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regulation of inflammatory
responses triggered by TLRs
in the gastrointestinal tract
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Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka-
sayama, Osaka, Japan
Loss-of-function mutations in nucleotide-binding oligomerization domain 2

(NOD2) constitute the primary risk factors for Crohn’s disease. NOD2 is an

intracellular sensor for muramyl dipeptide (MDP), a small molecule derived

from the peptidoglycan layer of bacterial cell wall. Although NOD2 is involved

in host immune responses, much attention has been paid to the involvement of

NOD2 in the maintenance of intestinal homeostasis. Despite the fact that the

proinflammatory cytokine and chemokine responses induced by NOD2

activation alone are weaker than those induced by toll-like receptors (TLRs),

NOD2 plays a crucial role in host defense against invading pathogens and in the

regulation of immune responses. Recent studies have highlighted the

importance of negative regulatory functions of NOD2 in TLRs-mediated

proinflammatory cytokine responses. MDP-mediated activation of NOD2

induces interferon regulatory factor 4 (IRF4) expression, thereby suppressing

nuclear factor-kB-dependent colitogenic cytokine responses through the

inhibition of Lys(K)63-linked polyubiquitination on receptor-interacting serine/

threonine protein kinase 2. MDP-mediated activation of NOD2 also

downregulates TLR9-induced type I IFN responses by inhibiting the K63-linked

polyubiquitination of TNF receptor-associated factor 3 via deubiquitinating

enzyme A (DUBA) expression. Thus, NOD2 exerts dual negative regulation of

TLRs-mediated proinflammatory cytokine and type I IFN responses by inducing

the expression of IRF4 and DUBA, respectively. In this review, we summarize the

molecular mechanisms whereby NOD2 activation suppresses TLRs-mediated

proinflammatory and type I IFN responses. In addition, we discuss the clinical

relevance of the NOD2-mediated negative regulation of TLRs in inflammatory

bowel disease.
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1 Introduction

Trillions of bacteria colonize the human gastrointestinal (GI)

tract (1). Gut macrophages and dendritic cells (DCs) express

functional toll-like receptors (TLRs) and nucleotide-binding

oligomerization domain (NOD)-like receptors (NLRs) to detect

bacterial cell wall components and nucleic acids to defend the body

against invading bacteria (2, 3). However, in the steady state,

intestinal commensal bacteria coevolve with the host immune

system to create a symbiotic relationship that prevents harmful

proinflammatory cytokine responses by macrophages and DCs (1).

Thus, gut macrophages and DCs display tolerogenic responses

against intestinal commensal bacteria and preserve their ability to

mount robust proinflammatory cytokine responses upon

encountering pathogens. The downregulation of proinflammatory

cytokine responses against commensal intestinal bacteria

contributes to the maintenance of intestinal homeostasis.

Inflammatory bowel disease (IBD), chronic relapsing

inflammatory disorders of the GI tract, are categorized into

Crohn’s disease (CD) and ulcerative colitis (UC) (4, 5). Excessive

production of proinflammatory cytokines, such as IL-6, IL-12, IL-

23, and TNF-a, due to defective immune tolerance to intestinal

commensal bacteria leads to the development of CD and UC (4, 5).

Several lines of evidence support the concept that proinflammatory

cytokine responses against intestinal bacteria play a crucial role in

the immunopathogenesis of IBD. First, the production of

proinflammatory cytokines, such as TNF-a, IL-6, IL-12, and IL-

23, is enhanced in gut lamina propria macrophages and DCs upon

stimulation with TLR ligands in patients with IBD (4, 5). Second,

biologics targeting TNF-a, IL-12, and IL-23 have shown remarkable

success in the induction and maintenance of remission in both CD

and UC (4, 5). Finally, application of genome-wide association

studies to CD has led to the identification two major susceptibility

genes associated with CD—nucleotide-binding oligomerization

domain 2 (NOD2) and autophagy-related 16 like 1 (ATG16L1)

(6–8). Notably, both NOD2 and ATG16L1 are involved in the

intracellular processing of bacterial components, and DCs bearing

CD-associated NOD2 or ATG16L1 mutations produce large

amounts of proinflammatory cytokines upon exposure to TLR
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ligands (6–8). In this review, we summarize the recent insights

into the mechanism whereby CD-associated NOD2 mutations lead

to chronic intestinal inflammation through excessive production of

proinflammatory cytokines upon exposure to TLR ligands.
2 Structure and expression of NOD2

NOD2 comprises two N-terminal tandem caspase recruitment

domains (CARD)—a central NOD domain and a C-terminal leucine-

rich repeat (LRR) domain (Figure 1) (3, 8, 9). The LRR domain is a

ligand-binding domain, and NOD2 recognizes muramyl dipeptide

(MDP), a small molecule derived from peptidoglycan (PGN) present

in the cell wall of gram-positive and -negative bacteria. The CARD

domains are necessary for the interaction between NOD2 and the

downstream signaling molecules (3, 8, 9). Receptor-interacting serine/

threonine protein kinase 2 (RIPK2) is a critical downstream signaling

molecule for NOD2, which interacts with RIPK2 through CARD-

CARD interactions (3, 8, 9). Mutations in NOD2 constitute the major

risk factors for CD development, and three major mutations inNOD2

(Arg702Trp, Gly908Arg, and Leu1007fsinsC) increase the risk by

multiple-fold (6, 10). Importantly, macrophages or DCs bearing these

CD-associated NOD2 mutations display defective production of

cytokines and chemokines upon stimulation with the NOD2 ligand,

MDP (3, 8, 9). Therefore, CD-associated NOD2 mutations are

considered as loss-of-function mutations. Given that NOD2 detects

MDP derived from intestinal bacteria, the association between NOD2

mutations and CD suggests that MDP-mediated activation of NOD2

contributes to the maintenance of intestinal homeostasis through the

downregulation of proinflammatory cytokine responses against the

gut bacteria. Conversely, excessive proinflammatory cytokine

responses against gut bacteria caused by NOD2 mutations

predispose individuals to CD.

