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Background: Polytrauma and hemorrhagic shock can lead to direct and indirect

liver damage involving intricate pathophysiologic mechanisms. While hepatic

function has been frequently highlighted, there is minimal research on how the

receptor activator of the NF-kB (RANK)/RANK ligand (RANKL)/osteoprotegerin

(OPG) system is regulated in the liver following trauma. Furthermore, cross-

talking complement and toll-like-receptor (TLR) systems can contribute to the

posttraumatic response. Therefore, we investigated the hepatic consequences of

polytrauma focusing on the RANK-RANKL-OPG axis, and evaluated the effects of

a dual blockade of complement factor C5 and TLR-cofactor CD14 on

hepatic features.

Methods: The established pig model of polytrauma (PT) and hemorrhagic shock

included pulmonary contusion, hepatic dissection, and bilateral femur fractures,

surgically addressed either by external fixation (Fix ex) or intramedullary nailing (Nail).

Four groups were investigated: 1) sham animals; 2) PT treated by Fix ex (Fix ex); 3) PT

by Nail (Nail); or 4) PT by Nail plus combined C5/CD14 inhibition (Nail+Therapy).

Serum samples were obtained between 0 - 72 h, and liver samples at 72 h after PT.

Liver tissues were histologically scored and subjected to RT-qPCR-analyses,

immunohistochemistry and ELISAs to evaluate the posttraumatic hepatic

response with a focus on the RANK-RANKL-OPG system.

Results: Following PT, the liver injury score of the Nail+Therapy group was

significantly lower than in the Fix ex or Nail group without immunomodulation

(p<0.05). Similarly, the degree of necrosis, lobular stasis, and inflammation were

significantly reduced when treated with C5/CD14-inhibitors. Compared to the

Nail group, AST serum concentrations were significantly decreased in the
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Nail+Therapy group after 72 h (p<0.05). PCR analyses indicated that RANK,

RANKL, and OPG levels in the liver were increased after PT in the Nail group

compared to lower levels in the Nail+Therapy group. Furthermore, liver tissue

analyses revealed increased RANK protein levels and cellular immunostaining for

RANK in the Nail group, both of which were significantly reduced in the case of

C5/CD14-inhibition (p<0.05).

Conclusion: Following experimental PT, dual inhibition of C5/CD14 resulted in

altered, mainly reduced hepatic synthesis of proteins relevant to bone repair.

However, a comprehensive investigation of the subsequent effects on the liver-

bone axis are needed.
KEYWORDS
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1 Introduction

Polytrauma is defined as an injury to two or more bodily parts

due to violent factors, with at least one or the sum of all injuries

being potentially life-threatening (1, 2). In the last decades two main

surgical approaches have been established: damage control

orthopedic surgery (DCO) with rather minimal invasive but only

temporal surgery (e. g. by external bone fixation) and early total

care (ETC) with definite but more invasive surgery (e.g. by

intramedullary bone nailing), both of which are used in

accordance to the overall trauma impact and pattern and patient’s

condition (3). As treatment concepts continue to evolve and clinical

practice progresses, trauma and its complications remain one of the

leading causes of mortality, particularly among young and middle-

aged individuals (4). The liver may not only bear the direct impact

of trauma, but also - as the largest metabolic organ - become a

central actor and target organ for the posttraumatic systemic

inflammatory response (5). Various liver injury models with

profound shifts in the hepatic transcriptome resulted in

differential transcriptomic changes of extrahepatic organs,

indicating a metabolite-mediated crosstalk between the liver and

distant organs (6), including the bone. Regarding bone, both local

and systemic inflammation are known to impair fracture healing

(6–8). In our porcine polytrauma model, proteomic analysis of the

fracture hematoma at 72 h post injury revealed the presence of

coagulation-related, immunomodulatory, and osteogenic proteins,

which were influenced by different surgical approaches. ETC using

intramedullary nailing activated cellular and fluid components of

while reducing the levels of proteins involved in osteogenesis and

tissue remodelling. In contrast, DCO using external bone fixation

led to elevated concentrations of proteins with anti-inflammatory

and pro-regenerative properties within the fracture hematoma (9).

Furthermore, severe concomitant trauma impairs fracture healing

in mice (10) and men (11). Mechanistically, the initial temporal

hypoxia seems to sustainably impact bone healing (12). However,
02
the mechanisms of action of the proposed liver-bone axis after

trauma still require further study.

