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Background: Glioma is the predominant malignant brain tumor that lacks

effective treatment options due to its shielding by the blood-brain barrier

(BBB). Astrocytes play a role in the development of glioma, yet the diverse

cellular composition of astrocytoma has not been thoroughly researched.

Methods: We examined the internal diversity of seven distinct astrocytoma

subgroups through single-cell RNA sequencing (scRNA-seq), pinpointed

crucial subgroups using CytoTRACE, monocle2 pseudotime analysis, and

slingshot pseudotime analysis, employed various techniques to identify critical

subgroups, and delved into cellular communication analysis. Then, we combined

the clinical information of GBM patients and used bulk RNA sequencing (bulk

RNA-seq) to analyze the prognostic impact of the relevant molecules on GBM

patients, and we performed in vitro experiments for validation.

Results: The analysis of the current study revealed that C0 IGFBP7+ Glioma cells

were a noteworthy subpopulation of astrocytoma, influencing the differentiation

and progression of astrocytoma. A predictive model was developed to categorize

patients into high- and low-scoring groups based on the IGFBP7 Risk Score

(IGRS), with survival analysis revealing a poorer prognosis for the high-IGRS

group. Analysis of immune cell infiltration, identification of genes with differential

expression, various enrichment analyses, assessment of copy number variations,

and evaluation of drug susceptibility were conducted, all of which highlighted

their significant influence on the prognosis of astrocytoma.

Conclusion: This research enhances comprehension of the diverse cell

composition of astrocytoma, delves into the various factors impacting the

prognosis of astrocytoma, and offers fresh perspectives on treating glioma.
KEYWORDS
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Introduction

Glioma is a tumor caused by glial cells or precursor cells (1).

Gliomas are the predominant histological form of primary cancer in

the central nervous system, including high-grade gliomas and low-

grade gliomas (2, 3). As for the classification, WHO advocates

dividing gliomas into I–IV grades (4). Glioblastoma multiforme

(GBM) is the predominant malignant brain tumor, making up

60%–70% of malignant gliomas (2), and is classified as a highly

invasive grade IV glioma (5). Glioblastoma, also known as

malignant glioma, is the deadliest type of brain tumor, typically

resulting in a median survival time of 15 months (6), glioblastoma is

the most aggressive form of astrocytoma. Prior research has

indicated that there are gender disparities in the occurrence of

GBM in adults, with a higher prevalence among males (1).

Treating a brain tumor can be challenging due to the presence

of the blood-brain barrier (BBB), which protects it (6). At present,

surgery, radiotherapy, and chemotherapy are still the main

treatment methods for glioma (4). GBM cannot be removed

surgically because of its invasive nature and ability to infiltrate

normal surrounding brain tissue (7). At present, the main drugs for

GBM chemotherapy are temozolomide, or TMZ. TMZ slightly

improved the survival rate of patients but caused many side

effects (6). The GBM tumor has strong resistance to radiotherapy

and cytotoxic chemotherapy (7). Hence, there is no superior

remedy for GBM, necessitating a more profound comprehension

of the illness and investigation into novel treatment approaches.

Recent literature has indicated that the combination of

temozolomide therapy and tumor-treating fields (TTFields) can

enhance both progression-free survival and overall survival in

patients with glioblastoma (8). TTFields represents a therapeutic

modality that combats mitosis, although further investigation is

needed to fully elucidate its experimental findings. Moreover, this

treatment necessitates the utilization of a device, which entails head

hair shaving and may impose an additional burden on patients. The

adoption of a multimodal standard therapy still entails an inevitable

recurrence rate, with a median survival exceedingly merely one year

(9), so other therapeutic modalities still need to be explored.

Single-cell analysis has become an important tool for dissecting

cellular heterogeneity (10, 11). This method has been extensively

utilized for examining the internal diversity of different types of

cancer, including non-small cell lung cancer (12), melanoma (13),

cervical cancer (14), bladder cancer (15), prostate cancer (16) and

clear cell renal cell carcinomas (ccRCCs) (17–20), among others.

The characteristics and makeup of the tumor immune

microenvironment (TIME) play a crucial role in the treatment

and outlook of tumors. Research has shown that astrocytes play a

role in the development of glioma, indicating that this relationship

could be a potential focus for novel treatments (21). Research has

extensively shown that astrocytes have the ability to control the

attraction of tumor-associated macrophages (TAMs) to the tumor

microenvironment (TME) through CCL2, leading to the

progression of glioblastoma by encouraging a pro-tumor

phenotype in TAMs (22). However, the tumor immune

microenvironment of astrocytoma has not been fully explored
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For this research, we utilized scRNA-seq to analyze single-cell

data from GBM patients. We conducted dimensionality reduction

clustering analysis on astrocyte subpopulations, followed by

inferCNV analysis to identify astrocytoma. Our goal was to

investigate the diverse heterogeneity of astrocytoma subpopulations

and identify key subpopulations with the potential for high

differentiation. Additionally, we explored the transcription factors

associated with these subpopulations. Furthermore, a risk assessment

model was developed, and the infiltration of immune cells in tumors

was investigated along with clinical data from patients with glioma.

Finally, we performed in vitro experimental validation. These studies

could offer fresh insights for treating GBM.
Materials and methods

Get glioma data

The Glioma single-cell RNA-seq data utilized in this study were

obtained from the NCBI Gene Expression Omnibus (GEO)

database at https://www.ncbi.nlm.nih.gov/geo/. The identification

code for logging in was GSE182109.

Data pertaining to bulk RNA-seq was acquired from the Cancer

Genome Atlas (TCGA) website (https://portal.gdc.cancer.gov/),

which included clinical details (age, gender, ethnicity) and

somatic mutation information for glioma patients.
Raw data processing

The raw single-cell RNA data was analyzed using the “Seurat”

package (version 4.3.0) (23, 24). To enhance data quality, the

“DoubletFinder” R package (version 2.0.3) (17, 25) was utilized

for eliminating doublet cells based on genetic data, followed by

applying the “PercentageFeatureSet” function to filter out low-

quality cells. High-quality cells meeting the criteria of (1) having

300 < nFeature < 7,500 genes detected in a single cell, (2) having 500

< nCount < 100,000 total transcriptomic count in a single cell, and

(3) having the number of recognized genes in a single cell < 100,000

were retained. A single cell contains between 500 and 6,000

identifiable genes. Less than 20% of genes in a single cell were

actively expressed by mitochondria.
Data clustering analysis with
reduced dimensions

High-quality glioma cells were acquired and then normalized

using the “NormalizeData”function, followed by the identification of

the top 2000 variable genes using the “FindVariableFeatures”

function. All genes were centered using “ScaleData” (26–29). To

remove batch effects across various samples, the samples were

processed and analyzed using the “harmony” R package (version

0.1.1) (14, 30).
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The initial 30 primary components (PCs) were reduced in size

with the “RunPCA” function, then the glioma cells were grouped

and examined using “FindClusters” and “FindNeighbors”

categorized based on the marker genes of cell subgroups

mentioned in previous studies, and displayed through Uniform

Manifold Approximation and Projection (UMAP) (31).
Detect astrocytoma utilizing InferCNV

By utilizing InferCNV (https://github.com/broadinstitute/

inferCNV/wiki) (13), we were able to assess the astrocytes within

the glioma cell subset and identify the differences in copy number

within this subset. Taking EC (epithelial cell) as a control, the

astrocytes with high-level copy number variation (CNV) were

defined as astrocytoma.
Subgroup identification of astrocytoma

By clustering astrocytoma, we were able to identify various

subgroups, revealing its internal heterogeneity. First of all, the

top 2,000 highly mutated genes in astrocytoma were identified,

then normalized, and the “harmony” R package was applied to

reduce batch effects. Finally, the first 30 principal components

(PC) were projected onto the two-dimensional map by using the

UMAP map, and the different subsets of astrocytoma were

marked according to the marker genes in previous literature

(32, 33).