NOD2 is a cytosolic protein that is stably expressed primarily in

macrophages and DCs (3, 8). In the epithelial cell populations,

NOD2 protein expression is limited to Paneth cells (3, 8). However,

intestinal epithelial cells express NOD2mRNA at a steady state, and

its expression is enhanced by proinflammatory cytokines such as

TNF-a and IFN-g (11).
FIGURE 1

Structure of nucleotide-binding oligomerization domain 2. Nucleotide-binding oligomerization domain 2 (NOD2) is a cytosolic protein that detects
muramyl dipeptides (MDP) derived from gram-positive and -negative bacteria. NOD2 comprises two N-terminal caspase recruitment domains
(CARDs)—a nucleotide-binding oligomerization domain (NOD) and a leucine-rich repeat (LRR) domain. CARD is a binding domain for receptor-
interacting serine/threonine protein kinase 2 (RIPK2). LRR detects MDP.
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3 Signaling pathways of NOD2

Classical signaling pathways of NOD2 depend on RIPK2

activation (Figure 2) (3, 8). Detection of MDP by NOD2 results in

the activation of nuclear factor-kB (NF-kB) and mitogen-activated

protein kinases (MAPKs), which ultimately leads to the transcription

of proinflammatory cytokine and chemokine genes. Notably, the

synthesis of proinflammatorymediators induced by NOD2 activation

is much lower than that induced by TLRs activation (3, 8).

Nonetheless, NOD2 plays a crucial role in host defense against

invading pathogens and in the regulation of immune responses.

Recognition of MDP by intracellular NOD2 immediately activates

RIPK2 through a CARD-CARD interaction (3, 8, 12). The

macrophages isolated from RIPK2-deficient mice exhibit defective

NF-kB-dependent cytokine responses upon stimulation with MDP;

this indicates that RIPK2 functions as a critical signaling molecule in

the NOD2-mediated signaling pathways (13, 14). In the

aforementioned previous studies, the production of NF-kB-
dependent cytokines mediated by TLRs was comparable between

the RIPK2-deficient and RIPK2-intact mice, suggesting that RIPK2

activation is not involved in the TLRs-mediated cytokine responses

(13, 14). However, whether TLRs utilize RIPK2 as a downstream

signaling molecule remains controversial. RIPK2 activation is

involved in the TLRs-mediated proinflammatory cytokine
Frontiers in Immunology 03
responses (15–18). Indeed, interactions between RIPK2 and TLR2

or TLR4 have been reported; macrophages derived from RIPK2-

deficient mice produce reduced amounts of IL-6 and TNF-a upon

stimulation with TLR2 and TLR4 ligands when compared with those

from RIPK2-intact mice (15–18). Thus, RIPK2 functions as a

downstream signaling molecule not only for NOD2 but also for

TLRs. The balance between the NOD2-RIPK2 and TLRs-RIPK2 axes

is critical for the maintenance of intestinal homeostasis (See

subsequent sections).

RIPK2 activation is tightly regulated by polyubiquitination regardless

of whether RIPK2 interacts with NOD2 or TLRs (12, 19–23).

Polyubiquitination is a posttranslational modification involved in

immune responses, especially the NF-kB signaling pathway (24, 25).

Lys63 (K63)- and K48-linked polyubiquitination of RIPK2 induces the

activation and degradation of RIPK2, respectively, in signaling pathways.