Two crucial innate immunity recognition systems, namely the

complement and the Toll-like receptor (TLR) systems, appear to

play pivotal roles in trauma-induced inflammation (13). The

complement system is vital for the hepatic homeostasis and

immune response, influencing the development of various liver

diseases, including alcoholic diseases and hepatocellular carcinoma,

and hepatic ischemia-reperfusion injury (IRI) (14–17). Several

complement inhibition strategies, including a C1- and a C3-

inhibitor, as well as minocycline and doxycycline, have

demonstrated effective attenuation of IRI to the liver following

multiple injuries (18–20). CD14 is a co-receptor for several TLRs, in

humans particularly for TLR4 and TLR2, and for mice it has been

shown for several others (21). A number of studies on the TLRs and

trauma has been published, but the CD14 molecule has barely been

investigated, despite its important role as co-factor for several TLRs.

One study showed that elevated soluble CD14 (sCD14) was a strong

predictor for trauma patients who developed sepsis (22). Moreover,

the combined inhibition of complement and CD14 as master alarm

and processing systems of the systemic inflammatory response

revealed significant anti-inflammatory effects (23).

Moreover, the combined inhibition of complement and toll-like

receptor (TLR) as master alarm and processing systems of the

systemic inflammatory response revealed significant anti-

inflammatory effects (23). It is tempting to speculate, that such a

combined blockade could eventually enable the surgeon to perform

invasive ETC even when minimal-invasive DCO would

be indicated.

However, the molecular mechanism of liver damage, induced

either directly or indirectly after polytrauma (e.g. by combined

pulmonary contusion, hepatic trauma and bilateral femoral shaft

fractures or by the additional presence of a hemorrhagic shock)

remain uncertain. In particular, the impact of various inflammatory

and regenerative mediators released after liver injury requires
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further characterization, and especially further clarification to what

extent they are dependent on the basic innate immune TLR- and

complement system. In this context, it is also essential to

elucidate the impact of traumatic liver injury and potential

immunomodulation on pivotal factors that regulate bone fracture

healing, including the receptor activator of NF-kB (RANK), its

ligand (RANKL), and osteoprotegerin (OPG).

In the liver, RANKL and OPG are expressed by multiple cell

types, including hepatocytes, Kupffer cells, and liver sinusoidal

endothelial cells [3]. Furthermore, the RANK-RANKL-OPG axis

represents a pivotal pathway in the context of liver injury and

development of fibrosis (24). Additionally, hepatic stellatae cells

(HSC) as drivers of fibrosis, also express RANKL, although its

expression decreases as these cells activate (25). OPG, acting as a

decoy receptor for RANKL, can inhibit the RANKL-RANK

interaction, thereby suppressing the activation of HSCs and

subsequent fibrotic response (26). The dynamic interplay between

these components in the liver is complex and may link to the bone

tissue (27) and can vary depending on the stage and type of liver

disease. For instance, during the early stages of liver injury, RANKL

may promote inflammation and fibrosis, while later stages might

reveal a protective role through the inhibition of HSC activation

(28). Understanding the RANK-RANKL-OPG axis may potentially

offer novel approaches in managing liver injury and its

complications, highlighting the importance of further research in

this area (29).

Therefore, in the context of trauma, we specifically aimed to

characterize the RANK-RANKL-OPG axis in the liver and

systemically in a well-defined experimental polytrauma setting in

absence or presence of an immunomodulatory therapy. We

hypothesised that polytrauma results in an alteration of liver

mediators relevant for inflammation and fracture repair;

and, furthermore, that this response is improved by an

immunomodulation approach targeting the central complement

component 5 (C5) and TLR-coreceptor cluster of differentiation

14 (CD14).
2 Materials and methods

2.1 Animal model and group establishment

The study protocol of the hemodynamically instable pig

polytrauma (PT) model was approved by the Office for Nature,

Environment, and Consumer Protection of the State of North

Rhine-Westphalia (LANUV AZ 81-02.04. 2020.A215) (17, 18).

All pigs (German Landrace) from a pathogen-free barrier

breeding facility, aged 12–16 weeks (weight 35 ± 5 kg), were

maintained under a 12-h day/night rhythm for 7 d prior to the

experiment to acclimatise to their surroundings.

