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The suppressive tumour microenvironment significantly hinders the efficacy of

immunotherapy in treating solid tumors. In this context, stromal cells, such as

tumour-associated fibroblasts, undergo changes that include an increase in the

number and function of immunosuppressive cells. Adenosine, a factor that

promotes tumour growth, is produced from ATP breakdown and is markedly

elevated in the tumour microenvironment. It acts through specific binding to

adenosine receptors, with A2A and A2B adenosine receptor being primary drivers

of immunosuppression. This paper presents the roles of various adenosine

receptors in different tumour microenvironments. This review focus on the

function of adenosine receptors in the stromal cells and non-cellular

components of the tumour microenvironment. Additionally, we summarize

and discuss recent advances and potential trends in using adenosine receptor

antagonists combined with immunotherapy.
KEYWORDS

tumour microenvironment, adenosine receptor, stromal cell, tumour-associated
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1 Introduction

Immunotherapy has become a promising treatment for cancer alongside radiotherapy,

achieving significant clinical efficacy. Preclinical studies have demonstrated that

immunological approaches, such as immune checkpoint inhibitors (ICIs) and cancer

vaccines, can produce effective antitumor responses (1, 2). Additionally, immune

checkpoint drugs are currently undergoing clinical trials, yielding encouraging results

with reduced adverse reactions. Unfortunately, tumour vaccines are not effective for all

tumors, and the complex tumour microenvironment (TME) often renders some solid

tumors poorly responsive to ICIs (3). Current research suggests that cytokines secreted by
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tumour or immune cells within the TME, along with changes in

immune cell composition and microenvironmental nutrients, can

influence the efficacy of immunotherapy (4, 5). The adenosinergic

pathway has long been associated with antitumor immunity (6).

Specifically, the use of adenosine receptor antagonists has been

demonstrated to enhance the antitumor activity of tumour-

infiltration lymphocytes and Natural Killer cells (NK cells) (7, 8).

Furthermore, adenosine receptor antagonists can inhibit the

immunosuppressive microenvironment, including macrophages

infiltration (9). Recent experiments have begun exploring the

relationship between adenosine receptors and non-immune

components in the TME. Therefore, This artical focuses on

summarizing the associations and effects of adenosine receptors

with stromal cells and non-cellular components in the TME. A brief

overview of recent clinical trials involving adenosine receptor

antagonists combined with immunotherapy is also provided.

Furthermore, potential combinations to enhance antitumor

therapies are considered. This review lays the foundation for

studying the relationships and mechanisms between adenosine

receptors and TME components, offering insights and strategies

for more effective immunotherapy combinations.
2 Distribution and mechanism of
adenosine receptors

Adenosine receptors belong to the class A family of retinoid-like

G protein-coupled receptors. Four members of the adenosine

receptor family have been identified: A1 adenosine receptor

(A1AR), A2A adenosine receptor (A2AAR), A2B adenosine

receptor (A2BAR), and A3 adenosine receptor (A3AR). These

receptors, as the natural endogenous receptors for adenosine are

involved in numerous physiological and pathological signaling

pathways (10). This section summarize the distribution of

adenosine receptors under physiological and pathological

conditions based on data from the Human Protein Atlas database

and relevant literature.
2.1 Distribution of adenosine receptors
under physiological and
pathological conditions

Adenosine receptors A2AAR and A2BAR have been approved

by the FDA for drug targeting of G protein-coupled receptors. The

ADORA2A gene is expressed at the RNA level in various tissues (11,

12), while the A2AAR protein is expressed only in a few tissues,

with the highest levels found in the colon, caudate nucleus, and

appendix (13, 14). A2AAR protein is also present in the cerebellum,

kidney and bone marrow (15). Tissue-specific distribution of

A2AAR protein has been observed in endothelial cells of tissues

such as the myocardium and kidney. Among immune cells, A2AAR

levels are higher in neutrophils and regulatory T cells (Treg cells).

Under pathological conditions associated with different tumors,

adenosine receptor content varies. In a few cases of ovarian cancer,

A2AAR protein expression shows moderate to high positivity in the
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cytoplasmic and cell membrane. A2AAR protein expression in

other cancer tissues is generally negative. The expression of

A2BAR protein in various tissues under physiological and tumor

conditions has not been fully elucidated. However, tissue-specific

distribution has been observed in duct cells, urothelial cells, and

keratinocytes related to the urinary system, with high expression

levels in immune cells, including bone marrow cells and basophils.