Thus, RIPK2-mediated NF-kB activation depends upon K63-linked

polyubiquitination conjugated by various E3 ligases, including cellular

inhibitor of apoptosis protein 1 (cIAP1), cIAP2, TNF receptor-associated

factor 6 (TRAF6), X-linked inhibitor of apoptosis protein (XIAP), and

pellino3 (Figure 2) (12, 16, 19–23, 26). In addition to the RIPK2

activation by K63-linked polyubiquitination, recent studies have

revealed the involvement of methionine1 (Met1)-linked linear

polyubiquitination by the linear ubiquitin chain assembly complex

(LUBAC) in the interaction between RIPK2 and XIAP (19, 22). These
FIGURE 2

Signaling pathways of nucleotide-binding oligomerization domain 2 and toll-like receptors. Nucleotide-binding oligomerization domain 2 (NOD2) is
a cytosolic protein that detects muramyl dipeptides (MDP) derived from gram-positive and -negative bacteria. MDP is a degradation product of the
bacterial cell wall component peptidoglycan (PGN). Recognition of MDP by the leucine-rich repeat (LRR) domain leads to the activation of receptor-
interacting serine/threonine protein kinase 2 (RIPK2) via a caspase recruitment domain (CARD)-CARD interaction. RIPK2 is subjected to Lys63 (K63)-
linked polyubiquitination by E3 ligases, including cellular inhibitor of apoptosis protein 1 (cIAP1), cIAP2, TNF receptor-associated factor 6 (TRAF6),
and X-linked inhibitor of apoptosis protein (XIAP). K63-linked polyubiquitination on RIPK2 results in the physical interaction between RIPK2 and TGF-
b-activated kinase 1 (TAK1). Activation of TAK1 leads to the nuclear translocation of nuclear factor-kB (NF-kB) subunits to induce the transcription of
proinflammatory cytokine genes. In addition to the nuclear translocation of NF-kB subunits, TAK1 mediates the activation of mitogen-activated
protein kinases (MAPKs). NOD2 activation results in the recruitment of autophagy-related 16 like 1 (ATG16L1) to induce autophagy. Cell surface toll-
like receptor 2 (TLR2) and TLR4 recognize PGN and lipopolysaccharide (LPS), respectively. RIPK2 is a downstream signaling molecule shared by
NOD2, TLR2, and TLR4. Activation of RIPK2 by TLR2 and TLR4 causes nuclear translocation of NF-kB subunits to induce the transcription of
proinflammatory cytokine genes. In addition to NF-kB activation, NOD2 mediates the production of type I IFNs upon sensing of single-stranded RNA
(ssRNA) and interaction with mitochondrial antiviral signaling protein (MAVS).
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previous studies established that K63-linked and Met1-linked

polyubiquitination on RIPK2 is an indispensable step for the RIPK2-

mediated activation of NF-kB followed by proinflammatory cytokine

responses (Figure 2). TGF-b-activated kinase 1 (TAK1) recruits RIPK2

and subsequently induces the nuclear translocation of NF-kB subunits

(3, 8). NF-kB activation by NOD2 is critical for the maintenance of

intestinal homeostasis. MDP-mediated activation of NOD2 induces the

activation of interferon regulatory factor 4 (IRF4) and ATG16L1, both of

which inhibit the polyubiquitination of RIPK2, thereby reducing the NF-

kB-dependent proinflammatory cytokine responses against TLR ligands

derived from intestinal bacteria (27–29). In other words, the defective

activation of IRF4 andATG16L1 due to CD-associatedNOD2mutations

leads to excessive NF-kB-dependent cytokine responses upon exposure

to TLR ligands.

IRF3 and IRF7 are vital transcription factors for the production of

type I IFNs (30). Activation of endosomal TLRs (TLR3, TLR7, and

TLR9) and TLR4 leads to the robust production of type I IFNs via the

nuclear translocation of IRF3 and IRF7 (2). In addition to MDP,

NOD2 recognizes viral single-stranded RNA (ssRNA) to induce type

I IFN production (Figure 2) (31). Binding of ssRNA to NOD2 enables

its interaction with mitochondrial antiviral signaling protein

(MAVS), followed by the nuclear translocation of IRF3 (31).

Importantly, the ssRNA-mediated activation of NOD2 induces type

I IFN responses in an RIPK2-independent manner.

Intracellular proteins derived from organelles and microorganisms

are subjected to degradation (32). This process is known as autophagy,

an essential homeostatic process whereby cells digest their own

components to adapt to nutrient deprivation (32). Autophagy also

contributes to the digestion of microorganisms and processing of

antigens for antigen presentation by macrophages and DCs (32).

Loss-of-function mutations in ATG16L1 are associated with CD

development (6–8). Although ATG16L1 was initially discovered as a

molecule involved in autophagy, it has been shown to function as a

signaling molecule for NOD2 and TLRs (7). Importantly, the MDP-

mediated activation of NOD2 induces a physical interaction between

NOD2 and ATG16L1 to promote autophagy and antigen presentation

(Figure 2) (33, 34). Cooney et al. reported that DCs bearing CD-

associated NOD2 or ATG16L1 mutations exhibit defective autophagic

responses upon exposure to intestinal bacteria (34). Although NOD2-

mediated autophagic responses depend on the recruitment of

ATG16L1, it remains controversial whether such autophagic

responses involve RIPK2 activation (33, 34). However, ATG16L1

downregulates the RIPK2-mediated NF-kB activation by inhibiting

the K63-linked polyubiquitination of RIPK2 (35, 36), suggesting the

existence of an interaction between ATG16L1 and RIPK2.

Collectively, the NOD2 signaling pathways participate in

diverse immunological responses through the activation of NF-

kB, IRF3/7, and autophagy. Recognition of MDP derived from

intestinal bacteria contributes to the maintenance of intestinal

homeostasis through the induction of negative regulators of TLRs

and the promotion of autophagic responses, whereas failure to

operate such protective mechanisms due to defective NOD2

signaling leads to the development of CD. This has been

described in the following section.
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3 NOD2 mutations and CD