A total of 25 animals were randomly distributed into four

groups: sham (Sham, n=6) in absence of PT; simulated PT plus

external fixation (Fix ex, n=8), PT plus internal fixation (Nail, n=7)

and PT plus internal fixation plus combined C5/CD14 inhibition

therapy (Nail+Therapy, n=4). The combined immunomodulatory

therapy involved injecting C5 and CD14 inhibitors intravenously
Frontiers in Immunology 03
into the femoral vein. A C5 inhibitor (3 mg/kg body weight) was

given 30 min after trauma to the animals in the therapy group,

followed by a continuous infusion (1.1 mg/kg/h) until 72 h after

trauma. The C5 inhibitor dose was based on titration and measured

by effect on inhibitory complement activity in 3 pilot pigs observed

for 8 hours (unpublished data). The pharmacodynamics of the C5

therapy in pigs in this study, allowing for accurate adjustment for 72

hours has been described in detail previously (30). The anti-CD14

inhibitor (mAb rMIL-2) was given at 5 mg/kg at 30 min, 12 h, and

30 h after trauma and at 2.5 mg/kg at 60 h after trauma. The dose

was chosen based previous studies. In a porcine E. coli model, we

titrated increasing doses to saturation of the CD14 molecules in

blood leukocytes as measured by flow cytometry (14). The

recombinant form of the original anti-CD14 (rMIL-2) used in

this paper showed the same optimal dose of 5 mg/kg (31), and

was used in success in a pig model of polymicrobial sepsis combined

with C5 inhibition (32). This dose was therefore used in the

present study.

All pigs were harvested 72 h after trauma and intensive care

treatment. All data presented in the paper were obtained in the

context of a larger study to address the 3R principles. Horst et al.

(33) provided a specific description of the preparation and

instrumentation. Azaperone (StresnilTM, Janssen, Germany; i.m.

injection of 6-8 mg/kg body weight) and Ketamine (Ketanest, Pfizer,

New York; 15 mg i.m./kg body weight) were used in combination as

pre-anaesthetic agents. In addition, for general anaesthesia,

Propofol (Fresenius, Bad Homburg vor der Hoehe, Germany; 2-

12 mg/kg body weight/h) and Midazolam (Panpharma GmbH,

Trittau, Germany; 0.02 -0.5 mg/kg body weight/h) were used for

general anaesthesia and Fentanyl (Panpharma GmbH; 0.5-20 ug/kg

body weight/h) was used as a general analgesic. Following

intubation, PT was induced by a combination of injuries: blunt

chest trauma, laparotomy with hepatic lacerations, haemorrhagic

shock and bilateral open femoral shaft fractures. Systemic

anaesthesia and analgesia as well as a lung-protective ventilation

strategy with a tidal volume of 8–12 ml/kg body weight were applied

throughout the experiment. Blunt chest trauma was induced on the

right side of the pig’s chest during the inhalation phase using a bolt

gun (Dynamit-Nobel, cartridge 9×17; Vienna, Austria) and a pair of

steel and lead plates (0.8 and 1.0 cm thickness, respectively).

Simulating clinical reality, the proportion of inhaled O2 was set at

21% for the first 90 min after trauma induction and was adjusted

continuously thereafter according to real-time O2 saturation.

Subsequently, a midline laparotomy was performed to expose the

left liver lobe. Two incisions (4.5 cm × 4.5 cm) were made to the

liver using a scalpel to simulate abdominal trauma. The bleeding

was stopped after 30 s using a sterile gauze packing technique.

Subsequently, the femoral shafts were exposed by a 5 cm skin

incision. To induce bilateral femoral shaft fractures, a bolt gun and

steel stamp were used at a 90° angle to the bone. Concurrently,

pressure-controlled haemorrhagic shock was initiated by drawing

blood from the femoral vein until a mean arterial pressure (MAP) of

40 ± 5 mmHg was obtained, or the maximum volume of blood

drawn reached 45% of the total blood volume. This low MAP was

maintained for 90 min. Throughout the 72 h of the experiment, the

animals were given fluids (Sterofundin, B. Braun, Germany) at a
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rate of 0.5-2.0 ml/kg/h and parenteral nutrition (Aminoven,

Fresenius Kabi, Germany) of 50-70 ml/kg body weight and day,

under monitoring of the fluid balance. If required, norepinephrine

was administered i.v. for maintaining the MAP>60 mmHg.
2.2 Drug introduction

UCB Pharma (Brussels, Belgium) provided RA 101295 (2-kDa

peptide). This C5 inhibitor inhibits both C5 cleavage and the

subsequent formation of the terminal complement complex C5b–

9, which presents on the cell surface as the membrane attack

complex (MAC).