Furthermore, we investigated the origin of tissues and the cell cycle

of various cell subgroups, computed staging scores like G2M.Score and

S.Score, and compared the variations in G2M.Score, S.Score, nFeature,

and nCount across different cell subgroups.
Identification and enrichment analysis of
differentially expressed genes in
astrocytoma subtypes

DEGs were identified for each astrocytoma subpopulation by

screening with the “FindAllMarkers” function, detecting genes in a

minimum of 25% of the cells with a false discovery rate (FDR) of

less than 0.05 and an absolute log fold change (| logFCfilter |)

greater than 1.

The “clusterProfiler” R package (version 0.1.1) (34, 35) was

utilized for the analysis and enhancement of particular marker

genes, with access to the Gene Ontology-Biological Processes

(GOBP) database provided at http://www.geneontology.org (36,

37). During GO enrichment analysis, genes with p-values bel ow

0.05 were deemed to be statistically significant. Enriched entries

were subjected to Gene Set Enrichment Analysis (GSEA) using gene

sets obtained from the database (c2.cp.kegg.v7.5.1.symbols.gmt).

Pathways that were significantly enriched were chosen using a false

discovery rate (FDR) less than 0.05.
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Trajectory analysis of astrocytoma

Stemness and developmental trajectories of astrocytoma

subpopulations were comprehensively inferred using a variety of

analytical methods, including CytoTRACE analysis, monocle2

analysis, and the Slingshot method.

CytoTRACE can re-establish the relative differentiation status

of astrocytoma subpopulations based on gene expression profiles

(38) and assess the stemness of different cellular subpopulations.

A proposed time-series analysis of astrocytoma subpopulations

was performed using the Monocle R package (version 2.24.0).

Monocle identified cellular alterations during astrocytoma

differentiation as a means of inferring the developmental

trajectory of the subpopulation.

Slingshot analysis (version 2.6.0) was used to detect and

generate multiple differentiation trajectories for the astrocytoma

subpopulation. The “getlineage” and “getCurves” functions were

used to infer subpopulation differentiation trajectories and to assess

changes in cell expression levels over time, respectively.
SCENIC analysis

To investigate the transcription factors (TFs) in themain subgroup,

we utilized the pySCENIC algorithm to build a gene regulatory

network, assessed the transcription factors’ expression, and unveiled

the general distribution of the main subgroup transcription factors.
Cell communication analysis

Astrocytoma subpopulations were analyzed for cellular

communication using the ‘CellChat’ R package (version 1.6.1)

(39), to examine and interpret inter-cellular communication

networks derived from scRNA-seq data. The analysis was

performed by integrating gene expression data from cells to

establish the probability of communication through interactions

between gene expression and signaling pathways, ligand-receptors,

and their cofactors, which provided insights into the coordinated

roles of signaling pathways in different cell types.
Construction of risk score and
establishment of nomogram

Prognosis-related genes and corresponding risk scores for each

sample were obtained through univariate COX risk regression

analysis using the “survival” R package (40, 41), as well as Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

regression analysis (42–44) and multivariate COX risk regression.

The risk score calculation formula: Risk score =on
i Xi� Yi (x:

coefficient, y: gene expression level). According to the median risk

score, the samples were divided into a high-risk group and a low-

risk group. The prognostic features of various risk score categories
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were assessed using Kaplan-Meier survival analysis and the

“timeROC” R package (45–47).

We assessed the predictive precision of risk scores by merging

patient clinical data with risk scores for multivariate COX risk

regression analysis. We developed a nomogram model to predict 1-,

3-, and 5-year overall survival (OS) in glioma patients, visualized it

using the “rms” R package, assessed the model’s accuracy with c-

index and ROC curves (48), and explored the relationship between

model genes, risk scores, and OS.
Immune microenvironment analysis

In order to evaluate the correlation between risk characteristics and

the immune microenvironment, we used a combination of the

ESTIMATE, CIBERSORT, and Xcell algorithms to comprehensively

evaluate the immune microenvironment of astrocytoma patients.

Furthermore, the CIBERSORT algorithm (http://cibersort.stanford.edu/

). was utilized to examine the distribution of 22 various immune cell

types. We computed the ImmuneScore, StromalScore,

ESTIMATEScore, and TumorPurity values, along with the TIDE

(TumorImmune Dysfunction and Exclusion) scores. In addition,

the relationship between model genes, risk score, and OS was

explored to illustrate the important role of genes in immune-

related functions.
Examining and enhancing the analysis of
genes with varying expression levels in
groups with high and low scores

The “DESeq2” was utilized to identify differentially expressed

genes (DEGs) in groups with high and low risk scores, followed by

enrichment analyses using the “clusterProfiler” R package (version

4.6.2) (49) for GO, Kyoto Encyclopedia of Genes and Genomes

(KEGG) (50), and GSEA enrichment analyses.
Tumor mutation analysis

Glioma patient somatic mutation information was obtained from

the TCGA database, and the Tumor Mutation Burden (TMB) was

assessed in various scoring categories using the “maftools” R package

(51), and the subjects were classified into high TMB and low TMB

according to the median TMB. Participants were divided into high

TMB and low TMB groups using the median TMB value, and survival

differences were compared between the two groups using Kaplan-

Meier curves. Pearson correlation coefficients were used to analyze the

relationship between score and TMB. Furthermore, we analyzed the

genetic variation in gene copies (CNV) of the modeled genes.
Drug sensitivity analysis

In order to better align with the clinical use of the drugs, we

evaluated the sensitivity of the different drugs. The “pRRophetic”
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package (version 0.5) (52) was utilized to determine the IC50 value

for each sample and assess the responsiveness of the groups with

high and low risk scores.
Cell culture

The U87 MG and U251 MG cell lines were acquired from the

American Type Culture Collection (ATCC). The two cell types were

grown in DMEM medium with 10% fetal bovine serum and 1%

streptomycin/penicillin (Gibco BRL, USA) at 37°C, 5% CO2, and

95% humidity as per usual conditions.
Cell transfection

Two small interfering RNAs (siRNAs) (GenePharma, Suzhou,

China) were used to achieve FOSL2 knockdown, followed by

inoculating cells in 6-well plates at 50% density. Transfection was

performed with a negative control group (si-NC) and FOSL2

knockdown (si-FOSL2-1 and si-FOSL2-2). The transfection was

carried out following the specific instructions provided by

Lipofectamine 3000RNAiMAX (Invitrogen, USA).
Cell viability assay

The viability of U87 MG and U251 MG cells that were transfected

was measured by utilizing the Cell Counting Kit-8 (CCK-8, A311-01,

Vazyme). Cell suspensions were added to 96-well plates (5 × 103 cells

per well) and left to incubate for 2 hours. The absorbance was then

recorded at 450 nm on days 1, 2, 3, and 4. Mean optical density (OD)

values were recorded, and the corresponding line graphs were plotted.
Quantitative real-time PCR

Cell lines were used to extract total RNA with TRIzol reagent

(15596018, Thermo), followed by cDNA synthesis using

PrimeScript™ RT Reagent Kit (R232-01, Vazyme). cDNA was

isolated using the SYBR Green Real-Time PCR Kit from TaKaRa

Biotechnology in Dalian, China, through real-time quantitative

PCR (qRT-PCR). The primers and siRNAs utilized in this

research are displayed in Supplementary Table 1.
Transwell

Cells (corning, USA) were either coated with or without matrix

glue (BD Biosciences, USA) in a 24-well plate chamber. The cell

suspension was then placed in the upper chamber with Costar

and serum medium, while serum culture medium was added

to the lower chamber. Put the cells in a cell incubator for

48 hours. Following incubation, the cells were treated with 4%

paraformaldehyde and then stained with 0.1% crystal violet

(Solarbio, China) to assess migration and invasion.
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Plate-cloning experiment

Transfected cells were seeded in a 6-well plate at a density of

1×103 cells per well and incubated for 14 days. Next, the cells were

rinsed with PBS and then treated with 4% paraformaldehyde (PFA)

for a duration of 15 minutes. Finally, the cells were stained with

0.1% crystal violet (Solarbio, China) for 20 minutes and quantified.
Wound healing

After transfection, the cells were grown in 6-well dishes until

they reached 95% confluence, then a 200-mL sterile pipette was

used to wash away debris with PBS in a straight line through the cell

layer. Next, the serum-free solution was exchanged to sustain cell

culture, and images of the wounds at the identical spot at 0 hours

and 48 hours were captured for assessing the breadth of the wounds.
5-Ethyl-2’-deoxyuridine proliferation assay