To date, three mechanisms have been proposed to explain the

development of CD as a result of loss-of-function mutations inNOD2

(8, 37). The first mechanism focuses on the function of Paneth cells,

located in the crypts of Lieberkühn of the small intestine. Upon

recognizing MDP derived from intestinal bacteria, Paneth cells

expressing NOD2 constitutively produce a-defensin, a prototypical

antimicrobial peptide (8, 37). Accordingly, loss of NOD2 function

results in decreased production of a-defensin by Paneth cells, which

in turn leads to defective host defense against bacteria. Indeed,

NOD2-deficient mice exhibit defective host defense against certain

bacteria, and patients with CD bearing NOD2 mutations display

decreased production of a-defensin when compared to those with

intact NOD2 gene (38, 39). However, another study has shown that

reduced expression of a-defensin is independent of the NOD2

mutation status (40). The second mechanism focuses on autophagy

induced by the MDP-mediated activation of NOD2. The recognition

of MDP derived from intestinal bacteria by NOD2 results in the

induction of autophagy-mediated bactericidal effects in an ATG16L1-

dependent manner, as mentioned above (33, 34). Thus, the loss of

NOD2 function leads to defective autophagic responses owing to the

defective interaction between NOD2 and ATG16L1. These defective

autophagic responses in the presence of loss of function NOD2

mutations lead to excessive proinflammatory responses in response

to the increased burden of gut bacteria (33, 34). The third mechanism

focuses on the NOD2-mediated negative regulation of inflammatory

responses triggered by TLRs (8, 37). TheMDP-mediated activation of

NOD2 negatively regulates TLRs-mediated proinflammatory

cytokine responses, and the presence of CD-associated NOD2

mutations increases the risk of intestinal inflammation due to

excessive production of proinflammatory cytokines mediated by

TLRs. The third mechanism has been discussed in the

subsequent sections.
3.1 NOD2-mediated negative regulation on
the production of NF-kB-dependent
proinflammatory cytokines triggered
by TLRs

The activation of NOD2 mediates tolerogenic responses against

the intestinal microbiota in macrophages and DCs, thereby inhibiting

the development of chronic intestinal inflammation (8). Previous

studies have elucidated some of the molecular mechanisms

underlying the downregulation of proinflammatory responses

against intestinal bacteria by focusing on the crosstalk between

NOD2 and TLRs. As mentioned above, MDP is a degradation

product of PGN in the bacterial cell wall (3, 8). PGN activates

TLR2 independently of NOD2, suggesting a crosstalk between

NOD2 and TLR2 (Figure 3A). Previous studies, including ours,

initially found that the simultaneous stimulation of the TLR2 and

NOD2 pathways reduces the production of proinflammatory T

helper type 1 (Th1) cytokines in human and murine macrophages
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1433620
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Masaki et al. 10.3389/fimmu.2024.1433620
and DCs when compared with that of those stimulated by the TLR2

pathway alone (28, 41–45). This NOD2-mediated downregulation of

proinflammatory cytokine responses against TLR2 is accompanied by

reduced nuclear translocation of NF-kB subunits, including p65, p50,

and c-Rel (41, 43, 44). NOD2-mediated negative regulation of TLR2-

mediated Th1 responses, which was initially reported in in vitro

studies, was also observed in an in vivo colitis model.We established a

bacterial antigen-specific colitis model induced by adoptive transfer

of ovalbumin (OVA)-specific CD4+ T cells, followed by the

intrarectal administration of Escherichia coli expressing OVA (42).

This bacterial OVA-specific colitis model is driven by OVA-specific

Th1 responses. NOD2-deficient mice are more susceptible to

bacterial OVA-specific colitis, when compared with NOD2-intact

mice, and are characterized by the excessive accumulation of OVA-

specific Th1 cells in the colonic lamina propria (42). Notably, severe

bacterial OVA-specific colitis in NOD2-deficiency relies on the

activation of TLR2 because mice double deficient in NOD2 and

TLR2 display markedly less colonic inflammation and accumulation

of OVA-specific Th1 cells in the colonic lamina propria (42).

Intrarectal administration of 50% ethanol and PGN causes TLR2-

dependent experimental colitis, characterized by a Th1 response (46).

Consistent with the data obtained from NOD2-deficient

mice, NOD2-transgenic mice under the control of a major

histocompatibility complex class II promoter, that is, mice

overexpressing NOD2 in macrophages and DCs, were resistant to
Frontiers in Immunology 05
TLR2-dependent experimental colitis induced through the intrarectal

administration of PGN when compared with wild-type mice (43).

Resistance to TLR2-dependent colitis in NOD2-transgenic mice is

associated with a diminished Th1 response (43). The data obtained

from bacterial OVA-specific or TLR2-dependent colitis model

utilizing NOD2-deficient and NOD2-transgenic mice provide

evidence that the crosstalk between NOD2 and TLR2 contributes

to the maintenance of intestinal homeostasis and that NOD2

functions as a negative regulator of TLR2-mediated colitogenic Th1

responses. However, TLRs that induce proinflammatory cytokine

responses against intestinal bacteria are not limited to TLR2 (47).

Therefore, the NOD2-mediated negative regulation of TLR2 alone

cannot explain the immunopathogenesis of CD in the presence of

NOD2 mutations.