RMil2 is a recombinant anti-pig CD14 antibody (clone MIL2;

IgG2a), made available by Prof. TE Mollnes (Norway), that inhibits

CD14-mediated pro-inflammatory cytokine responses. It is effective

in porcine sepsis and IRI models when combined with a

complement inhibitor (34).
2.3 Liver damage evaluation

Immediately after euthanasia, induced by deepening of the

narcosis by 20 ml pentobarbital i.v. and a bolus of 40 ml KCl i.v.,

liver samples were removed and fixed in 10% formalin at room

temperature (RT) for 24 h. Tissues were paraffin-embedded and

sectioned onto slides. Ten images from random areas at 20×

magnification were obtained from each slide. Morphological

changes in haematoxylin and eosin (HE)-stained sections of the

liver were examined by two independent blinded observers and

scored accordingly. Stasis (appearance and distribution of red blood

cells), vacuolation, parenchymal necrosis, and inflammation

(appearance and distribution of polymorphonuclear granulocytes

[PMNs]) were each graded into four features ranging each from 0 to

maximal 3 points (0=none, 1=mild, 2=moderate, 3=severe). Thus,

the overall histological liver damage score could range from 0 –

maximal 12 points. Assessment of haemorrhage and necrosis was

performed with a light microscope (Axio Imager M1, Carl Zeiss,

Oberkochen, Germany) at a magnification of 2.5×. The number of

liver tissue vacuoles and PMNs were assessed at 10× and

20× magnification.
2.4 Immunohistochemical staining of
the liver

Formalin-fixed paraffin-embedded liver slides (4 mm thickness)

were deparaffinized and rehydrated in a descending alcohol series.

The antigen retrieval was performed in a microwave (700W, 20 min)

using citrate buffer (pH 6.0). The slides were blocked with 10%

normal goat serum for 1 h at RT. Subsequently, the slides were

incubated with a primary antibody (rabbit anti-pig myeloperoxidase

(MPO) polyclonal antibody (Abcam) at a concentration of 1.4 mg/ml

at 4°C overnight. MPO detection was based on an alkaline

phosphatase method using a DAKO kit (Agilent Technologies). For
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RANK staining, the liver sections were similarly prepared and

incubated overnight at 4°C with RANK primary antibody (Cloud-

clone, Wuhan, China) at 1:100 dilution. Following washing with

Tween 20 Tris-buffered saline, goat anti-rabbit horse-radish

peroxidase-labelled secondary antibody (Abcam, UK) was added at

1:50 dilution at RT for 30 min and developed with DAKO (Agilent)

for 20 min. Finally, the sections were visualised using a Zeiss Axio

Imager A1 microscope. Seven images at 20× magnification were

obtained from each slide and analysed using Image J automated

cell-counting.
2.5 Real-time quantitative polymerase
chain reaction

Liver tissue homogenates were centrifuged at 300 g for 5 min at

4°C and RNA was isolated according to the manufacturer’s (Qiagen

Qiashredder™, Hilden, Germany) protocol. The RNA yield was

quantified with a Qubit 2.0 fluorometer using the Qubit RNA BR

Assay Kit (Thermo Fisher Scientific). cDNA was generated using

the AffinityScript qPCR cDNA synthesis kit (Agilent Technologies)

with oligo(dT) primers and stored at −80°C until further use. RT-

qPCR was performed using a qPCR cycler Mx3000P (Agilent

Technologies) and Brilliant III Ultra-Fast SYBR Green QPCR

Master Mix (Agilent Technologies). Primers were purchased from

Biomer.net (Ulm, Germany): glyceraldehyde 3-phosphate

dehydrogenase (used as a housekeeping gene), OPG, RANK, and

RANKL. Relative gene expression was determined by the 2−DD Ct

method (35) and results are reported as fold change compared to

unstimulated control cells. Primers used for real-time PCRs are

displayed in the Supplementary Table.
2.6 Enzyme linked immunosorbent assay

Serum and liver protein concentrations of RANK, RANKL, and

OPG were determined using commercially available Porcine ELISA

kits (RANK, RANKL: Mybiosource, San Diego, USA; OPG: Lsbio,

Seattle, USA) using the pre-coated kits according to the

manufacturers’ instructions.

For C5a measurements, a porcine ELISA (Hycult Biotech,

Uden, Netherlands) was applied, strictly following the

manufacturers’ protocol.

To determinate the total protein concentrations in serum

samples and tissue homogenates, a commercially available

bicinchoninic acid protein assay kit (Thermo Scientific, Rockford,

USA) was used for protein determination as recommended by

the manufacturer.
2.7 Aspartate
aminotransferase measurement

Serum AST was analysed using an automated chemical analyser

(VITROS 350; Ortho-Clinical Diagnostics, Raritan, NJ).
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2.8 Data analysis