U87MG and U251 MG cell lines that were transfected were plated

in 6-well cell culture plates with 5×103 cells per well and left at room

temperature for 24 hours. After that, a solution made by EdU was

added to serum-free medium and incubated for 2 hours at 37°. Next,

the cells were rinsed with PBS and then treated with 4%

paraformaldehyde for a duration of 30 minutes. Afterward, the cells

were exposed to glycine (2 mg/mL) and 0.5% Triton X-100 for 15

minutes, followed by incubation with 1 mL of 1× Apollo and 1 mL of

1× Hoechst 33342 for 30 minutes. The quantification of cell

proliferation was ultimately determined using fluorescencemicroscopy.
Statistical analysis

The analysis of all the research was conducted using R software

(version 4.3.0) and Python software (version 4.2.0). The Wilcoxon

test, Pearson correlation coefficients, etc. Statistical tests were

employed to evaluate the importance of variances among the

groups (*P<0.05, **P<0.01, ***P<0.001).
Results

Main cell types of glioma

To comprehend the tumor microenvironment of glioma, we

collected glioma cells from 18 patients following quality control of

234,148 high-quality cells. According to the marker genes, these high-

quality cells were divided into 13 main cell types: microglia(49030),

Myeloidcells (50565), Oligodendrocytes (29536), Astrocytes (46377),

T_NK (28697), Excitatory_neuronal_cells (10997), Proliferating_cells

(11346), Fibroblasts (1978), EndothelialCells(ECs)(1820),

Muller_glia_cells (1580), B_Plasma(1245), Inhibitory_Neuronal _

Cells (814), Pericytes (163), and drawn into a 2D scatter plot by
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using Uniform Manifold Approximation and Projection (UMAP)

technology (Supplementary Figure 1A). Additionally, we examined

the tissue categories, cellular phases, and seurat groupings of each cell

category, presenting them through UMAP visualizations paired with

pie graphs (Supplementary Figures 1B–D). Bubble plots

(Supplementary Figure 1E) displayed the top 5 marker genes for 13

cell types and 3 tissue types.
Subtype identification of astrocytoma

In order to distinguish malignant cells, we used the InferCNV

algorithm to analyze the copy number variation (CNV) level of

astrocytes, and the result was shown in Supplementary Figure 2.

Based on the inferred CNV results, astrocytes with high levels of

CNV were defined as tumor cells as astrocytoma. We classified

the 40,650 astrocytomas obtained by Seurat and named the seven

subclusters according to the marker genes as C0 IGFBP7+ Glioma

cells, C1 OLIG2+ Glioma cells, C2 LINC02283+ Glioma cells, C3

LINC00632+ Glioma cells, C4 MX1+ Glioma cells, C5 FOSB+

Glioma cells, and C6 DLL3+ Glioma cells. The 2D map of UMAP

dimensionality reduction combined with pie charts showed the

distribution of subgroups and their proportion in different cell

phases (G1, G2M, and S) and in different groups (II and IV)

(Figure 1A). The results showed that most of the astrocytoma

subclusters had a higher percentage of G1 cell cycle, in addition,

C0 IGFBP7+ Glioma cells and C4 MX1+ Glioma cells had a

higher percentage of Group IV, suggesting that the malignant

degree of cells in these two subclusters might be higher. Figure 1B

of the of the UMAP diagram showed the distribution of each

subgroup and the proportion of cell cycle and group. Figure 1C

UMAP faceted plots depicting the distribution of each

subpopulation in detail.

Next, to dig deeper into the relevant features of astrocytoma, we

calculated the Cell Stemness AUC (Area Under the Curve), nCount

_RNA, nFeature _RNA, G2M.Calculated the Score, S. Score, and

CNV Score for each subgroup and displayed them using UMAP

plots (Figure 1D). The relevant features of different cellular phases

and different groups were demonstrated with violin plots

(Figures 1E–G). The results showed that C0 IGFBP7+ Glioma

cells had the highest cell stemness among the seven subclusters,

and C2 LINC02283+ Glioma cells had the highest G2M.Score

(Figure 1E). In addition, compared with subgroup II, subgroup

IV had higher cell stemness and had higher G2M.Score and CNV

Score (Figure 1G).
Correlation enrichment analysis

To comprehend the biological mechanisms linked to each

subgroup of astrocytoma, we conducted various enrichment

analyses on the distinct genes within the seven subclusters of

astrocytoma. Figure 2A violin plots demonstrated the expression

levels of the named genes of the subclusters in each subcluster, and

interestingly, IGFBP7, the named gene of the C0 subcluster, was
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also expressed in the C4 subcluster. We visualized the DEGs

(differential expressed genes) in each subcluster of astrocytoma

using volcano plots (Figure 2B).

Then, we plotted the gene cloud diagrams for each subgroup of

astrocytoma and the cloud diagrams for enrichment analysis
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according to the number of gene occurrences and the level of

enrichment scores of each subgroup, as shown in Figures 2C, D.

Furthermore, GSEA was conducted for every subgroup,

revealing the pathways with the highest NES values displayed in

Figure 2E. The top GSEA pathways for these seven subpopulations
FIGURE 1

Subcluster identification of astrocytoma. (A) The UMAP plot revealed 7 subclusters of 40,650 astrocytoma (top). UMAP visualizations, along with pie
graphs, illustrated the breakdown of individual subgroups based on Phases (G1, S, and G2M) (center) and Groups (II and IV) (lower section). (B) An
integrated visualization demonstrated the distribution of astrocytoma subclusters, phases, and groups. (C) UMAP facet map exhibited the distribution
of each astrocytoma subcluster. (D) UMAP plots individually showcased the Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S Score,
and CNV Score of astrocytoma. (E-G) Violin plots respectively, displayed the levels of Cell Stemness AUC, nCount RNA, nFeature RNA, G2M Score, S
Score, and CNV Score for each astrocytoma subcluster (E), each cell phase (F), and each group (G). Significance levels were denoted as follows: ***P
< 0.001, and ****P < 0.0001; NS was used to represent lack of significance.
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FIGURE 2

Enrichment analysis of astrocytoma subclusters. (A) Violin plots illustrated the distribution of named genes in each subcluster of the 7 astrocytoma
subclusters. (B) Volcanic plots illustrated the genes with differential expression in the C0-C6 subgroups. (C) Cloud diagrams presented the
expression patterns of highly-enriched genes in each astrocytoma subcluster. The font size indicated the quantity of genes, while the color indicated
the enrichment score for each gene. (D) Cloud diagrams displayed the specific enriched pathways of highly-enriched genes in each astrocytoma
subcluster. The font size indicated the quantity of genes, while the color indicated the enrichment score of genes within that pathway. (E) GSEA
enrichment analysis results for each astrocytoma subcluster, showing only the pathway with the highest NES value. (F) Heatmap showed the gene
expression and top 5 GO-BP enrichment analysis results for each astrocytoma subpopulation.
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included negative regulation of hydrolase activity, regulation of

mRNA splicing via the spliceosome, cytoplasmic translation, gene

silencing by RNA, defense response to viruses, response to unfolded

proteins, and metaphase/anaphase transition of the mitotic cell

cycle based on the highest NES values.

In addition, in order to visualize the GOBP (Gene Ontology

Biological Processes) enrichment analysis of each subpopulation of

astrocytoma, we generated a heatmap to show the top 5 enriched

terms of each subpopulation (Figure 2F).

The findings indicated that the enhanced pathways in C0 IGFBP7

+ Glioma cells included inhibiting hydrolase activity, promoting cell-

substrate adhesion, aiding in wound healing, inhibiting peptidase

activity, and regulating cell-substrate adhesion. This result suggests

that the C0 subpopulation may be associated with the adhesion

movement of glioma cells. The enrichment pathways of C1 OLIG2+

Glioma cells for axis development, synapse organization,

axionogenesis, glial cell differentiation, and regeneration of nervous

system development suggest that this subpopulation may be involved

in nervous system development and related tissue differentiation.