It is well-established that prior exposure of macrophages and DCs

to lipopolysaccharide (LPS) causes these cells to become refractory to

subsequent challenge with a broad range of TLR ligands, not limited to

TLR4 ligands (48). This phenomenon, known as endotoxin tolerance,

is associated with immunosuppression in sepsis (48). As in the case of

endotoxin tolerance, prior exposure of DCs to MDP reduces the

production of proinflammatory cytokines upon subsequent challenge

with multiple TLR ligands. Pre-stimulation of murine and human DCs

with MDP markedly reduces the production of NF-kB-dependent
proinflammatory cytokines, including IL-6, IL-12, and TNF-a, upon
subsequent challenge with TLR2, TLR3, TLR4, TLR5, and TLR9
FIGURE 3

Molecular mechanisms underlying the negative regulation on toll-like receptors-mediated proinflammatory cytokine responses by the activation of
nucleotide-binding oligomerization domain 2. (A) Molecular mechanisms underlying the negative regulation of toll-like receptors (TLRs)-mediated
inflammatory responses in the presence of intact nucleotide-binding oligomerization domain 2 (NOD2). Muramyl dipeptide (MDP) activation of
NOD2 enhances the expression of interferon regulatory factor 4 (IRF4). IRF4 acts synergistically with autophagy-related 16 like 1 (ATG16L1) to inhibit
the Lys63 (K63)-linked polyubiquitination of receptor-interacting serine/threonine protein kinase 2 (RIPK2). As a result, TLR2 or TLR4-mediated
activation of nuclear factor-kB (NF-kB) followed by the production of proinflammatory cytokines (TNF-a, IL-6, IL-12, and IL-23) is markedly
suppressed. Downregulation of NF-kB-dependent cytokine responses (TNF-a, IL-6, IL-12, IL-23) contributes to the maintenance of tolerogenic
responses toward intestinal bacteria, thereby inhibiting the development of Crohn’s disease (CD). (B) Molecular mechanisms underlying CD
development in the presence of NOD2 mutations. CD-associated NOD2 mutations are loss-of-function mutations that fail to recognize MDP. In the
presence of CD-associated NOD2 mutations, expression of IRF4 or activation of ATG16L1 is not induced. NF-kB-dependent proinflammatory
cytokine responses (TNF-a, IL-6, IL-12, and IL-23) induced by TLR2 or TLR4 are markedly enhanced due to the lack of IRF4-mediated negative
regulation in the presence of CD-associated NOD2 mutations.
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ligands (Figure 3A) (28). The phenomenon of MDP tolerance has been

confirmed in several studies; accordingly, a lack of MDP tolerance has

been suggested to impact CD immunopathogenesis in the presence of

loss-of-function NOD2 mutations (8, 49, 50). This notion is strongly

supported by studies on dextran sodium sulfate (DSS)-or

trinitrobenzene sulfonic acid (TNBS)-induced colitis. Prior systemic

injection of MDP protects NOD2-intact mice from TNBS-induced

colitis, whose effects are accompanied by diminished NF-kB activation

and proinflammatory cytokine responses against multiple TLR ligands

in the colonic lamina propria immune cells (28). Similarly, systemic

injection of MDP during the initial phases of DSS consumption also

protects NOD2-intact, but not NOD2-deficient, mice from DSS-

induced colitis, whose effects are also associated with markedly

reduced NF-kB activation and proinflammatory cytokine responses

against multiple TLR ligands in the colonic lamina propria immune

cells (26, 28). Taken together, these in vitro and in vivo studies support

the idea that MDP tolerance mediated by intact NOD2 signaling

contributes to the generation of tolerogenic immune environments

against the gut bacteria.

Regarding the molecular mechanisms accounting for MDP

tolerance, previous studies, including ours, have identified IRF4 as

a critical effector molecule involved in the NOD2-mediated

suppression of TLR signaling (Figure 3A) (27–29, 35, 51, 52).

IRF4 functions as a prototypical negative regulator of NF-kB
activation induced by TLRs signaling, as revealed by the fact that

the macrophages and DCs isolated from IRF4-deficient mice

display enhanced proinflammatory cytokine production upon

stimulation with TLR4 or TLR9 ligands (53, 54). Intriguingly,

MDP activation of NOD2 markedly enhances IRF4 expression in

DCs, thereby suppressing the NF-kB-mediated proinflammatory

cytokine responses (27–29, 35, 51, 52). Mechanistically, IRF4

induced by NOD2 interacts with RIPK2, TRAF6, and myeloid

differentiation factor 88 (MyD88) and subsequently inhibits

nuclear translocation of NF-kB subunits (27, 28). Given that

TRAF6 is one of the E3 ligases of RIPK2, it is likely that IRF4

downregulates the polyubiquitination of RIPK2. Indeed, IRF4

activation induced by NOD2 inhibits K63-linked, but not K48-

linked, polyubiquitination of RIPK2 by binding to the kinase

domain (KD) and intermediate domain of RIPK2 (27). In

addition, ATG16L1 acts cooperatively with IRF4 to inhibit the

K63-linked polyubiquitination of RIPK2 by binding to its KD (35).

Collectively, these studies suggest that the activation of IRF4 and

ATG16L1 as a result of MDP recognition by NOD2 inhibits the

TLRs-mediated NF-kB activation and subsequent proinflammatory

cytokine responses through the inhibition of K63-linked

polyubiquitination on RIPK2 (Figure 3A). On the contrary, DCs

bearing CD-associated NOD2 mutations exhibit enhanced TLRs-

mediated NF-kB activation and subsequent colitogenic cytokine

responses due to the lack of activation of IRF4 and ATG16L1, both

of which inhibit the K63-linked polyubiquitination on RIPK2

(Figure 3B). IRF4 also downregulates K63-linked, but not K48-

linked polyubiquitination of TRAF6 whereas regulation of MyD88

polyubiquitination by NOD2 has not been clarified (27).