To check the normality of the obtained data sets, the Shapiro–

Wilk and Kolmogorov-Smirnov tests were performed on each set of

data. Unless otherwise noted, data satisfying normal distribution

were expressed as the mean ± standard deviation (SD) or in the case

of the histological analyses as the median with the 25th/75th

percentile. One-way Analysis of variance (ANOVA) followed by

Holm-Sidak post-hoc testing was performed for comparisons

between multiple groups. Data that did not satisfy a normal

distribution were subjected to the rank sum test and post-hoc

testing (Dunn’s method). A p<0.05 was considered to be

statistically significant.
3 Results

3.1 Liver damage after experimental
polytrauma is reduced by synchronic
inhibition of complement C5 and CD14

Analysis of the HE-stained liver tissue sections taken 72 h after

the polytrauma impact revealed a significant increase of the damage

score in both the Fix ex and Nail groups versus the Sham group. The

total score was 1.67 ± 0.31 for the Sham group, 8.65 ± 1.01 for

the Fix ex group, and 9.19 ± 0.60 for the Nail group. By contrast, the

liver injury score of the Nail+Therapy group (5.50 ± 0.44) was

significantly lower than in the Nail or Fix ex group without the

immunomodulatory therapy (Figure 1A). HE staining of the liver

tissue in the PT groups revealed increased signs of disorganisation

and congestion of the hepatic lobular structure (Figure 1B) and

numbers of vacuoles (Figure 1C) and necrosis of some hepatocytes
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(Figure 1D) compared to the normal control group. An infiltration

of neutrophils in the liver indicated a clear inflammatory response

in the liver (Figure 1E). By contrast, the degree of necrosis, hepatic

lobular stasis and neutrophil recruitment were significantly reduced

in the Nail+Therapy group, which was not the case in the Nail or

Fix ex groups without immunomodulation.
3.2 Effects of C5/CD14-inhibition on
enhanced liver enzyme concentrations
after polytrauma

Directly after the polytrauma and corresponding surgical

intervention (0 h), except in the Nail group, there was no

significant increase in serum AST levels (Figure 2). At 1.5 h after

polytrauma, the AST level increased by trend in the Fix ex group

and significantly in the Nail group compared to the Sham group

(Figure 2; p<0.05), suggesting that the liver was significantly injured

by 1.5 h after trauma, particularly in case of early total care (Nail).

The changes were time dependent, peaking for all groups at 48 h

after the trauma with a subsequent decrease (Figure 2). The

AST serum concentrations in the Nail group decreased by

immunomodulation at least to the AST levels found in the

minimal invasive Fix ex group (Figure 2).
3.3 Immunomodulation reduces MPO
positive cells in the post polytrauma liver

After immunohistochemical staining, seven observation fields

were randomly chosen for each liver tissue sample, and the MPO-

positive cells were recorded using Image J to determine the mean
FIGURE 1

Polytrauma-caused increase in liver injury was improved by C5/CD14-immunomodulation. Liver histology (HE-staining, 400× magnification) was
obtained from pigs in each group 72 h post polytrauma including hemorrhagic shock. Total liver damage score (A) for each group assessing four
aspects: congestion (B), vacuolation (C), necrosis (D), and inflammation (E). The black arrow indicates the structure of the liver lobules. ANOVA with
Holm-Sidak posthoc testing was applied to compare the data between the groups. Median values are displayed with the 25th and 75th percentile,
respectively; denotes significant differences vs. Sham group, * denotes significant differences vs. Nail+Therapy group. Fix ex = external fixation,
Nail = internal fixation with intramedullary nail, Nail+Therapy = intramedullary nail with combined C5/CD14 inhibition. Sham: n = 6, Fix ex: n = 8,
Nail: n = 7, Nail+Therapy: n = 4.
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number of such cells in each group (Figure 3). Few MPO positive

cells were observed in liver tissues of sham pigs, whereas their

numbers by trend in the liver tissues of polytraumatised pigs treated

by either the Nail or Fix ex. By trend, a decrease in MPO staining

with an overall reduced variance was found in livers from the Nail

+Therapy versus the Nail only group (Figure 3). Addressing the

anaphylatoxin C5a as a potent chemoattractant for inflammatory

cells, the liver tissue concentrations of C5a were measured by

ELISA, but did not significantly alter between the groups

(Supplementary Figure).
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3.4 Polytrauma increases hepatic
expression and protein concentration of
RANK, which is abolished by C5/
CD14 inhibition

Subsequently, the gene expression and protein concentrations

of RANK, RANKL, and OPG, as established key regulators of bone

resorption and (re)modulation, were determined.