The expression of A1AR protein in various tissues under

physiological and tumour conditions is also yet to be fully

understood. The ADORA1 gene is highly expressed, mostly in

renal carcinoma. Tissue-specific distribution of A1AR protein can

be observed in Muller glial cells, oligodendrocyte precursor cells,

oligodendrocytes, and excitatory neurons (16–18). The expression

level of A1AR protein in immune cells is not high. A3AR is mainly

expressed in macrophages in tissues such as the colon, myocardium

and lungs. In contrast, A3AR is highly expressed in eosinophils

among immune cells (19).
2.2 Mechanisms of adenosine receptors in
non-tumour and tumour diseases

This review summarizes the current research status of adenosine

receptors and disease, focusing on classical and recent studies. The

same adenosine receptor may play different roles in various diseases.

A1AR, A2AAR and A2BAR have all been reported to be associated

with cardiovascular diseases and diabetic complications, but their

roles differ. A1AR is mainly involved in processes such as myocardial

hypertrophy, ischemia-reperfusion injury, and various arrhythmias

(20, 21). In contrast, A2AAR has been demonstrated to regulate

coronary artery dilation (21, 22). Unlike A2AAR, A2BAR is involved

in vasoconstrictor effects (21). Furthermore, A1AR is involved in the

regulation of gestational hypertension through the HSPA8/b-
arrestin1/A1AR axis (23). The potential of A2AAR to treat

diseases such as Parkinson’s disease and systemic lupus

erythematosus is currently under investigation (24, 25). A2BAR

plays a role in schizophrenia and is involved in the regulation of

pulmonary fibrosis and alcoholic steatohepatitis (26–28). Compared

to other adenosine receptors, A3AR is less well-known and has

received less attention in cardiovascular and diabetic diseases. It may,

however, be a unique marker and target for inflammatory diseases

such as rheumatoid arthritis (29). For more details on specific

mechanisms, please refer to Table 1. Compared to the other listed

adenosine receptors, the mechanisms of A2AAR in tumors are less

studied, primarily related to pathways such as mitochondrial

oxidative phosphorylation and ERK (37). For further details, please

refer to Table 1.
2.3 Effect of adenosine receptors on
components of the TME

The TME is a highly structured ecosystem composed of various

immune cells, tumor-associated fibroblasts (CAFs), endothelial cells

(ECs), and extracellular matrix (ECM). The composition of these

components may vary depending on the specific tissue type and
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TABLE 1 Mechanisms of adenosine receptor in disease.

Adenosine receptors Condition Disease Mechanism Reference

A1AR Non-Oncology Diseases Diabetic nephropathy Enhanced renal tubular
interstitial fibrosis and
extracellular matrix deposition
observed in A1AR DN mice

(30–33)

Hypertensive disorders
in pregnancy

Regulation through the
HSPA8/b-arrestin1/A1AR axis

(23)

Cardiovascular diseases A1AR is involved in
myocardial hypertrophy,
ischaemia-reperfusion injury,
various types of arrhythmia,
chronic heart failure and
arterial hypertension

(20, 21)

Tauopathies regulation or inhibition of
A1AR modulates the activity of
the “ArfGAP with SH3
Domain, Ankyrin Repeat, and
PH Domain 1
protein” (ASAP1)

(34)

Tumour Breast cancer Adenosine binding to A1AR
down-regulates cAMP
concentration, and low cAMP
levels stimulate cancer cell
growth and proliferation

(35)

Esophageal cancer Inhibition of A1AR reduces
the proliferation of
oesophageal cancer cells,
possibly through an increase in
cysteinyl asparaginase 3/
7 activity

(36)

Glioblastoma A1AR had significant anti-
proliferative/pro-apoptotic
effects on CSC and promoted
the differentiation of CSC to a
glial phenotype
Regulation of ERK/AKT
phosphorylation kinetics and
hypoxia-inducible
factor expression

(37)

A2AAR Non-Oncology Diseases Parkinson’s disease A2AAR forms a heterodimer
with dopamine D2 receptors in
the CNS and regulates
their activity.

(24, 38)

Cardiovascular regulation Regulation of vascular
endothelial cell and vascular
smooth muscle cell-mediated
coronary vasodilation
Involvement in aortic
vasodilation in mice

(21, 22, 39, 40)

Systemic lupus erythematosus A2AAR activation reduces the
release of pro-inflammatory
cytokines and enhances
cytokines with anti-
inflammatory activity

(25)

Diabetic retinopathy A2AAR achieves retinal
protection by eliminating
inflammation-mediated
interactions with the C-Raf/
ERK pathway.