The NOD2-IRF4 axis plays a protective role in the development

of experimental colitis. MDP-mediated activation of NOD2 inhibits
Frontiers in Immunology 06
the DSS- or TNBS-induced colitis via suppression of NF-kB-
dependent proinflammatory cytokine responses. MDP-induced

protection requires intact IRF4 signaling, as IRF4-deficient mice

are not protected from DSS-induced colitis despite the MDP-

mediated activation of NOD2 (28). In addition, the development

of TNBS-induced colitis is markedly suppressed in mice

overexpressing IRF4, whose effects are associated with the

downregulation of NF-kB-dependent proinflammatory cytokine

responses (27, 29). Negative regulation of TLRs-mediated

proinflammatory cytokine responses by the NOD2-IRF4 axis also

suppresses colorectal tumorigenesis, obesity-induced insulin

resistance, and Blau syndrome, suggesting that this pathway is

crucial for the maintenance of immune homeostasis not only in

the gut but also in adipose tissues and joints (51, 52, 55). Taken

together, accumulating evidence supports the notion that MDP-

mediated activation of NOD2 arbitrates tolerogenic responses

against the TLR ligands derived from intestinal bacteria through

the inhibition of K63-linked polyubiquitination of RIPK2 via the

induction of IRF4 expression.

Finally, it is worth noting that NOD2 activation can enhance IL-12

and Th1 responses mediated by LPS activation of TLR4 (56, 57). Such

discrepancy can be explained by the doses of LPS tested; MDP

activation of NOD2 negatively and positively regulates TLR4-

mediated Th1 responses when LPS doses are high and low,

respectively (56, 57). Synergic activation of NOD2 and TLR4 seen in

low magnitude of TLR4 signaling may contribute to the host defense

against invading gut bacteria. On the contrary, negative regulatory

function of NOD2 on TLR4 seen in high magnitude of TLR4 signaling

may be indispensable for the maintenance of intestinal homeostasis.
3.2 NOD2-mediated negative regulation on
the production of IRF3 or IRF7-dependent
type I IFNs triggered by TLRs

Double-stranded DNA derived from intestinal bacteria activates

TLR9, followed by the robust production of type I IFNs by

macrophages and DCs (58). However, whether type I IFN

responses induced by the activation of TLR9 play protective or

pathogenic roles in IBD remains controversial. TLR9 activation

prior to the initiation of DSS drinking prevents the development of

DSS-induced colitis in a type I IFN-dependent manner (59, 60).

Indeed, mice deficient in the type I IFN receptor are more susceptible

to DSS-induced colitis than type I IFN receptor-intact mice (61).

Mechanistically, type I IFNs have been shown to promote mucosal

tissue repair by inducing amphiregulin (61). In contrast to these

reports showing the protective roles of the TLR9-type I IFN axis in

experimental colitis, Obermeier et al. provided evidence that TLR9

activation during the induction phase of DSS drinking exacerbates

DSS-induced colitis through the induction of proinflammatory

cytokine responses (62–64). Consistent with this pathogenic role of

type I IFNs induced by TLR9, the active colonic mucosa of patients

with UC and CD displays enhanced type I IFN signaling pathways

(65, 66). The effects of the crosstalk between TLR9 and NOD2 on the

maintenance of intestinal homeostasis are poorly understood;
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however, MDP-mediated activation of NOD2 acts synergistically

with TLR9 ligands to promote IL-12 production by human DCs (57).

To clarify the role of the crosstalk between NOD2 and TLR9, we

initially examined the production of IFN-a by human peripheral blood

monocytes and plasmacytoid dendritic cells (pDCs) stimulated with

NOD2 and TLR9 ligands (67, 68). pDCs constitute a specialized DC

population with the ability to produce large amounts of IFN-a (69).

Production of IFN-a by monocytes and pDCs was much lower in the

cells co-stimulated with MDP and CpG (a TLR9 ligand, double-

stranded DNA) than in those stimulated with CpG alone, suggesting

that NOD2 functions as a negative regulator of TLR9-induced type I

IFN responses (Figure 4A) (67, 68). MDP-mediated activation of

NOD2 suppresses the nuclear translocation of IRF3 and IRF7,

resulting in reduced transcription of type I IFN genes. K63-linked

polyubiquitination of TRAF3 is an indispensable step for the

production of type I IFNs induced by TLR9 (70). Deubiquitinating

enzyme A (DUBA) selectively cleaves K63-linked polyubiquitin chains

on TRAF3 (71). Regarding the molecular mechanisms accounting for

NOD2-mediated negative regulation on type I IFN responses induced

by TLR9, we found that co-activation with NOD2 and TLR9 markedly

upregulates DUBA expression and consequently reduces

IFN-a production through the suppression of K63-linked

polyubiquitination on TRAF3 (67, 68). As mentioned above, CpG-

mediated activation of TLR9 during the initial phase of DSS-drinking

exacerbates DSS-induced colitis (62–64). This exacerbation of DSS-

induced colitis by the CpG-mediated activation of TLR9 was
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dependent on type I IFN signaling pathways, as mice deficient in the

type I IFN receptor did not display aggravation of DSS colitis (67, 68).