On the protein level, slightly enhanced RANK concentrations were

found in the liver (Figure 4A) and in serum (Figure 4B) post
FIGURE 3

Amelioration of myeloperoxidase (MPO) staining of liver tissues by C5/CD14 inhibition after polytrauma. At 72 h after polytrauma or sham procedure,
liver sections were stained for MPO and evaluated. Overall mean score of the number of MPO positive cells in each group (A). ANOVA with Holm-
Sidak posthoc testing was applied to compare the data between the groups. Data are displayed as means ± SD, and for the histological analysis as
the median with the 25th/75th percentile, denotes significant differences vs. Sham group, Representative histological sections at 100× magnification
(B). Black arrow: MPO positive cells in the hepatic lobules. Fix ex, external fixation; Nail, internal fixation with intramedullary nail; Nail+Therapy,
intramedullary nail with combined C5/CD14 inhibitor treatment. Sham: n = 6, Fix ex: n = 8, Nail: n = 7, Nail+Therapy: n = 4.
FIGURE 2

Effects of C5/CD14 blockade on enhanced serum aspartate transaminase (AST) concentrations after polytrauma. Blood samples were obtained from
polytraumatized pigs at the indicated time-points. The Nail group displayed a higher overall serum AST concentration than the Nail+Therapy group
(p<0.05), the latter group being similar to the Fix ex group without immunomodulation. By trend, AST levels in all groups increased until they peaked
48 h after trauma. AST levels at different time points for each group. Data are shown as the mean ± SD. Fix ex, external fixation; Nail, internal fixation
with intramedullary nail; Nail+Therapy, intramedullary nail with combined C5/CD14 inhibitor treatment. Sham: n = 6, Fix ex: n = 8, Nail: n = 7, Nail
+Therapy: n = 4. # denotes significant differences vs. Sham group. * denotes significant differences vs. 614 Nail+Therapy group.
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polytrauma, which, in the liver, were significantly higher in the Nail

group than in the Nail+Therapy group. A similar pattern was found in

the liver for the RANK RNA expression (Figure 4C).

Immunohistochemical staining indicated some RANK protein

staining in hepatocytes, particularly after polytrauma (Figure 4D).

The number of RANK positive cells differed between the four

groups, with the number of such cells in the Nail group being

significantly higher than in the Sham and Nail+Therapy group

(p<0.05) (Figure 4E).
3.5 Inhibition of C5/CD14 modulates liver
and serum RANKL and OPG
after polytrauma

Regarding RANKL, liver protein concentrations were by trend

slightly but insignificantly higher in the Fix ex group and slightly but

significantly higher in the Nail group in comparison to the Sham

group (p=0.014) (Figure 5A). The Nail+Therapy group exhibited

slightly but significantly increased hepatic RANKL concentrations

than in the Sham group (p=0.025). The RANKL serum

concentrations were insignificantly altered, with some reduction in

the Nail+Therapy group (Figure 5B). RANKL RNA expression was

by trend, but insignificantly, enhanced post trauma in the Fix ex and

Nail groups, which was abolished upon additional C5/CD14
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inhibition (Figure 5C). These findings were associated with the

limitation of a broad variance and small n-size in the therapy group.

Regarding OPG as a decoy receptor of RANKL, OPG protein

was by trend higher in the liver (Figure 5D) and significantly higher

in the serum after polytrauma and almost back to sham levels when

comparing the Nail group in the absence versus the presence of the

dual C5/CD14 inhibition (Figure 5E). With respect to the OPG

RNA expression, the levels were approximately four times higher in

the polytrauma groups without immunomodulation, but was

abolished in the case of additional C5/CD14 blockade (Figure 5F).
4 Discussion

In the present study, a well-established, randomised, clinically

relevant porcine polytrauma model with haemorrhagic shock was

investigated (33). We focused on the liver-bone axis to investigate

the effect of a dual immunomodulation.

The drug RA101295 (2-kDa peptide) given in the present study

is a broad-spectrum C5 inhibitor. It is characterised by blocking C5

cleavage and the subsequent formation of anaphylatoxin C5a and

terminal C5b–9, the latter found in two forms: sC5b–9 in the liquid

phase and the MAC on the cell surface. C5a amplifies leukocyte

activation and migration, induces basophil/mast cell degranulation,

enhances vascular permeability, and therefore can induce all
FIGURE 4

Detection of RANK in liver tissue and serum after polytrauma and reduction by systemic C5/CD14 blockade. RANK protein concentrations in liver
tissue homogenates (A) and serum (B) 72 h after polytrauma (determined by ELISA). RANK RNA-expression levels in liver homogenates 72 h post
trauma (C). Representative histological liver staining images for RANK (D). Statistical analysis of RANK positive cells in the liver histology (E). Data
satisfying a normal distribution were subjected to ANOVA, otherwise the rank sum test was applied. Data are shown as the mean ± SD; denotes
significant differences vs. Sham group, * denotes significant differences vs Nail+Therapy group. Fix ex, external fixation; Nail, internal fixation with
intramedullary nail; Nail+Therapy, intramedullary nail with combined C5/CD14 inhibitor treatment. Sham: n = 6, Fix ex: n = 8, Nail: n = 7,
Nail+Therapy: n = 4.
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classical signs of inflammation (36). Blockade of the C5a-C5a