Glioma cells with C2 LINC02283+ Glioma cells were found to have

high levels of cytoplasmic translation, oxidative phosphorylation,

aerobic respiration, cellular respiration, and ATP synthesis-linked

electron transport, indicating a strong connection to cellular

respiration and energy metabolism. On the other hand, glioma cells

with C3 LINC00632+ Glioma cells showed enrichment in mRNA

processing, RNA splicing, regulation of RNA splicing, regulation of

mRNA processing, RNA splicing, and via transesterification reactions

with bulged adenosine as a nucleophile, suggesting that this

subpopulation may play a role in regulating RNA processing.

C4 MX1+ Glioma cells showed enrichment in immune

responses to viruses and symbionts, as well as in regulating viral

processes and negative regulation. On the other hand, C5 FOSB+

Glioma cells were enriched in responses to protein misfolding,

temperature changes, and topologically incorrect proteins.

Additionally, these cells also showed enrichment in responses to

viruses, symbionts, viral processes, and negative regulation.

Response to temperature stimulus, protein refolding, and

resistance to heat pathways suggest that the C5 subpopulation

may be involved in protein response-related biological processes.

C6 DLL3+ Glioma cells are involved in RNA splicing, mRNA

processing, and ribonucleoprotein complexes. Ribonucleoprotein

complex formation occurs through RNA splicing, involving

transesterification reactions and bulged adenosine. The C6

subpopulation may be involved in RNA splicing and other related

biological processes through transesterification reactions involving

bulged adenosine as a nucleophile.
Trajectory analysis of the
astrocytoma subcluster

To investigate the differentiation status and developmental

trajectory of seven subgroups of astrocytoma, we performed

CytoTRACE analysis and monocle 2 pseudotime analysis on

these subgroups. The related results of the CytoTRACE analysis

were shown in Figures 3A, B. The CytoTRACE results showed that
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the CytoTRACE scores of subcluster C1, subcluster C4, and

subcluster C0 were higher, indicating that the stemness was

higher in these three subclusters. The gene correlations involved

in the CytoTRACE analysis can be observed in the bar graph

(Figure 3C). The findings from the pseudotime analysis of the

astrocytoma subgroup were displayed in Figure 3D. The findings

indicated that the pseudotime path deviated from the top right to

the bottom left, encompassing six stages and three points of

divergence. The pseudotime facets of the along-trajectory

distribution of each subgroup of astrocytoma were shown in

Figure 3E. In addition, we further demonstrated the pseudotime

results of astrocytoma subgroups with Violin plots and ridge plots

(Figures 3F–H). These results indicated that C0 IGFBP7+ Glioma

cells might be at the end of differentiation and have high

differentiation ability, and C6 DLL3+ Glioma cells might be at the

initial stage of differentiation.
Transcription factors related to the C0
IGFBP7+ glioma cells subgroup

We analyzed the TOP1 transcription factor FOSL2 of the C0

IGFBP7+ Glioma cells subgroup, which may be at the end of

differentiation. Initially, a UMAP visualization was created to

display the distribution of the transcription factor FOSL2

(Figure 3I), revealing its limited presence in various subgroups.

The specific differences in the distribution of transcription factor

FOSL2 in each subgroup were shown in Figure 3J. The transcription

factor FOSL2 was most distributed in the C0 IGFBP7+ Glioma cells

subgroup, and the distribution in other subgroups was different,

with statistical differences. In addition, the transcription factor

FOSL2 was more distributed in highly differentiated tissues

(Group IV) than in Group II, and the results were statistically

different (Figure 3K).
Slingshot pseudotime analysis of the
astrocytoma subcluster

In order to further confirm the differentiation relationship

between different subgroups of astrocytoma, we conducted a

slingshot pseudotime analysis on the astrocytoma subgroup. The

findings indicated the presence of two lineages in the slingshot

pseudotime assessment of seven subtypes of astrocytoma

(Figure 4A). Lineage 1 originated from C2 and ends at CO.

Lineage 2 originated from C2, passed through CO/C4→C1/

C5→C3, and ended with C6. However, there was only one

lineage in the slingshot pseudotime analysis of two Groups (II

and IV) (Figure 4B). The expression of named genes with

subpopulation slingshot pseudotime analysis lineage 1 was shown

in Figure 4C scatter plots, and the expression of named genes with

subpopulation slingshot pseudotime analysis lineage 2 was shown

in Figure 4D. In addition, we also analyzed the trajectories of the

slingshot pseudotime analysis of different groups (IV and II), and

the slingshot pseudotime analysis of different groups only had

lineage 1. The expression of string hot pseudotime analysis
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FIGURE 3

CytoTRACE and Monocle2 pseudotime analysis of astrocytoma subpopulations and related transcription factors. (A) CytoTRACE analysis and visualization
of the differentiation degree for each astrocytoma subpopulation. In the left figure, dark-green indicated higher differences (low stemness), while dark-
red indicated lower differences (high stemness). In the right figure, different colors represent different astrocytoma subpopulations. (B) Boxplot displayed
the CytoTRACE analysis results, revealing that C1 OLIG2+ Glioma cells, C4 MX1+ Glioma cells, and C0 IGFBP7+ Glioma cells exhibited higher
differentiation potential, while C3 LINC00632+ Glioma cells had the lowest differentiation potential. (C) Bar graph showed the gene correlations in the
CytoTRACE analysis. (D) Trajectory analysis using Monocle2, with 3 branch points and 6 states. (E) Monocle2 pseudotime analysis facet map depicted
the trajectories of the 7 astrocytoma subclusters. (F) Violin plots showed the distribution of the 7 astrocytoma subgroups along the pseudotime
trajectory. (G, H) Ridge plots and their facet maps displayed the density distribution of the 7 astrocytoma subgroups along the pseudotime trajectory.
(I) UMAP plot visualized the distribution of the top transcription factor (TF) FOSL2 in C0 IGFBP7+ Glioma cells. (J) Violin plot presented the distribution of
FOSL2 in astrocytoma for each subcluster. (K) Violin plot illustrated the distribution of FOSL2 in different groups (II and IV). Significance levels were
denoted as follows: **P < 0.01, ***P < 0.001, and ****P < 0.0001; NS was used to represent lack of significance.
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lineage 1 with different groups of named genes was shown in

Figure 4E. The findings indicated that the gene IGFBP7,

belonging to the C0 subgroup, exhibited the highest expression

levels in Group IV following the slingshot pseudotime analysis. This

was consistent with the previous results of CytoTRACE analysis and
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monocle 2 pseudotime analysis that C0 IGFBP7+ Glioma cells were

at the end of differentiation and had high cell stemness, with most of

the C0 subclusters distributed in subgroup IV. We also analyzed the

expression of two lineages of DEGs with the subgroup’s slingshot

pseudotime analysis, and the result was as shown in Figure 4F. We
FIGURE 4

Slingshot pseudotime analysis of astrocytoma. (A) Slingshot pseudotime analysis results for the 7 subclusters of astrocytoma reveal 2 lineages.
(B) Slingshot pseudotime analysis results for different Groups (II and IV) of astrocytoma, showing 1 lineage. (C) Scatter plots demonstrated the
expression changes of lineage 1-associated genes in the astrocytoma subclusters. (D) Scatter plots illustrated the expression changes of lineage
2-associated genes in the astrocytoma subclusters. (E) Scatter plots displayed the expression changes of lineage 1-associated genes in the
astrocytoma subclusters across the Groups. (F) Heatmaps exhibited the expression changes of differentially expressed genes along the trajectories of
the 2 lineages of the astrocytoma subclusters, along with their GOBP enrichment analysis results.
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also analyzed the enrichment of DEGs by GOBP and found that

lineage 1 was mainly enriched with mesodem nervous, smooth ion

muscle, DEGs of interleukin production, and mediated, while

lineage 2 was enriched with osleoblast, nucleotide biosynthetic,

smooth apoptotic, and other pathways.
Cellular communication network

In order to systematically explore the interaction of the tumor

microenvironment in astrocytoma, we used Cellchat analysis to

draw a cell communication network to show the intensity

(Figure 5A) and quantity (Figure 5B) of ligand-receptor

interaction between different cell groups. Then, we analyzed the

signal patterns between astrocytoma and other cells and the

interaction between cells and pathways. Three outgoing signal

patterns and three incoming signal patterns were identified, and

the results were shown in Figures 5C, D. Figures 5E, F displayed the

communication patterns received by target cells and sent by

secreting cells, respectively. The results showed that both C0-C6

subgroups were involved in the PTN signal network pathway.