We then turned our attention to the role of the crosstalk

between NOD2 and TLR9 in experimental colitis. Notably, the

severity of DSS-induced colitis was much lower in mice treated with

co-intraperitoneal injection of MDP and CpG than in those treated

with CpG alone. The suppression of TLR9-induced exacerbation of

DSS-induced colitis was associated with the downregulation of type

I IFN and Th1 responses in the colon. Thus, MDP-mediated

activation of NOD2 prevents the exacerbation of DSS-induced

colitis induced by TLR9 activation (67, 68). Importantly,

attenuation of DSS-induced colitis by NOD2 activation was

accompanied by decreased and increased expression of type I

IFNs and DUBA, respectively, in the colon (67, 68). Indeed, the

blockade of DUBA-mediated deubiquitination of TRAF3 by

DUBA-specific siRNA cancelled the negative regulatory effects of

NOD2 on DSS-induced colitis in mice treated with CpG, and mice

treated with DUBA-siRNA displayed severe DSS-induced colitis

even after repeated MDP injections (67, 68). Collectively, these

studies suggest that the recognition of MDP derived from intestinal

bacteria by NOD2 results in the inhibition of colitogenic type I IFN

and Th1 responses induced by the commensal DNA activation of

TLR9 (72). Intact NOD2 plays a negative regulatory function in

TLR9-induced type I IFN responses by upregulating DUBA

expression (67, 68). In the presence of CD-associated NOD2

mutations, impaired recognition of MDP results in inefficient
FIGURE 4

Molecular mechanisms underlying the negative regulation on toll-like receptor 9-mediated type I IFN responses by the activation of nucleotide-
binding oligomerization domain 2. (A) Molecular mechanisms underlying the negative regulation on toll-like receptor 9 (TLR9)-mediated type I IFN
responses in the presence of intact nucleotide-binding oligomerization domain 2 (NOD2). Muramyl dipeptide (MDP) activation of NOD2 enhances
the expression of deubiquitinating enzyme A (DUBA). DUBA induced by the activation of NOD2 inhibits the K63-linked polyubiquitination of TNF
receptor-associated factor 3 (TRAF3) to downregulate the nuclear translocation of interferon regulatory factor 3 (IRF3) and IRF7, both of which are
required for optimal type I IFN responses mediated by TLR9. Downregulation of IRF3/7-dependent type I IFN responses contributes to the
maintenance of tolerogenic responses toward intestinal bacteria, thereby inhibiting the development of Crohn’s disease (CD). (B) Molecular
mechanisms underlying CD development in the presence of NOD2 mutations. CD-associated NOD2 mutations are loss-of-function mutations that
fail to recognize MDP. DUBA expression is not induced in the presence of CD-associated NOD2 mutations. CD-associated NOD2 mutations
augment type I IFN responses induced by TLR9 owing to a lack of DUBA-mediated negative regulation. Excessive production of type I IFNs leads to
the development of CD.
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induction of DUBA, which leads to excessive and colitogenic type I

IFN and Th1 responses upon TLR9 activation (Figure 4B).

One question that arises from these studies is how co-

stimulation with NOD2 and TLR9 ligands induces DUBA

expression. In this regard, IL-1b signaling might be involved in

the regulation of DUBA expression. Defective IL-1 receptor

signaling increases DUBA expression, leading to the suppression

of type I IFN production and K63-linked polyubiquitination of

TRAF3 (73). Therefore, it may be possible that the downregulation

of proinflammatory IL-1b production by NOD2 results in the

upregulation of DUBA expression and contributes to the

maintenance of intestinal homeostasis. Finally, it is worth

mentioning that DUBA plays pathogenic rather than protective

roles in the development of TNBS-induced colitis (74). Knockdown

of DUBA expression by its antisense oligonucleotides reduces TNF-

a production by colonic lamina propria mononuclear cells isolated

from mice challenged with intrarectal TNBS administration (74).

The pathogenic or protective roles of DUBA in experimental colitis

need to be examined in other types of colitis models, including IL-

10-deficient mice and T cell transfer models (75, 76).
3.3 Therapeutic targets of CD and UC in
the NOD2 signaling pathways

The anti-inflammatory function of the MDP-NOD2 axis was

tested in experimental colitis and human IBD samples for clinical
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application (Figure 5). Given the potent anti-inflammatory activity

of MDP, it is likely that the MDP-rich gut mucosa is resistant to

IBD. Gao et al. revealed that Firmicutes-derived DL-endopeptidase

can generate large amounts of MDP in the gut and that the activity

of this enzyme decreases in patients with CD (77). In addition, fecal

microbiota of CD patients with low DL-endopeptidase predisposes

mice to DSS-induced colitis through the upregulation of IL-6, TNF-

a, and RIPK2 (77). In subsequent studies, the same research group

identified an uncharacterized secreted protein (called LPH) from

Lactobacillus (78). LPH is a bifunctional PGN hydrolase composed

of DL-endopeptidase and N-acetyl-b-D-muramidase, with the

ability to degrade PGN into MDP. LPH administration protects

mice from TNBS-induced colitis in an NOD2-dependent manner

(78). Similarly, another report showed that oral administration of

selected lactobacilli with the ability to produce large amounts of

MDP inhibited the development of TNBS-induced colitis through

the downregulation of IL-1b and upregulation of IL-10 (79). Given

these results, probiotic approaches utilizing MDP-NOD2 signaling

are currently under development.