receptor (C5aR)-interaction significantly improved IRI in the

liver, characterised by the inhibition of platelet aggregation in the

hepatic microcirculation and high mobility group box 1-release in

the early stages of reperfusion. It also inhibited hepatocyte apoptosis

by downregulating infiltrating macrophages and neutrophils,

cytokine and chemokine release, and reactive oxygen species

production (16). In a rodent study of distant organ damage after

lower limb IRI, enhanced serum concentrations of lactate

dehydrogenase (LDH), alanine transaminase (ALT) and AST and

liver tissue tumor necrosis factor (TNF) were all reduced after

application of a small peptide C5aR antagonist, indicating a key role

of complement activation in the induction of remote liver damage

(37). Mechanistically, C5a mediates leukocyte activation and

migration during liver injury, ultimately leading to hepatocyte

necrosis and apoptosis. In addition, the formed MAC can lyse

target cells, promoting the release of further injury-associated

molecular patterns, chemokines and other cytotoxins (16).

CD14 as a key molecule of TLRs has hardly been studied in

polytrauma, as compared to complement. The TLRs are a major

branch of innate immunity recognizing danger molecules, like the

complement system. CD14 is a key player as co-receptors for several

TLR molecules, in humans documented for TLR4 and TLR-2, and in

mice for several others (21). Specific anti-CD14 mAbs to block porcine

CD14 are scares. We found that mAb MIL-2 was promising in
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attenuating the cytokine response in E. coli sepsis (38). However, this

antibody of the mouse subclass IgG2b showed some adverse effects due

to the Fc part and we therefore genetically engineered a chimericmouse-

human mAb based on the human IgG2/4 Fc part (rMIL-2), avoiding

complement activation and binding to Fc-receptors (31), which later

have shown to be efficient in pig polymicrobial sepsis both with respect

to morbidity andmortality (32). In a recent study, we demonstrated that

a combined blockade of C5 and CD14 early in the posttraumatic course

with an immune-monitoring-based real-time dose adjustment

significantly reduced multiple organ damage (30). Focusing on the

liver in the present study, as expected, we found enhanced liver damage

scores including increased AST levels after PT surgically addressed by

minimal invasive external fixation and even more by early total care

with an intra-medullar femur nail. By contrast, a significant decrease of

morphological and biochemical signs of liver damage and dysfunction

was observed in this polytraumatized group after synchronic and

combined C5/CD14 inhibition. Of note, in case of systemic AST

concentrations, the immunomodulatory therapy was capable of

reducing this liver injury marker in the early total care setting (Nail)

to a level found in damage control surgery by the external fixateur (Fix

ex), suggesting a promising therapeutic approach which could enable

definitive treatment in combination with C5/CD14 inhibition.

Major trauma can cause compromised fracture repair. In a rat

model of severe trauma, impaired fracture healing occurred in a

surgical group with femoral osteotomy plus blunt thorax trauma
FIGURE 5

Reduction of polytrauma-induced changes in hepatic and systemic RANKL and OPG by inhibition of C5/CD14 in experimental polytrauma. RANKL
and osteoprotegerin (OPG) serum protein concentration and hepatic RNA expression were determined 72 h after polytrauma in the indicated
surgical treatment groups with and without immunomodulation of C5 and CD14. RANKL protein concentrations were determined by ELISA in liver
tissue homogenates (A) and serum samples (B). RANKL RNA expression levels in liver homogenates (C). OPG protein concentrations in the liver (D)
and serum (E) as well as OPG RNA expression in liver homogenates (F). Data satisfying a normal distribution were subjected to ANOVA, otherwise
the rank sum test was applied. Data are shown as the mean ± SD; denotes significant differences vs. Sham group, * denotes significant differences vs
Nail+Therapy group. Fix ex, external fixation; Nail, internal fixation with intramedullary nail; Nail+Therapy, intramedullary nail with combined C5/
CD14 inhibitor treatment. Sham: n = 6, Fix ex: n = 8, Nail: n = 7, Nail+Therapy: n = 4.
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compared to a group with femoral osteotomy alone (39). The acute

systemic inflammatory response appears to alter the cellular

composition and cytokine generation in the fracture haematoma,

which substantially reduces bone formation and the mechanical

competence of the fracture callus in the later stages of healing (40).

On a cellular level, during the early inflammatory phase of fracture

healing, C5aR was strongly expressed not only by immune cells, but

also by osteoblasts, chondrocytes and osteoclasts in the

intramembranous and chondrogenic zones of the fracture callus

indicating a modulatory role of activated complement (41).