The results of Sankey diagrams revealed that the cell groups in

outgoing patterns were astrocytoma, Oligodendrocytes, Excitatory

neuronal cells, Proliferating cells, Muller glia cells, Inhibitory

neuronal cells and Pericytes send out signals in coordination with

the signal paths PTN,MK and SPP1 belonging to pattern1 (Figure 5G).

The heatmap specifically showed (Figure 5H) the signal

intensity of outgoing signaling patterns and incoming signaling

patterns interacting with other cell types.
PTN signaling network pathway

Because the seven subpopulations of astrocytoma involved the

PTN signaling network pathway in both Incoming communication

and Outgoing communication, we initiated further studies on the

PTN pathway. When glioma cells were used as receiver cells in PTN

signaling network pathway, the interaction of various cell-like cells

was shown in Figure 6A, and the expression levels of signal genes

involved in this pathway (PTPRZ1, SDC2, SDC3, NCL) were shown

in Figure 6B. The results showed that NCL has a certain expression

level in various cell-like cells. We further explored the cellular

communication networks involved in PTN signaling network. We

further explored the PTN signaling network involved in the

intercellular communication network, PTPRZ1 Glioma cells,

SDC2 Glioma cells, SDC3 Glioma cells, NCL Glioma cells were

used as receivers in the respective hierarchical plots shown in

Figure 6C (PTPRZ1), Figure 6D (SDC2), Figure 6E (SDC3), and

Figure 6F (NCL), respectively. The specific interaction between

PTN signaling network cells was comprehensively demonstrated by

the heatmap (Figure 6G). The heatmap (Figure 6H) displayed the

varying significance of different cell types in the PTN signaling

pathway network, acting as senders, receivers, mediators, and

influencers. The results showed that in the PTN pathway, six

subgroups of malignant asteroids (C0-C5) had high relative

importance as sender, receiver, mediator and influencer.
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Establishment and verification of a
prognostic model

In order to better serve the clinic, we evaluated the prognostic

characteristics of the C0 IGFBP7+ Glioma cell subgroup identified

in this study.

Initially, we analyzed the leading 100 potential genes in this

specific group through univariate Cox regression analysis, revealing

that 29 genes were linked to patient prognosis (Figure 7A). In order

to avoid the multiple contributions of the screened genes, we

conducted LASSO regression analysis on these 29 genes

(Figure 7B), and a total of 4 genes were determined to be

significantly related to the prognosis of patients. After screening

four genes (FAM20C, TIMP1, PMP22, and ID1), we performed a

multivariate Cox regression analysis and identified three genes

(FAM20C, TIMP1, and PMP22) as risk factors, with gene ID1

being a protective factor (Figure 7C). Using the Cox regression

coefficient for each gene, we developed an IGFBP7 Risk Score

(IGRS) and determined the IGRS for each sample based on gene

expression and the associated coefficient. The specific formula was:

IGFBP7 Risk Score (IGRS) = ID1 expression level * (-0.206) +

TIMP1 expression level* 0.130 + FAM20C level* 0.192 + PMP22

level* 0.052. According to the score, we divided the C0 IGFBP7+

Glioma cell subgroup into High IGRS Group and Low IGRS Group,

and further analyzed the high and low IGRS Groups. The IGFBP7

Risk Score of high and low IGRS Groups and the changes of their

living state with time were shown on the left of Figure 7D. The

expression of four construction model genes in High IGRS Group

and Low IGRS Group was shown on the right of Figure 7D. The

findings indicated that the genes FAM20C, TIMP1, and PMP22

exhibited high expression levels in the High IGRS Group, while the

gene ID1 displayed high expression in the Low IGRS Group.

Survival analysis comparing high and low IGRS groups indicated

that the survival rate was lower in the high IGRS group compared to

the low IGRS group (Figure 7E). AUC scores for 1 year and 3 years

were shown in Figure 7F. We analyzed the survival of four modeling

genes (FAM20C, TIMP1, PMP22, and ID1) (Figure 7G), and the

results showed that three genes (FAM20C, PMP22, and ID1) had

statistical differences. Among them, the high expression of

FAM20C and PMP22 genes has a worse prognosis, while the high

expression of gene ID1 has a better survival outcome. Further prove

the previous conclusion: genes FAM20C and PMP22 were

associated with adverse outcomes.
Nomogram creation

In order to further analyze whether IGFBP7 Risk Score can be

an independent risk factor, we conducted multivariate Cox

regression analysis on clinical factors (gender, age, and race) and

IGFBP7 Risk Score (Figure 8A). The results of forest plot showed

that IGRS Group and IGRS score can be independent

prognostic factors.

In order to determine if the IGFBP7 Risk Score could act as a

standalone risk factor, we conducted a multivariate Cox regression

analysis that included clinical factors such as gender, age, and
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ethnicity along with the IGFBP7 Risk Score (Figure 8B). The forest

plot results suggested that both the IGRS Group and IGRS score

may act as separate prognostic factors. Figure 8C displayed the

AUCs for survival at 1-year and 3-year intervals, while Figures 8D,

E illustrated the calibration curves for the nomograms at the same
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intervals, indicating that the nomograms accurately predicted the

OS of the training group. Figure 8F displayed the pairwise

correlation between the four modeling genes, OS, and IGFBP7

Risk Score. The two-by-two correlations between the four modeling

genes, OS and IGFBP7 Risk Score were shown in Figure 9F. The
FIGURE 5

Overview of Cell Communication. (A) Weighted interaction network diagram of cellular interactions for all cell types. Thicker lines represented stronger
interactions between the cell types. (B) Interaction count network diagram of cellular interactions for all cell types. Thicker lines indicated a higher count
of interactions between the cell types. (C, D) Heatmaps respectively displayed the patterns identified in the incoming communication (C) and outgoing
communication (D). (E, F) Dot plots compared the communication patterns received by target cells (E) with the communication patterns sent out by
secreting cells (F). (G) Sankey charts illustrated the projected communication flow patterns of recipient cells, revealing the coordination between cells
receiving signals and their interaction with specific signaling pathways in response (top). In addition, the secretion behaviors of cells were illustrated
(bottom), demonstrating how cells interact as message transmitters and how they interact with specific signaling pathways to facilitate communication.
(H) The heatmap displayed the communication patterns of all cells, showing both outgoing and incoming signals.
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correlations between the four modeling genes and IGFBP7 Risk

Score were visualized with scatter plots (Figure 8G), and the results

showed that genes FAM20C, TIMP1, and PMP22 were positively

correlated with Risk and gene ID1 was negatively correlated with

Risk. The correlation analysis of the 4 modeled genes with OS was

shown in Figure 8H, the results showed that FAM20C, TIMP1, and
Frontiers in Immunology 13
PMP22 were negatively correlated with OS, while gene ID1 was

positively correlated with OS. Then, we further analyzed the specific

expression of the four modeled genes in High IGRS Group and Low

IGRS Group, and the results were demonstrated by ridge plots

combined with box plots (Figure 8I). In the High IGRS Group, the

genes FAM20C, TIMP1, and PMP22 exhibited increased expression
FIGURE 6

PTN signaling network. (A) Circle plot illustrated the interactions of astrocytoma in the PTN signaling network as receiver cells. (B) Violin plots displayed
the levels of expression of signaling genes related to the PTN signaling network in astrocytoma subgroups and various cell types. (C-F) Hierarchical plots
depicted the communication networks involving PTPRZ1 (C), SDC2 (D), SDC3 (E), and NCL (F) in the inferred PTN signaling network. Source cells were
represented by filled circles, while target cell types were represented by open circles. (G) The heatmap displayed the calculated four centrality metrics of
the PTN signaling network, highlighting the significance of each cell type in terms of sending, receiving, mediating, and influencing.
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FIGURE 7