(41, 42)

Tumour Breast cancer (40)

(Continued)
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TABLE 1 Continued

Adenosine receptors Condition Disease Mechanism Reference

Expression and role of A2AAR
in the hormone-dependent
breast cancer cell line MCF-7

Melanoma and Lung Cancer A2AAR activators increase cell
proliferation through pathways
dependent on PLC, PKCd,
pERK1/2, pJNK and
pAKT signaling

(43, 44)

A2BAR Non-Oncology Diseases Cardiovascular regulation A2BAR mediates adenosine-
induced vasoconstrictor
vasomotor effects in human
chorioallantoic membrane
vasoconstriction by
synthesizing thromboxane
receptor activators or related
prostaglandin-like agents
Blockage of the adenosine A2B
receptor prevents cardiac
fibroblasts overgrowth in rats
with pulmonary arterial
hypertension
Activation of adenosine A2B
receptor alleviates myocardial
ischemia-reperfusion injury by
inhibiting endoplasmic
reticulum stress and restoring
autophagy flux
A2BAR is involved in altered
ventricular function in mice

(21, 22, 45–49)

Alcoholic hepatitis A2BAR reduces alcoholic
steatohepatitis by upregulating
cAMP levels and negatively
regulating the NF-kB pathway

(26)

Idiopathic Pulmonary Fibrosis Elevated adenosine levels may
activate A2BAR, leading to
cellular effects associated with
the progression of
pulmonary fibrosis

(27)

Diabetic proteinuria Blocking A2BAR protects
against diabetic proteinuria by
affecting adhesion plaque
kinase activation and adhesion
kinetics of podocytes

(50)

Schizophrenia Activation of A2B adenosine
receptor protects against
demyelination in a mouse
model of schizophrenia

(28)

Tumour Glioblastoma A2BAR had significant anti-
proliferative/pro-apoptotic
effects on CSC

(37)

Breast cancer A2BAR induces breast CSC
cell cycle arrest and apoptosis
by down-regulating ERK1/2
cascade response

(51, 52)

Ovarian cancer A2BAR agonists induce
apoptosis through the
mitochondrial
signaling pathway

(53)

Glioblastoma (54)

(Continued)
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TABLE 1 Continued

Adenosine receptors Condition Disease Mechanism Reference

Targeting A2BAR is an
effective treatment for
GBM recurrence

Lung cancer A2BAR as one of the receptors
involved in the regulation of
the EMT process

(55)

colorectal cancer A2BAR antagonists alter the
cellular redox state and
increase basal oxygen
consumption rate and
mitochondrial
oxidative phosphorylation

(56, 57)

A3AR Non-Oncology Diseases Neurotoxicity Prevention and reversal of
chemotherapy-induced
neurotoxicity in mice

(58)

Rheumatoid arthritis A3AR is a promising
therapeutic target for
rheumatoid arthritis

(29)

Reversing Pain A3AR agonists reverse
neuropathic pain through T
cell-mediated IL-10 production

(59, 60)

Osteoarthritis A3AR activation attenuates
osteoarthritis progression by
inhibiting NLRP3/caspase-1/
GSDMD-induced signaling

(61)

Plaque psoriasis A3AR Agonist Piclidenoson
Shows Increased Response to
Psoriasis Treatment Over Time
and a Good Safety Profile

(62)

Tumour Most of the cancers A3AR activation also results in
the inhibition of PI3K/Akt and
a subsequent deregulation of
nuclear factor kB (NF-kB) and
MAPK signaling pathways
resulting in anti-inflammatory
and anticancer effects

(32, 33)

Hepatocellular carcinoma A3AR agonists induce
dysregulation of Wnt and NF-
kB signaling pathways, leading
to apoptosis in HCC cells.
Tumor cell proliferation is
reduced, with decreased
accumulation of G1 phase cells
and inhibition of DNA and
RNA synthesis.
Reduced protein expression
levels of b-conjugated proteins,
patched1 (Ptch1), and glioma-
associated oncogene
homologous zinc finger protein
1 (Gli1) were found.
The protein expression levels
of cell cycle protein D1 and c-
Myc were reduced.

(63, 64)

Lung cancer Doxorubicin and A3AR
agonist therapies have lowered
TNF-alpha levels

(65)

Breast cancer A3AR agonists induce cell
cycle arrest and apoptosis in

(66)

(Continued)
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change with tumor development. The TME promotes tumor

progression in a manner conducive to tumor growth and survival.

A typical TME is suppressive, characterized by a high number of

immunosuppressive cells and an acidic pH environment (69, 70). In

the previous section, we described the mechanisms of adenosine
Frontiers in Immunology 06
receptors in tumor cells. This section will detail the targets and

modes of action of adenosine receptors in tumor tissues and organs.

The immune microenvironment composition of different tumors is

complex and diverse, and the effects of adenosine receptors on these

environments vary. Table 2 provides examples of this.
TABLE 2 Effect of adenosine receptors on components of the TME.