For fracture healing, the RANK-RANKL-OPG axis is important.

Therefore, we investigated in the current study, to our knowledge, for

the first time the liver expression of these mediators after PT and

hemorrhagic shock (HS). In this context, we also addressed the effects of

C5/CD14 inhibition on hepatic expression of these molecules. Our data

revealed a consistent trend of enhanced RANK protein expression in the

liver and serum 72 h post trauma. The RANKL/RANK interplay

activates NF-kB in hepatocytes, leading to inflammatory cytokine

production, Kupffer cell activation and increased fat storage (28). In a

mousemodel of liver IRI, serumRANKL concentrations were increased,

peaking after 4 h, while OPG (as decoy receptor of RANKL) increased

steadily over the observation period of 8 h after IRI. In the liver, RANK

was constitutively expressed in hepatocytes and less in Kupffer cells. Of

note, exogenous RANKL application revealed some protective liver

effects after murine IRI (42). In our porcine model of polytrauma-

induced liver injury, we found sustained protein generation of RANKL,

RANK andOPG as late as 72 h post trauma. As a limitation of the study,

we did not investigate the dynamics of the histological changes of the

liver response. Even so, the C5/CD14 inhibition reduced the hepatic

expression levels of RANK and OPG, effects that only can be speculated

on to be somehow protective, because reduced OPG levels may lead to

enhanced biological activity of RANKL in the liver. Activated T cells and

other cells of the pro-inflammatory phenotype, including endothelial

cells and lymphocytes are also major sources of RANKL (43, 44), which

may contribute to the systemic response in addition to the postulated

liver- bone communication. In a murine model of trauma with

hemorrhagic shock reduced systemic RANKL levels in plasma at 24

and 72 hours post-trauma were measured, which aligns with our

findings (45). However, it remains unclear why C5/CD14 blockade

led to a reverse pattern concerning hepatic and systemic RANKL, and to

what extent the polytrauma conditions or the various RANKL-

generating cell types influence systemic RANKL levels. Further studies

are needed to elucidate these mechanisms.

A liver-bone crosstalk was previously described in chronic liver

diseases (46), for example, in hepatic osteodystrophy development (47).

Despite its crucial function in bone remodelling, the role of the RANK-

RANKL-OPG system (28) in the polytrauma pathophysiology remains

unclear. In the present study, liver RANK of the PT Nail group was

significantly higher than in the PT Nail+Therapy group. Furthermore,

PCR results indicated higher OPG and RANKL gene expression in liver

samples from the PT Nail group in comparison to the PT

Nail+Therapy group.

Regarding the therapeutic approach, experimental studies have

shown that inhibition of complement activation before the induction of

liver injury results in hepatic protection, manifested by reduced

inflammation and cell apoptosis (48–50). The liver is the major
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source of complement components. However, also osteoblasts can

generate and activate complement proteins such as C3 and C5 (51–53).

The complement cleavage products C3a and C5a have been shown to

stimulate RANKL expression in osteoblasts, thereby increasing

osteoclast formation (54). In vivo, increased osteoclast precursor cell

recruitment to inflammatory sites may enhance the induction of

osteoclast formation due to the chemotactic effects of the

anaphylatoxins (55). Immunosuppression of C5a and C3a not only

directly affects osteoclast formation, but also regulates osteoblast/

osteoclast interactions via RANKL/OPG (54). However, it is

noteworthy, that fracture repair also requires the involvement of the

terminal complement complex (56). Through the current effective C5/

CD14 inhibition, we reduced damaging effects of the inflammatory

response on the liver, but at the same time, we also have inhibited C5b-

9 generation and thereby potentially compromised bone and tissue

regeneration and the clearance of damaged/infected cells (56, 57).

The innovation of the present study is the combined use of C5/

CD14 inhibitors to alter inflammation and potentially key bone

modulating factors in a clinically relevant long-term model of

porcine polytrauma (observation period of 72 h). Through C5/CD14

double blockade, we found significant reduction of polytrauma-caused

liver damage and inflammation, not only as assessed morphologically

but also biochemically and on a transcription level. While the

immunomodulatory approach revealed some protection on the

posttraumatic liver response, it also significantly altered the hepatic

and systemic RANK-RANKL-OPG axis.
5 Conclusion

In summary, we conclude:
I. I Experimental polytrauma leads to liver injury and

hepatic modulation of RANKL, RANK, and OPG;

II. Seventy-two hours after trauma, the combined inhibition

of C5/CD14 resulted in reduced polytrauma-induced liver

injury and the hepatic generation of mediators, which can

influence bone repair;

III. The consequences of the liver-bone-axis on fracture

healing requires further investigation.
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