Construction and validation of a prognostic risk model. (A) Forest plot presented the results of the univariate Cox analysis (P < 0.05). A HR value less
than 1 represented protective genes, whereas a HR value greater than 1 represented risk genes. The color depth represents the magnitude of the p-
value. (B) The results of the LASSO regression analysis indicated that the optimum lambda value was 0.138, yielding the most favorable outcome.
Four genes, namely FAM20C, TIMP1, PMP22, and ID1, had been incorporated into the construction of the risk model. (C) Bar graph displaying the
Coef values and corresponding p-values for the 4 genes. (D) C0 subcluster was divided into High IGRS Group and Low IGRS Group based on the
IGFBP7 Risk Score (IGRS). The scoring distribution of the C0 subcluster was displayed in the curve plot (top left), while the survival status of the High
IGRS and Low IGRS Groups was shown in the scatter plot (bottom left), and the gene expression patterns contributing to the IGRS were visualized in
the heatmap. The color green indicated the Low IGRS Group, while the color red indicated the High IGRS Group. (E) Kaplan-Meier analysis findings
for the High IGRS Group and Low IGRS Group were presented. (F) ROC curves showed the AUC of the risk model for predicting survival at 1 and 3
years. (G) Survival plots for the four genes associated with prognosis that make up the IGFBP7 Risk Score.
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FIGURE 8

Construction of the Nomogram. (A) The forest plot displayed the findings from the multivariate Cox regression analysis, showing that age and IGRS
score were identified as separate risk factors. (B) Nomogram constructed based on clinical factors (gender, race, age) and the IGFBP7 Risk Score.
(C) The AUC values for 1-year and 3-year predictions were shown on the ROC curve for the nomogram. (D, E) Calibration curves were utilized to
evaluate the predictive accuracy of the nomogram for both 1-year and 3-year overall survival (OS). (F) Scatter plots combined with a heatmap
illustrating the correlations between OS, the four modeling genes, and the IGFBP7 Risk Score. (G) Scatter plots demonstrated the correlations
between the four modeling genes and the IGFBP7 Risk Score. (H) Scatter plots showed the correlations between the four modeling genes and OS.
(I) Ridge plots combined with box plots displaying the expression levels of the four modeling genes in the High IGRS Group and Low IGRS Group,
with both groups sharing the same coordinate system. (J) Box plots compared the expression levels of the four modeling genes in the High IGRS
Group and Low IGRS Group across different genders. Significance levels were denoted as follows: *P < 0.05; NS was used to represent lack
of significance.
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compared to the gene ID1, which was positively correlated with OS.

The expression of the four modeled genes was higher in High IGRS

Group and Low IGRS Group in different sexes (female and male), as

shown in Figure 8J.
Immunoinfiltration analysis of high IGRS
group and low IGRS group

To delve deeper into the tumor microenvironment of glioma,

we examined the presence of immune cells infiltrating the tumor in

both the High IGRS Group and Low IGRS Group of the training

cohort, with the findings displayed in a heatmap (Figure 9A). The

statistically different tumor-immune infiltrating cells were further

visualized by box plot (Figure 9B), and the evaluation results

showed that T cell regulatory (Tregs), Neutrophils, NK cells

resting, and Macroghages M1 had higher expression in High

IGRS Group, while NK cells activated had higher expression in

Low IGRS Group than in High IGRS Group.

To validate the connection between immune cells and IGFBP7

Risk Score in the glioma tumor microenvironment, we assessed the

correlation between immune cells and IGRS, presenting the

findings through Lollipop plots depicted in Figure 9C. We

thoroughly analyzed the relationship between immune cells and

the four genes that make up IGRS, IGFBP7 Risk Score, and OS and

displayed the findings using a heatmap (Figure 9D). The findings

indicated an inverse relationship between IGRS Score and B cells

naive, Eosinophils, Master cells Resting, and NK cells activated,

while showing a positive correlation with Dendritic cells activated,

Monocytes, NK cells Resting, and T cells CD4 memory Resting. It

was worth noting that gene TIMP1 and gene FAM20C were

negatively correlated with Eosinophils, Master Cells Resting and

NK Cells Activated.

Next, we delved deeper into the variations in Stromal Score,

Immune Score, Estmate Score, and Tumour Purity between the

High IGRS Group and Low IGRS Group, finding statistically

significant differences (Figures 9E, F). The Stromal Score,

Immune Score, and Estmate Score were elevated in the High

IGRS Group, whereas the Tumor Purity was increased in the Low

IGRS Group. Nonetheless, there was no statistically significant

difference in Tumor Immune Dysfunction and Exclusion (TIDE)

between the two groups, suggesting that tumor immune

dysfunction and exclusion were similar in both groups

(Figure 9G). In the study, it was found that the gene TIMP1

exhibited a strong positive correlation with the majority of

immune checkpoint-related genes, while the gene ID1 did not

show any significant correlation with most immune checkpoint-

related genes (Figure 9H).

Furthermore, we analyzed the variations in expression of

immune checkpoint-associated genes between the High IGRS

Group and Low IGRS Group, creating box plots to illustrate the

genes exhibiting significant differences (Figure 9I). The results of

the analysis indicated that the majority of genes associated with

immune checkpoints exhibited increased levels of expression in the

High IGRS Group, whereas VTCN1 and CD200 displayed higher

expression levels in the Low IGRS Group. We used ESTIMATE,
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CIBERSORT, EPIC, and Xcell algorithms to analyze and display the

variations in immune infiltrating cells, Stromal Score, Immune

Score, and Tumor Purity between the High IGRS Group and Low

IGRS Group in a heatmap. (Figure 9J)
Differentially expressed genes and their
enrichment analysis in high and low
IGRS groups

To compare the High IGRS Group and Low IGRS Group, we

computed and studied the DEGs in both groups, presenting them

using a volcano plot (Figure 10A) and showcasing the specific

expression of these DEGs in the groups through a heatmap

(Figure 10B). Immediately after that, we performed multiple

enrichment analyses on these differentially expressed genes.

Enrichment analyses were conducted on them, which included

examining GOBP (Gene Ontology Biological Processes), GOCC

(Gene Ontology Cellular Components), and GOMF (Gene

Ontology Molecular Functions). The findings indicated that

differentially expressed genes (DEGs) were highly concentrated in

functions related to binding between receptors and ligands,

signaling pathways mediated by cytokines, and activities involving

chemokines (Figure 10C). The related genes of the enriched entries

are shown in the chord plot (Figure 10D). The analysis of enriched

pathways using KEGG for the identified DEGs (Figure 10E)

indicated a significant enrichment in pathways related to viral

protein interaction with cytokines and cytokine receptors,

interactions between cytokines and cytokine receptors, signaling

pathways for chemokines, the IL-17 signaling pathway, and more.

According to the findings of GSEA (Gene Set Enrichment Analysis)

(Figure 10F), the High IGRS Group exhibited increased activity in

pathways related to Neutrophil Chemotaxis, Neutrophil Migration,

Granulocyte Chemotaxis, and Granulocyte Migration, while

showing decreased activity in pathways associated with Spinal

Cord Development, Neurotransmitter Transport, Neuron Fate

Specification, Neuron Migration, and Neuron Fate Commitment.

PCA was utilized to examine the diversity of gene expression

patterns in the High IGRS Group and the Low IGRS Group, with

PCA 1 and PCA 2 visualized through scatter plots. PCA 1 and PCA

2 exhibited variances of 13.2% and 8.1%, respectively, as shown in

Figure 10G. Furthermore, we investigated the somatic gene

mutations in both cohorts and highlighted the distinctions among

the top 30 genes exhibiting the greatest mutation rates in each

group. Variations among 12 genes across various groups indicated

that the PTEN gene had the highest mutation frequency, as depicted

in Figure 10H. Next, we assessed the gene model’s chromosome

copy number variation (CNV) and presented the findings using a

bar graph (Figure 10I). The findings indicated that genes ID1 and

TIMP1 did not exhibit any CNV loss or CNV gain, while gene

FAM20C experienced both CNV loss and CNV gain events.

A comparison analysis was performed on the two groups’ tumor

mutation burden (TMB). The results revealed no statistically

significant difference in TMB between the two groups (Figure 10J).