Cancer Type Adenosine
receptors

Microenvironme-
ntal components

Phenomenon Mechanisms of
the phenomenon

Reference

Pancreatic A2BAR Immune cell Showed lower abundance
of B cells, CD8 T cells, T
regulatory cells, NK cells
and M2 macrophages

(71)

Fibrosis and collagen Promotion of fibrosis
and collagen deposition

(71)

Lung cancer A2BAR Immune cell Blocked NK cytotoxic
activity and

cytokine production

A2BR encounters
adenosine on NK cells,
and the cyclic adenosine
monophosphate (cAMP)
pathway is triggered

(72–74)

Most of the cancers A2AAR Oxygen Hypoxia caused by
increased adenosine acts

by binding A2AAR

Hypoxia-HIF-1a and
A2A adenosine receptor-
cAMP axis are associated
with tumor protection

(75)

Colorectal cancer A3AR Cytokine Increased production of
VEGF and Ang-2

(76)

Cervical cancer A2BAR Cytokine Enhancement of IL-
10 production

(77)

Melanoma A2BAR Cytokine Inhibition of IL8 and
IFN-g production.

(78, 79)

(Continued)
TABLE 1 Continued

Adenosine receptors Condition Disease Mechanism Reference

BCSCs by inhibiting ERK1/2
and GLI-1 cascade responses

prostate carcinoma Reduced protein expression
levels of PKAc and elevated
levels of GSK-3 b protein lead
to b-catenin destabilization,
which inhibits cell cycle
protein D1 and c-
myc expression

(67)

Pancreatic cancer Tumor cell proliferation is
reduced, with decreased
accumulation of G1 phase cells
and inhibition of DNA and
RNA synthesis.
Reduced protein expression
levels of b-conjugated proteins,
patched1 (Ptch1), and glioma-
associated oncogene
homologous zinc finger protein
1 (Gli1) were found.
The protein expression levels
of cell cycle protein D1 and c-
Myc were reduced.

(64, 68)
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TABLE 2 Continued

Cancer Type Adenosine
receptors

Microenvironme-
ntal components

Phenomenon Mechanisms of
the phenomenon

Reference

Angiogenesis Enhanced VEGF-a
expression and
vessel density

Depletion of MDSCs
significantly reduced

A2B-induced
VEGF production

(78, 80)

Tumour-
associated fibroblast

Fibroblasts express
altered levels of CXCL12
and FGF2

Altered fibroblast
activation protein (FAP)

levels in tumors

(81)

A3AR Cytokine VEGF secretion when
treated with VP-16
and doxorubicin.

(78)

Immune cell A3AR agonist enhances
NK cell activity

(82)

Glioblastoma A2BAR Angiogenesis Increased angiogenesis
and vascular endothelial
growth factor expression

MRS1754 treatment (54)

Stem cell Enhanced migration and
invasion of GSCs

Down-regulation of
MMP9 activity and

expression of epithelial-
mesenchymal

transition markers

(54)

A3AR Angiogenesis Increased angiogenesis A3AR blockade reduces
GSC differentiation to
endothelial cell (EC)-
mediated angiogenesis

under hypoxia.

(83)

A2AAR Immune cell Improvement of T-cell
anti-tumour immunity

(84)

Fibrosarcoma A2AAR Immune cell Blocking A2AAR caused
CD8 T cells to secrete
higher levels of IFNg

A2AR deficiency
improves immunity of
endogenous CD8 T cells
against MCA205 tumors

(85)

A2AR adenosine
signaling inhibits NK

cell maturation

(86)

Breast cancer A2BAR Cytokine Reduced production of
IFNg and perforin

(87)

Tumour-
associated fibroblast

A2BAR affects the TGF-
b pathway in CAFs and
the phenotype of CAFs

Influencing aSMA in
CAFs by AC-PKA-TGFb

(88)

Immune cell Increase in tumour
infiltrating CXCR3(+) T
cells and decrease in

endothelial cell
precursors within

the tumour

(52)

A2AAR Immune cell A2AAR Changes on T
Cells and Natural Killer

(NK) Cells

A2AAR Blockade
Significantly Enhances
IFNg and Granzyme B
Expression via CD8+ T
Cells and Enhances PD1
Therapeutic Sensitivity

(7)

Dendritic cell treatment Use of A2AAR inhibitors
enhances therapeutic

potential of DC vaccines

(89)

(52)

(Continued)
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3 Mechanisms of adenosine receptors
affecting the TME components

3.1 Adenosine receptors and immune cells

It is widely believed that immunosuppression leads to resistance

to immunotherapy. CD8+ T cells and NK cells are of crucial in

killing tumour cells and are also the cells with reduced capacity in

the TME. In addition to the reduced lymphocyte activity caused by

cytokines secreted by tumors, animal experiments have shown that

inhibiting of adenosine receptors can enhance the antitumor

capabilities of CD8+ T cells and NK cells (84, 85). Erika et al.

demonstrated in vitro that ADORA2B is a key molecule involved in

the CD8+ T cell anti-pancreatic tumour response (71).