The RIPK2 signaling complex is composed of E3 ligases (cIAP1,

cIAP2, TRAF6, XIAP, and pellino3), RIPK2, and TAK1 (12). We

examined the mRNA expression of components of the RIPK2

signaling complex (80) and found that the mRNA expression of

RIPK2, cIAP1, cIAP2, TRAF6, and TAK1 was significantly higher in

the colonic mucosa of patients with UC and CD than in that of the

healthy controls (80). In addition, the mRNA expression of RIPK2,

cIAP1, cIAP2, TRAF6, and TAK1 showed a trend similar to that of
FIGURE 5

Therapeutic targets of Crohn’s disease and ulcerative colitis in the NOD2 signaling pathways. Possible therapeutic approaches for the clinical
application of NOD2 signaling pathways in Crohn’s disease (CD) and ulcerative colitis (UC). Muramyl dipeptide (MDP)-mediated activation of NOD2
enhances the expression of interferon regulatory factor 4 (IRF4) and deubiquitinating enzyme A (DUBA) to suppress the nuclear translocation of
nuclear factor-kB (NF-kB) subunits and IRF3/7, respectively. IRF4 acts synergistically with autophagy-related 16 like 1 (ATG16L1) to inhibit
polyubiquitination of receptor-interacting serine/threonine protein kinase 2 (RIPK2), thereby suppressing the production of NF-kB-dependent
colitogenic cytokines, such as IL-6, IL-12, IL-23, and TNF-a. DUBA inhibits polyubiquitination on TNF receptor-associated factor 3 (TRAF3) to
downregulate type I IFN responses. Inhibition of RIPK2 activation is a promising therapeutic approach for CD and UC. Enhancement of IRF4,
ATG16L1, and DUBA expression may also be useful in the treatment of CD and UC. Intestinal bacteria, which can produce large amounts of MDP,
may be promising probiotics.
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IL-6, TNF-a, and IL-12p40 (80). At the protein level, the intensity

of molecular interactions between RIPK2 and cIAP2 or TAK1

corresponds to the expression of IL-6 or TNF-a in the active

colonic mucosa of patients with UC or CD (80). Consistent with

these data obtained in human IBD samples, knockdown of RIPK2

by its specific siRNA protects mice from DSS-induced colitis, whose

effects are accompanied by reduced production of IL-6 and TNF-a
against TLR ligands in the colonic lamina propria immune cells

(80). Finally, the administration of RIPK2 siRNA protected NOD1-

or NOD2-deficient mice from DSS-induced colitis, suggesting that

RIPK2, activated by TLR2 and/or TLR4, plays a colitogenic role.

These studies, employing experimental colitis and human IBD

samples, have facilitated the development of RIPK2 inhibitors for

IBD treatment. Indeed, various RIPK2-specific inhibitors have been

successfully developed (81–83). These inhibitors downregulate the

production of proinflammatory cytokines in human IBD biopsy

samples and display potent therapeutic effects against DSS-induced

colitis (81–83). The verification of RIPK2 as a promising target for

IBD requires further studies utilizing genetically engineered RIPK2-

deficient mice, as knockdown of gene expression by siRNAs could

cause non-specific off target effects.

As mentioned above, NOD2 activation inhibits the TLRs-

mediated colitogenic responses by inducing IRF4 (27–29, 35, 51,

52). Another approach for the treatment of IBD is the activation of

IRF4. Theoretically, DC-specific activation of IRF4 is assumed to

inhibit the development of IBD by downregulating proinflammatory

cytokine responses against TLR ligands derived from intestinal

bacteria (27–29, 35, 51, 52). However, caution should be exercised

regarding the clinical application of IRF4 activation in IBD, as IRF4

expressed in CD4+ T cells mediates the development of Th17-

dependent experimental colitis (84, 85). DC-specific activation of

IRF4 is required for its clinical application in IBD.

The active colonic mucosa of patients with CD and UC is

characterized by the upregulation of IFN-stimulated gene (ISG),

regardless of the NOD2 mutation status (65–68). The MDP-NOD2

axis downregulates TLR9-induced ISG by upregulating DUBA

expression (67, 68). DUBA mRNA expression was reported to be

significantly higher in patients with remitted CD than in those with

active CD (67, 68). Therefore, small molecules that induce DUBA

activation may be useful in the treatment of CD. However, to the best

of our knowledge, small molecules that can regulate DUBA function

have not yet been identified.
4 Conclusions

In this review, we focused on the negative regulatory function of

NOD2 in TLRs-mediated colitogenic and proinflammatory

cytokine responses. It should be noted, however, that NOD2 has

diverse immunological functions in the maintenance of intestinal

homeostasis. For example, within the intestinal crypt, Lgr5+ stem

cells constitutively express NOD2, and MDP recognition by stem

cell NOD2 initiates the program of gut epithelial regeneration (86).
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In addition, macrophages bearing CD-associated NOD2 mutations

create the aberrant macrophage-fibroblast interaction characterized

by the gp130-mediated excessive production of IL-6, IL-11, and

oncostatin M (87). Identification and characterization of novel

NOD2 functions provide new insights into the molecular

mechanisms of CD owing to the presence of NOD2 mutations

and may lead to the development of novel treatments for IBD

patients with intact or mutated NOD2 genes.
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