The correlation analysis between TMB and Risk Score was shown in

Figure 10K, with an R value of -0.12 and a corresponding p-value of
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FIGURE 9

Immune infiltration analysis. (A) A heatmap was used to analyze the distribution of 22 immune infiltrating cells between the High IGRS Group and
Low IGRS Group. Red represented the High IGRS Group, and green represented the Low IGRS Group. (B) Box plot illustrated the distribution of
immune infiltrating cells with statistically significant differences between the High IGRS Group and Low IGRS Group. (C) Lollipop charts illustrated the
relationship between immune infiltrating cells and IGRS. (D) The heatmap offered a comprehensive perspective on the relationships among immune
infiltrating cells, the four modeling genes, IGRS, and overall survival. (E) The box plot illustrated variations in StromalScore, ImmuneScore, and
ESTMATEScore between the High IGRS Group and Low IGRS Group. (F) Violin plot demonstrated the variations in Tumor Purity levels between the
High IGRS Group and Low IGRS Group. (G) Violin plots compared the TIDE values and the differences between the ctla4-negative-pd1-negative and
ctla4-positive-pd1-positive subgroups in the High IGRS Group and Low IGRS Group. (H) The dot plot illustrated the correlations between OS, the
four modeling genes, IGFBP7 Risk Score, and immune checkpoint-associated genes. (I) Box plot displayed the expression levels of immune
checkpoint-associated genes in the High IGRS Group and Low IGRS Group. (J) Heatmap provided a comprehensive display of the results from
the ESTIMATE, CIBERSORT, EPIC, and Xcell algorithms. Significance levels were denoted as follows: *P < 0.05, **P < 0.01, ***P < 0.001, and
****P < 0.0001; NS was used to represent lack of significance.
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FIGURE 10

Differentially expressed genes and enrichment analysis in High and Low IGRS Groups. (A) The volcano plot displayed the genes that were expressed
differently between the High IGRS Group and Low IGRS Group. (B) Heatmap depicted the distribution of DEGs in the High IGRS Group and Low
IGRS Group. (C) Bar graph presented the results of the GOBP, GOCC, and GOMF enrichment analyses for the DEGs. (D) Chord plot displayed the
relevant genes involved in the GO enrichment analysis items. (E) The bar graph displayed the findings of the KEGG examination for the differentially
expressed genes. (F) GSEA enrichment analysis results for the DEGs, displaying the enrichment scores of genes on different pathways. (G) Principal
Component Analysis (PCA) plot showing the gene expression clustering distribution differences between the High IGRS Group and Low IGRS Group.
(H) A waterfall chart displayed the 30 most mutated genes in the High IGRS Group and Low IGRS Group. (I) Bar graph displayed the copy number
variation status of the four modeling genes, with blue indicating chromosomal copy number increase, red indicating chromosomal copy number
decrease, and green indicating no change in chromosomal copy number. (J) A box plot displayed the Tumor Mutation Burden (TMB) for both the
High IGRS Group and Low IGRS Group. (K) The scatter plot displayed the relationship between Tumor Mutation Burden and IGFBP7 Risk Score.
(L) Kaplan-Meier analysis demonstrated variations in prognosis between High TMB and Low TMB groups. (M) Kaplan-Meier survival analysis findings
for the High Risk-High TMB, High Risk-Low TMB, Low Risk-High TMB, and Low Risk-Low TMB groups. (N) Box plots showed the findings of drug
response analysis for the High IGRS Group and Low IGRS Group. Significance levels were denoted as follows: *P < 0.05, **P < 0.01, and NS was
used to represent lack of significance.
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0.16. Using the TMB as a basis, the participants were separated into

two groups, High TMB and Low TMB, for examination of survival

rates (Figure 10L). Furthermore, the participants were divided into

four groups based on their risk level and tumor mutational burden

(TMB): High Risk-High TMB, High Risk-Low TMB, Low Risk-High

TMB, and Low Risk-Low TMB, which was then followed by an

analysis of survival rates. Nevertheless, the findings indicated that

there was no notable variation between the groups in terms of

statistical significance (Figure 10M).
Drug sensitivity analysis

Analysis of drug sensitivity was performed on the High IGRS

Group and Low IGRS Group, showing that Docetaxel had a lower

IC50(semi-inhibitory concentration) in the High IGRS Group, as

illustrated in Figure 10N.Conversely, PLX4720 demonstrated a

lower IC50 value in the Low IGRS Group.
In vitro experimental validation

For further elucidation of the functionality of FOSL2, we

conducted in vitro functional assessments. Two cell lines, U87

MG and U251 MG, were chosen for comparison with FOSL2

knockdown by establishing a negative control group. The cell

activity test (Figures 11A, B) showed a notable reduction in cell

viability after FOSL2 knockdown, as revealed by the results of the

CCK-8 assay. For accuracy, we quantified the levels of FOSL2

mRNA expression in the U87 MG and U251 MG cell lines in

both the control and FOSL2 knockdown groups (Figure 11C). The

transwell test findings showed a significant decrease in the

movement and infiltration of U87 MG and U251 MG cells

following the suppression of FOSL2 in comparison to the control

group (Figures 11D, E). Furthermore, the plate cloning results

revealed a significant suppression in colony formation quantity

after FOSL2 knockdown in both cell line models (Figure 11F).

A healing experiment was performed, revealing a notable

increase in the width of the 48-hour scratch in both cell lines

after FOSL2 knockdown compared to the negative control group.

This suggests a reduction in cell migration rate, supported by

statistically significant findings (Figures 12A, B). Additionally,

EdU staining once again confirmed the decreased proliferative

capacity of tumor cells after FOSL2 knockdown (Figures 12C, D).

Thus, from the above tests, it was noted that reducing FOSL2 results

in lower cell proliferation, migration, and invasion in U87 MG and

U251 MG cell lines, indicating that FOSL2 could enhance

glioma advancement.
Discussion

Astrocytoma tumors start in the glial cells called astrocytes. The

most aggressive astrocytoma is a glioblastoma. Glioblastomas are the

most aggressive and lethal brain tumors (53), being the most

aggressive and deadly brain tumor with a high likelihood of
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recurrence and spreading to other areas of the brain (54). To

further investigate the internal heterogeneity of glioma, we

analyzed glioma single-cell RNA sequencing (scRNA-seq) data to

identify the various cell types present, including microglia,

oligodendrocytes, astrocytes, inhibitory neuronal cells, and

pericytes, among others. Astrocytoma tumors originate in

astrocytes. The most aggressive form of astrocytoma is

glioblastoma. Additionally, astrocytes encompass the most

abundant cellular entities within the central nervous system (55),so

we used astrocytes as the main subpopulation of the study. By

inferCNV analysis, we defined high levels of astrocytes as

astrocytoma, analyzed them by dimensionality reduction clustering,

and finally divided them into seven different cell subpopulations: C0

IGFBP7+ Glioma cells, C1 OLIG2+ Glioma cells, C2 LINC02283+

Glioma cells, C3 LINC00632+ Glioma cells, C4 MX1+ Glioma cells,

C5 FOSB+ Glioma cells, and C6 DLL3+ Glioma cells. CytoTRACE

andMonocle 2 analyses suggested that C0 IGFBP7+ glioma cells were

likely at advanced stages of differentiation with high differentiation

potential. Since astrocytomas often showed that higher malignancy

could correlate with greater differentiation, identifying these cells

might have been crucial. They could provide important insights into

tumor progression and resistance, potentially guiding more

effective treatments.

In order to delve deeper into the connections between the

astrocytoma subcluster and various cell types, we employed

CellChat analysis. This tool can deduce and examine intercellular

communication networks based on single-cell sequencing data,

forecasting the primary signals exchanged between cells and how

they work together to carry out their functions (56). By analyzing

afferent and efferent signals between subclusters of astrocytoma and

other cells, it was found that all 7 subclusters of astrocytoma were

involved in the PTN signaling network pathway in both Incoming

communication and Outgoing communication. Previous research

data has indicated that blocking the PTN pathway may serve as a

means to combat glioblastoma (57). Disrupting the PTN receptor

PTPRZ1 has been shown to inhibit the growth of glioblastoma stem

cells (GSCs) (58). Therefore, we conducted further analysis of the

PTN pathway and discovered that PTPRZ1 exhibits high expression

in various subclusters of astrocytoma. When PTPRZ1 Glioma cells

acted as receivers, the subclusters of astrocytoma showed a strong

association with other cell types. Furthermore, in the PTN signaling

pathway network, the C0 IGFBP7+ Glioma cells subcluster showed

greater importance as a sender, receiver, mediator, and influencer

when compared to other types of cells. Therefore, we hypothesized

that the C0 subgroup was essential in the PTN pathway and

impacted the advancement of glioblastoma via this pathway.