Simultaneous inhibition of ADORA2B and CD73 may enhance

CD8+ T cell-mediated antitumor response in patients with

pancreatic ductal adenocarcinoma (PDAC) (71). Similarly,

inhibition of A2BAR signaling can restore T cell function and

proliferation in the breast cancer microenvironment (87). A2AAR

agonists have been demonstrated to inhibit the activity of a

range of animal and human immune cells, both under healthy

conditions and in the presence of tumors (86, 90). The mechanistic

changes occurring within different immune cells when various

adenosine receptors are antagonized have not been extensively

studied. A more comprehensive understanding of these

mechanistic changes will aid in developing more effective target

designs and drug combinations. future research is expected to fill

this knowledge gap.
Frontiers in Immunology 08
3.2 Adenosine receptors and CAFs

CAFs play a critical role in tumour development and

progression. They provide nutrients such as glutamine, essential

for tumour cells when glutamine is depleted in the TME (91, 92).

Changes in adenosine receptors, especially A2BAR, are also

associated with CAFs. A2BAR is expressed in fibroblasts (93–95).

Studies have found that A2BAR inhibitor PSB1115 can reduce the

number of CAFs expressing fibroblast activation protein (FAP) and

fibroblast growth factor (FGF-2) in the TME of melanoma mice

(81). Additionally, the secretion of the cytokine CXCL12 is also

reduced (81). The results suggest that MMP9 expression and

contractile function in fibroblasts appear to be fully regulated by

A2BAR, with no involvement from A2AAR (96). Furthermore,

A2BAR can act as a mediator of adenosin- regulated of TGFb on

fibroblasts (96). Please refer to Figure 1 for specific details.
3.3 Adenosine receptors and tumour ECs

ECs, also known as vascular endothelial cells, typically refer to

the single layer of flat epithelial cells located on the inner surface of

the heart, blood vessels, and lymphatic vessels. This layer forms the

endothelium (97). The TME is often characterized by hypoxia (91).

Studies have shown that adenosine levels increase in the hypoxic

TME, and A3AR expression is enhanced on glioblastoma stem -like

cells (GSCs). A3AR receptors can promote the production of EC

markers, including CD144, CD31, and VEGF, thus promoting the
TABLE 2 Continued

Cancer Type Adenosine
receptors

Microenvironme-
ntal components

Phenomenon Mechanisms of
the phenomenon

Reference

Increase in tumour
infiltrating CXCR3(+) T
cells and decrease in

endothelial cell
precursors within

the tumour

Tumour-
associated fibroblast

A2AAR affects the TGF-
b pathway in CAFs and
the phenotype of CAFs

Influencing aSMA in
CAFs by AC-PKA-TGFb

(88)

Osteosarcoma A2BAR Cytokine Reduced production of
IFNg and perforin

(87)

prostate cancer A2AAR Immune cell Increase in tumour
infiltrating CXCR3(+) T
cells and decrease in

endothelial cell
precursors within

the tumour

(52)

A2BAR Immune cell Increase in tumour
infiltrating CXCR3(+) T
cells and decrease in

endothelial cell
precursors within

the tumour

(52)
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differentiation of GSCs into ECs under hypoxic conditions (83).

Another study proposed that the A2BAR promoter contains HIF-

1a response element that drive receptor expression in hypoxic cells,

including ECs and epithelial cells (52, 98). Furthermore, inhibition

of A2BAR on ECs can inhibit tumors under hypoxic TME
Frontiers in Immunology 09
conditions. A2BAR on ECs has been demonstrated to promote

angiogenesis (99). In a mouse melanoma model, the use of the A2B

receptor agonist Bay60-6583 increased the expression of VEGF-A

and vascular density, thereby promoting melanoma growth (80, 99).

