumor-

associated MCs and normal cells, respectively, but their

differentiation endpoints differed completely. The C2 subgroup

was in the middle to late stages of both differentiation trajectories.

We observed differences between the two trajectories after passing

through the C2 subgroup, setting forth the hypothesis that the

transformative effect of the C2 subgroup might be the reason for

these differences. The C2 subgroup could potentially serve as a

transformative MCs subset associated with tumor-related events,

playing a pivotal role in the transition from benign to

malignant states.

Considering the potential interactions between tumor cells and

other cells, we conducted an analysis of intercellular

communication involving the C2 subgroup. Research results

demonstrated that the C2 subgroup interacted with tumor cells

through the TWEAK signaling pathway. Its receptor, TNFSF12A,

induced cell apoptosis and was associated with tumor cell migration

and invasion (88, 89). To validate these findings, we conducted in

vitro experiments on Hela and Caski cell lines, which revealed that

the downregulation of TNFRSF12A suppressed CC tumor growth

and migration, thereby confirming the critical role of the

TNFRSF12A gene regulatory network in CC occurrence and

metastatic potential and further supporting our hypotheses.

As controversies persist regarding the prognosis of CC patients

in relation to MCs, we identified 13 genes associated with CC

prognosis and constructed a risk scoring model. It is noteworthy

that LASSO regression analysis identified five genes associated with

prognosis, including TINAGL1 and SLC5A3 as risk factors, and

CD52, PTPN6, and CLNK as protective factors. The coexistence of
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risk and protective factors among the prognosis-related genes led us

to speculate that MCs of CC may induce the expression of these

genes to promote tumor immune evasion and metastasis, exerting

immunosuppressive effects. Protective genes were considered

associated with a lower disease risk and generally indicative of a

better prognosis. These findings suggest that the C2 subgroup may

possess the potential to push the prognosis of CC towards either a

poor or favorable outcome, serving as a crucial component in the

transition between tumor malignancy and benign status, further

validating our previous hypotheses. Utilizing external TCGA data,

the prognostic significance of MCs infiltration was assessed,

uncovering a link between elevated AMRS and reduced OS.

Additionally, this finding was confirmed in a group of patients in

a clinical setting.

Given the extensive presence of immune cells in the CC

microenvironment, we conducted a comparison of this infiltration

in different risk assessment categories. The high AMRS group

showed elevated levels of immunosuppressive cells, as well as

notable variations in matrix scores, immune scores, and

ESTIMATE scores when compared to the low AMRS group. Our

research indicated that individuals in the low AMRS category may

have a higher chance of responding positively to anti-PD-1

treatment. It is worth mentioning that according to the immune

checkpoint analysis results, we discovered that the TME of patients

in the low AMRS group may contain a greater number of

infiltrating T cells that express immune checkpoint-related

proteins. Consequently, patients in this group may be more

responsive to ICB therapy, whereas the high AMRS group may be

resistant or unresponsive to ICB therapy, which is in accordance

with our research. Further corroborating previous research, our

findings support the conclusion that patients with advanced CC

exhibit lower responsiveness to ICB therapy (6, 9). In summary, our

comprehensive research findings suggest that C2 ALOX5+ MCs

may be associated with the progression and malignant

transformation of CC. Targeted studies on this subpopulation

could potentially enhance the therapeutic efficacy for CC and

pave the way for uncovering new therapeutic targets and

mechanisms underlying the disease, thereby offering novel

avenues for future intervention and treatment strategies.
Conclusion

Building on the single-cell characteristics of CC, we investigated

the heterogeneity within the TME of CC. Further analysis of MCs

subgroups identified the distinct presence of the C2 ALOX5+MCs

subgroup in CC, suggesting its potential role as a tumor-associated

MCs subgroup with transformative effects on immunity and

inflammation. Importantly, coupled with CellChat analysis, we

discovered that TNFRSF12A may facilitate the growth and

migration of CC, a finding corroborated by in vitro experiments.

These findings may unveil the crucial roles of TNFRSF12A in CC

diagnosis, prognosis, and immune function, indicating its potential

as a promising predictive marker and therapeutic target in CC

patients. Subsequently, we developed a prognostic model to predict
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the survival outcomes in CC patients and assessed immune

infiltration in different risk groups, offering novel insights for

patient prognosis and treatment guidance. However, despite the

valuable insights provided by our analysis, the research was limited

to a specific group of individuals for validation, which highlights the

need for a larger and more diverse clinical sample as well as future

prospective studies to ensure wider generalizability. In addition, our

samples are derived from public databases, which may have

inherent biases or limitations. It is crucial to acknowledge any

potential biases associated with these choices and consider their

impact on the generalizability of the research findings. Additionally,

although our findings were validated in vitro, extrapolating these

conclusions to the whole organism remains challenging,

underscoring the need for in vivo experimentation. Finally, the

prognostic models employed in our research necessitate refinement.

We aim to gather more reliable data in the future to enable more

comprehensive and precise investigations.
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The analysis of CNV results. (A) Heatmap showed the inferCNV profiles of
EPCs using ECs as a reference. The red color indicates copy number increase

and the blue color indicates copy number decrease. (B)Heatmap showed the
inferCNV for each MCs subpopulation using ECs as a reference. The red

indicates copy number increase and the blue indicates copy

number decrease.
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