To assess the role of the C0 IGFBP7+ glioma cell subgroup in

neuroglioma progression, we performed univariate Cox and LASSO

regression analyses on candidate genes, identifying four genes

strongly linked to prognosis. We developed a prognosis model

based on these genes and established the IGFBP7 Risk Score (IGRS).

This score classified the training cohort into High IGRS and Low

IGRS groups, with survival analysis showing poorer outcomes for

the High IGRS group. A nomogram incorporating clinical data and

multivariate Cox regression confirmed the IGRS as a standalone

predictor of patient outcomes. Analysis of the four genes revealed
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their distribution and correlation with Risk Score and overall

survival. In summary, the IGFBP7 Risk Score (IGRS) provided a

robust prognostic tool for astrocytomas by categorizing patients

into High and Low IGRS groups, with High IGRS correlating with
Frontiers in Immunology 20
worse outcomes. It integrated gene expression data to offer

improved predictions of patient survival and highlighted key

genes like FAM20C and PMP22 associated with poor prognosis.

FAM20C has been proven to be a marker of glioma invasion and
FIGURE 11

In vitro experimental validation. (A, B) The CCK-8 assay results showed a notable reduction in cell viability in the U87 MG and U251 MG cell lines
following the knockdown of FOSL2. (C) The qPCR findings showed the initial levels of FOSL2 mRNA expression in the U87 MG and U251 MG cell
lines, as well as the changes in FOSL2 mRNA expression following FOSL2 knockdown. (D, E) The transwell test showed that reducing FOSL2
expression greatly hinders the movement and infiltration capabilities of the U87 MG and U251 MG cell lines. (F) The plate cloning experiment
showed a notable reduction in colony formation capacity in the U87 MG and U251 MG cell lines following the suppression of FOSL2. Significance
levels were set at **P < 0.01, and ***P < 0.001.
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can be used as a new therapeutic target for GBM (59). However,

there are few studies on the relationship between PMP22 and

glioma, which need to be further explored.

GBM is a highly immunosuppressive tumor. At present, there is

no FDA-approved immunotherapy for glioblastoma (60). We

further discussed the relationship between IGFBP7 Risk Score

(IGRS) and the immune microenvironment of glioma and

analyzed the tumor immune infiltration of the two groups based

on High IGRS Group and Low IGRS Group. Compared with Low

IGRS Group, T cell regulation (tregs), neutrophils, NK cells resting,

and macroghages M1 in High IGRS Group have higher expression,

while NK cells activated have higher expression in Low IGRS
Frontiers in Immunology 21
Group, which was related to the relationship between TME and

immune cells in tumors (61).

ESTIMATEScore is calculated by adding ImmuneScore and

StromalScore, which indicate the presence of immune or matrix

components in the TME (62). The Stromal Score, Immune Score, and

EstmateScore were higher in the High IGRS Group, which is

intriguing. Furthermore, an examination of somatic cell mutation

frequency revealed that the PTEN gene exhibited the highest

mutation rate, and PTEN could suppress the activation of the

PI3K/AKT/mTOR signaling pathway (63). When the functionality

of PTEN is disrupted, such as through mutations in the PTEN gene, it

leads to the loss of PTEN’s tumor suppressor capabilities.
FIGURE 12

Scratch assay and EdU staining results. (A, B) The scratch assay showed that FOSL2 knockdown significantly decreased the movement and infiltration
of the U87 MG and U251MG cells. (C, D) EdU staining demonstrated that FOSL2 knockdown was shown to inhibit the growth of U87 MG and
U251MG cells. Significance levels were set at *P < 0.05, **P < 0.01, and ***P < 0.001.
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Finally, the IC50 (semi-inhibitory concentration) of PLX4720,

Docetaxel, and Erlotinib in different groups was analyzed.

Docetaxel, an FDA-approved medication, is now the primary

therapy for various cancer forms, such as prostate cancer (64)

and non-small cell lung cancer (NSCLC) (65). while Erlotinib, a

tyrosine kinase inhibitor, is effective against lung cancer, head and

neck squamous cell carcinoma (66, 67), and various other types of

cancer. The analysis revealed that Docetaxel and Erlotinib had

reduced IC50 values in the High IGRS Group, indicating improved

efficacy of these drugs for this patient cohort. Consequently,

Docetaxel and Erlotinib demonstrate greater therapeutic potential

for patients in the High IGRS Group.

Analysis of the transcription factors in the C0 subgroup

revealed that the distribution of the transcription factor FOSL2 of

TOP1 in Group IV was greater than in Group II. Hence, we

performed in vitro tests to support the role of crucial

transcription regulators. The findings indicated that suppressing

FOSL2 can decrease the growth, movement, and infiltration of U87

MG and U251 MG cells, aligning with the findings of Yiyun Chen

and Ranhuo et al. (68). Thus, FOSL2 has the ability to enhance the

invasion and advancement of gliomas.

However, there are some limitations to this study. First of all,

the sample size is small, and the number of patients with glioma

obtained in this study is limited. Secondly, we have only done scrna-

seq and bulk RNA-seq analyses and in vitro experiments, and we

need large sample and multi-center research to further explore the

relationship between IGFBP7, FOSL2, the IGFBP7 Risk Score

(IGRS), and glioma. Therefore, we plan to carry out various

analytical methods, such as metabonomics and ATAC-seq, to

demonstrate in many aspects.

Nevertheless, there are certain constraints to this research. First

of all, the sample size is small, and the number of patients with

glioma obtained in this study is limited. Additionally, our research

has been limited to scRNA-Seq and bulk RNA-seq analyses along

with in vitro experiments. To delve deeper into the connection

between IGFBP7, FOSL2, the IGFBP7 Risk Score (IGRS), and

glioma, we require extensive sample sizes and collaboration with

multiple research centers. Therefore, we plan to carry out various

analytical methods, such as metabonomics and ATAC-seq, to

demonstrate this in many aspects.
Conclusion

Our exploration of the astrocyte tumor microenvironment

highlighted the critical role of the C0 IGFBP7+ glioma

subpopulation in astrocytoma progression. We developed the

IGFBP7 Risk Score (IGRS) as an independent prognostic tool that

effectively separates High and Low IGRS groups, with High IGRS

indicating worse outcomes. The IGRS not only predicts patient

survival but also identifies key genes like FAM20C and PMP22

linked to poor prognosis. Our study also pinpointed new

therapeutic targets, showing that Docetaxel and Erlotinib are

more effective in the High IGRS group. Additionally, in vitro tests

confirmed that transcription regulators like FOSL2 enhance glioma
Frontiers in Immunology 22
invasion and progression. These insights improve our

understanding of astrocytoma and offer promising avenues for

future treatments.
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SUPPLEMENTARY FIGURE 1

Visualization of large groups of Glioma. (A) The UMAP visualization
displayed how the different cell types were distributed among 234,148

high-quality glioma cells. (B-D) UMAP visualizations, along with pie graphs,
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illustrated how 234,148 high-grade glioma cells were spread out among
Categories (II, III, and IV) (B), Phases (G1, S, and G2M) (C), and 45 seurat

clusters (D). (E) The bubble chart displayed the top five genes for the 13

types of cells and illustrated how these genes were distributed among the
various groups.

SUPPLEMENTARY FIGURE 2

Analysis of astrocytes through inferCNV. (A) The inferCNV analysis of
astrocytes was visualized in a heatmap. Astrocytes with high levels of

inferCNV were defined as astrocytoma. The red color represented high

copy number variation (astrocytoma), while the blue color represented low
copy number variation.
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