For further details, please refer to Figure 2.
FIGURE 1

Mechanisms of adenosine receptors on fibroblasts in the tumour microenvironment. (A) Bay60-6583, an agonist of A2BAR, has been demonstrated
to promote the secretion of CXCL12 and FGF2. (B) NECA, an adenosine analogue, inhibits the elevation of MMP9 and aSMA induced by TGF-b in
A2BAR-dependent manner. (C) A2BAR promotes the expression of FAP to induce immune escape and vascular remodeling.
FIGURE 2

Mechanism of adenosine receptors on GSCs and ECs. (A) Increased A3AR content under hypoxic conditions leads to increased transcription of
CD31, CD144, and VEGF in GSCs, contributing to the conversion of GSCs to ECs. (B) HIFa binds to the promoter of A2BAR, thereby increasing
A2BAR content under hypoxic conditions. (C) The use of the A2BAR agonist Bay60-6583 results in the increase expression of A2BAR on ECs, which
in turn causes the secretion of VEGF and an increase in vascular density.
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3.4 Adenosine receptors and ECM in TME

ECM plays a critical role in tumour invasion and metastasis.

ECM consists of many key components, including collagen,

laminin, chondroitin sulfate proteoglycans and hyaluronic acid

(100–102). The adenosine-mediated increases in laminin invasion

and migration depends on both adenosine receptor-dependent and

independent pathways (103). Among adenosine receptors, those

regulated by extracellular-5’-nucleotidase (ecto-5’-NT)/CD73 are of

particular interest in glioma cell adhesion and tumour cell-ECM

interactions (104). Moreover, adenosine receptor A2BAR has been

identified as involved in ecto-5’-NT/CD73-mediated arterial

calcification (ACDC) (105). High levels of A2BAR in the tumour

stroma suggest it may play a significant role. Further research is

needed to elucidate the specific adenosine receptors involved in

ECM and expand these studies.
3.5 Adenosine receptors and mesenchymal
stem cells in the TME

Tumors recruit MSCs to the tumour area through the secretion of

cytokines, playing a complex role in regulating carcinogenesis and

tumourigenesis (106). Subsequently, MSCs can differentiate into more

matureMSCs within the tumour area, such as ECs (107). There is little

literature on adenosine receptors and MSCs. Studies have shown that

elevated adenosine concentrations within tumour tissues can affect the

paracrine factors released by MSCs (108). This is related to adenosine

receptors, but which specific adenosine receptors are involved remains

uncertain and requires further experimental validation.
4 Adenosine receptor antagonists and
combination therapies

4.1 Current status of adenosine receptor
antagonists development

Current research is developing both single and dual adenosine

receptor antagonists. Zhi Li et al. designed and synthesized several

novel A2A/A2B AR dual antagonists centered on triazole-

pyrimidine-methylbenzonitrile, with satisfactory test results (109,

110). Compared to clinical antagonist AZD4635, some antagonists

performed more prominently in vitro immunostimulatory

anticancer activity (111). Studies have shown that adenosine

receptor antagonists can regulate the immunosuppressive

microenvironment, thereby modulating tumour immunity.

However, delivering drugs to immune cells remains a challenge.

In 2018, it was demonstrated that utilizing CAR-engineered T-cells

as active companions, cross-linked multilayered liposome vesicles

loaded with A2AAR-specific small-molecule antagonist SCH-58

may be effective. A2AAR-specific small molecule antagonist SCH-

58261(SCH) was loaded into 261(SCH) (cMLV) and delivered to

tumour-infiltrating T cells deep within the immunosuppressive

TME. Adenosine receptor antagonists can be delivered to
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lymphocytes to exert their effects (112). More precise methods

and improvements to existing methods are expected in the future.
4.2 Current status of combining adenosine
receptor antagonists with
other immunotherapies

treating tumors with immunotherapy involves various

techniques, including ICIs, is a complex process, encompassing a

range of. These include, adoptive cell transfer therapy (ACT),

tumour-specific vaccines, small molecule immunotherapeutics

and other drugs targeting the TME (23–27). This section

discusses the latest progress in combining adenosine receptor

inhibitors with immunotherapy. Table 3 summarizes the

combinations of drugs and therapies.

The use of ICIs has profoundly impacted the field of clinical

adjuvant therapy (113, 114). However, some tumors remain

unresponsive to ICIs, prompting scientists to explore combining

ICIs with other therapeutic drugs to enhance ICIs efficacy. In recent

years, adenosine receptor antagonists have been used in tumour

immunotherapy as anticancer small molecule drugs. Takao et al.

confirmed that elevated A2AAR expression in metastatic renal cell

carcinoma is associated with reduced response and survival rates in

patients treated with anti-VEGF drugs and anti-PD-1/anti-CTLA4

antibodies (115). The NCT02403193 trial indicated that PBF-509

(A2AAR antagonist) combined with PDR001 (PD-1 Ab) treatment

for NSCLC is safer and more tolerable. Furthermore, a current

clinical trial is evaluating the efficacy of combining PD-1 inhibitor

zimberelimab with adenosine receptor antagonist etrumadenant.

This trial is scheduled to end in August 2024. Another ongoing

clinical trial investigates the combination of A2AAR antagonist

ciforadenant with CTLA4 blocker ipilimumab and PD-1 inhibitor

nivolumab in treating advanced renal cell carcinoma.

In addition to antibodies targeting immune checkpoints,

numerous small molecule drugs with immunostimulatory effects are

available. These drugs include small molecule inhibitors targeting cell

growth and tumour metabolism, VEGF and VEGFR inhibitors,

cytokine inhibitors, and more (88, 116, 117). Adenosine receptor

antagonists are a special class of small molecule immunotherapeutics.

Oral small molecule drugs overcome the limitations of antibody

drugs, such as high adverse reactions, long half-life, and

inconvenient infusion administration, opening a new field for

drug discovery (117). Scientists are studying the effects of

combining adenosine receptor antagonists with small molecule

immunotherapeutics (used alone or in combination with small

molecule immunotherapeutics and ICIs). VEGF is a protein that

can stimulates angiogenesis, also inhibits antigen presentation,

suppresses T-cell killing, and recruits immunosuppressive cells

(117). VEGF antibodies, including ranibizumab and bevacizumab,

have been shown to synergistically treat tumors with ICIs in vitro and

in vivo (117, 118). Currently, a trial named NCT04660812 investigates

the effects of combining bevacizumab with etrumadenant and

zimberelimab. Adenosine is produced by the catalysis of adenosine

monophosphate (AMP) by ectoenzyme CD73, making CD73 another

important target for therapeutic intervention. Current drugs targeting
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CD73 include AB680 and OP5244/ORIC-533, as well as antibody

drugs (119–121). Exosomes containing CD73 have been

demonstrated to inhibit lymphocyte function and to enhance the

efficacy of anti-PD-1 drugs (122). AstraZeneca and colleagues have

launched clinical trials to study the efficacy of combining oleclumab

(CD73 inhibitor) with AZD4635. Similarly, SRF617, a drug targeting

surface molecule CD39, has also entered clinical trials. In contrast, the

clinical efficacy of combining adenosine receptor antagonists with
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small molecule immunotherapeutics (cytokines) for tumour

treatment has not yet been confirmed.

Tumor-specific vaccines utilize antigenic peptides extracted

from tumors to activate immune cells (NK cells and T cells)

within the TME (121). For example, heat shock protein GP96

(gp96-Ig) can act as a molecular chaperone, binding intracellular

cancer embryonic antigens and progenitor antigens and activating

T cells to kill tumour cells. Fariba et al. demonstrated that using
TABLE 3 Clinical trial listing of adenosine receptor antagonists in combination with tumour immunotherapy.

Drugs Combinations Clinical trial information Enrollment NCT number Completion
date

Phase Indications

Etrumadenant
(AB928)

Combination of
Etrumadenant, the
anti-PD-1 antibody
zimberelimab
(AB122), AB680 and
Sacituzumab
govitecan (SG)

1/2 Metastatic castrate
resistant prostate
cancer (mCRPC)

173 NCT04381832 2024-08

CPI-444
(A2AR antagonist)

Combination therapy
with ciforadenant,
ipilimumab
and nivolumab

1/2 Advanced renal
cell carcinoma

24 NCT05501054 2026-11-01

PBF-509
(A2AR antagonist)

PBF-509 (A2AAR
antagonist)
administered as a
single agent or in
combination with
PDR001 (PD-
1 antibody)

1 Advanced Non-small
Cell Lung
Cancer (NSCLC)

92 NCT02403193 2021-11-24

gp96-Ig vaccine gp96-Ig vaccine in
combination with
theophylline (A1AR
and
A2AAR antagonist)

1 NSCLC 36 NCT01799161 2018-04

AB928 Cohort A)
etrumadenant +
zimberelimab
+mFOLFOX-6
+/-bevacizumab vs
mFOLFOX-6
+/-bevacizumab
Cohort B)
etrumadenant +
zimberelimab
+mFOLFOX-6
+/-bevacizumab vs
regorafenib
Cohort C)
chemotherapy-free
combinations of
etrumadenant +
zimberelimab +
other agents

1/2 Metastatic
colorectal cancer

227 NCT04660812 2024-07

AZD4635 Module 1: AZD4635
plus durvalumab;
Module 2: AZD4635
plus oleclumab.

2 Prostate cancer 59 NCT04089553 2023-04-11

AB928 SRF617 in
Combination With
AB928 and AB122

2 Prostate cancer 15 NCT05177770 2023-04-05
Data obtained from ClinicalTrials.gov.
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nanoparticles loaded with siRNA to inhibit A2AAR and PD-1

immune checkpoints can enhance the efficacy of dendritic cell

vaccines (123). Clinical trials conducted by Eckhard et al.

demonstrated the efficacy of blocking adenosine receptors with

theophylline combined with gp96-Ig tumour vaccine. Further

research is deeded to determine the efficacy of combining

adenosine receptor antagonists with tumour vaccines.

In addition to immunocellular therapy and checkpoint inhibitors,

targeting other components of the tumour stroma, such as CAFs, can

also help prevent tumors. In an in vitro study of the multitarget

combination of the anti-CAFs drug tranilast and anti-tumour drug

doxorubicin micelles (DTX-Ms), tranilast alone was less effective in

inhibiting tumour growth in vivo. Additionally, it could only be used

as an adjuvant drug with antitumor drugs (124). Given that adenosine

receptor antagonists act on CAFs, it is hypothesized that combining

tranilast and adenosine receptor antagonists may have a synergistic

effect on CAFs. FAP protein is a core protein of CAFs, and most drugs

targeting FAP in clinical trials are PET drugs. Targeting FAP protein

radioligands is the latest development in nuclear medicine (125).

OMTX705 is the first ADC targeting FAP. This drug is currently being

developed for various gastrointestinal tumors (126). Given that

A2BAR can regulate FAP protein in CAFs (81), adenosine receptor

antagonists have the potential to promote radiodiagnosis or synergize

with OMTX705. now in vivo or in vitro studies have been conducted

in this field so far. OMTX705 is currently undergoing Phase I clinical

trials (NCT05547321). Moreover, herbal medicines such as

epigallocatechin gallate and prunella vulgaris polysaccharide that

regulate CAFs may also be associated with various adenosine

receptor antagonists in different tumors (127, 128). Further in vivo

and in vitro studies are needed to confirm the link between adenosine

receptor antagonists and drugs targeting CAFs.

Drugs can also target cytokines in the TME. These cytokines

include IL-10, IL-8, and IFN-g, which are upregulated in the TME

(129–131). Adenosine receptor antagonists can act on the TME

through these cytokines (77–79). The combination of adenosine

receptor antagonists and cytokine drugs is a promising research

field. CXCL8 (3–72)K11R/G31P is an antagonist of CXCL8 and has

an inhibitory effect on tumour growth in various tumour types

(132–134). So far, no in vivo or clinical studies have been conducted

on the combination of CXCL8 (3–72)K11R/G31P with adenosine

receptors or immunotherapy. An alternative approach is a clinical

trial (NCT03400332) evaluating the safety and efficacy of an IL-8

monoclonal antibody (BMS-986253) in combination with the drug

Nivolumab, an anti-PD-1 monoclonal antibody. BMS-986253 has

been demonstrated to reduce tumour PMN-MDSC and stroma in

triple-negative breast cancer. The efficacy of BMS-986253 combined

with adenosine receptors or in triple therapy with immune

checkpoint therapy remains to be evaluated (135). IFN-g has

complex multifaceted effects in the TME, with its impact on

tumour growth depending on the balance between antitumor and

protumor effects. Adenosine receptors regulate the secretion of

IFN-g, while IFN-g acts by binding to adenosine receptors on

immune cells such as macrophages (136). Furthermore, no

clinical trials have confirmed the synergistic effect of IFN-g with

adenosine receptor antagonists. Additionally, the combined

treatment of IFN-g and adenosine receptors must consider the
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extensive experimental validation. The combination of cytokine

therapy with adenosine receptor antagonists for tumour treatment

is another potential research field in the future.
5 Conclusions and prospects

The role of adenosine has been more widely studied both in vivo

and in vitro. Research on adenosine receptors and tumour immunity

has primarily focused on the effects of adenosine receptors on

immune cells within tumour tissues. However, there is limited

research on adenosine receptors and stromal cells or extracellular

components in the TME. This review outlines the different roles of

adenosine receptors in various TME. The review aims to outline the

mechanisms of action between adenosine receptors and stromal cells

or extracellular components, laying the groundwork for subsequent

development of drugs combining adenosine receptor antagonists

with the immune microenvironment. Additionally, this review

provides an overview of the current status of combining adenosine

receptor antagonist with immunotherapy, focusing on their

combination with ICIs, tumour molecular vaccines, and small-

molecule immunopharmaceuticals. Furthermore, we present our

anticipated vision for the future of combining adenosine receptor

antagonists with tumour immune microenvironment therapies

(CAFs therapy and cytokine therapy), providing evidence for

developing new immunotherapy combinations.
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