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Salvianolic acid A (SalA), a bioactive compound extracted from Salvia miltiorrhiza,

has garnered considerable interest for its potential in ameliorating the post-

stroke neuroinflammation. This review delineates the possible molecular

underpinnings of anti-inflammatory and neuroprotective roles of SalA, offering

a comprehensive analysis of its therapeutic efficacy in preclinical studies of

ischemic stroke. We explore the intricate interplay between post-stroke

neuroinflammation and the modulatory effects of SalA on pro-inflammatory

cytokines, inflammatory signaling pathways, the peripheral immune cell

infiltration through blood-brain barrier disruption, and endothelial cell function.

The pharmacokinetic profiles of SalA in the context of stroke, characterized by

enhanced cerebral penetration post-ischemia, makes it particularly suitable

as a therapeutic agent. Preliminary clinical findings have demonstrated that

salvianolic acids (SA) has a positive impact on cerebral perfusion and

neurological deficits in stroke patients, warranting further investigation. This

review emphasizes SalA as a potential anti-inflammatory agent for the

advancement of innovative therapeutic approaches in the treatment of

ischemic stroke.
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1 Introduction

Ischemic stroke is the primary cause of mortality and long-term

disability of adult, posing a major global public health challenge (1).

Ischemic stroke can result in devastating consequences, including

paralysis, speech impairment, cognitive decline, and emotional

disturbances, greatly impacting the quality of life for individuals

and their families. The prognosis of stroke is influenced by various

factors, including the severity of the initial ischemic insult, the extent

of the resulting brain injury, and the body’s inflammatory response

(2–4). Neuroinflammation plays a pivotal role in the pathobiology

of ischemic stroke, exacerbating the damage to brain tissue and

impeding the recovery process (5, 6). Despite advancements in acute

stroke treatment due to mechanical thrombectomy and thrombolytic

drugs, the available pharmacological interventions have shown

limited efficacy in mitigating the long-term consequences of

ischemic brain injury (7, 8). Neuroprotective agents have been a

central area of investigation for nearly half a century (9), with the goal

of safeguarding the brain from damage and fostering recovery.

Despite numerous efforts, the success rate of these drugs in clinical

trials has been limited. Of the more than 114 global clinical trials

conducted, only a select few have managed to substantiate the

efficacy of neuroprotective drugs (10), highlighting the profound

scientific and clinical challenges in the field. The complexity of the

underlying pathological processes, including the intricate interplay

between ischemia and inflammation, has posed a significant

challenge in the development of effective stroke therapies. In the

face of these limitations, the exploration of natural products as

potential therapeutic candidates has gained attention in the field of

stroke research (11–13). Certain natural compounds, such as those

derived from medicinal plants, have demonstrated promising

neuroprotective and anti-inflammatory properties, offering potential

avenues for improving stroke outcomes (14–17). These natural

products may provide a complementary or alternative approach to

conventional pharmacological interventions, potentially targeting

multiple pathways involved in post-stroke neuroinflammation and

facilitating recovery.

Salvia miltiorrhiza, also known as red sage or Danshen in

Chinese, is recognized in traditional Chinese medicinal herb for

its properties that enhance blood circulation, alleviate blood stasis,

and improve microcirculation (18, 19). Among its bioactive

constituents with a well-defined chemical structure, Salvianolic

acid A (SalA), (2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-[2-[(E)-2-

(3,4-dihydroxyphenyl)ethenyl]-3,4-dihydroxyphenyl]prop-2-

enoyl]oxypropanoic acid, has been identified as a particularly

effective agent that possesses anti-inflammatory and antioxidant

properties, as well as the ability to modulate the integrity and

functionality of the blood-brain barrier (BBB) (20, 21). In line

with these properties, SalA holds significant promise for the

treatment of ischemic stroke, with its therapeutic mechanisms

and functional targets potentially converging with the cascade of

post-stroke neuroinflammation (22, 23). This review focuses on the

pathophysiology of post-stroke neuroinflammation and summarizes

the multifaceted pharmacological of SalA, particularly focusing on its

immunomodulatory role in the treatment of ischemic stroke.
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1.1 The inflammatory cascade in
ischemic stroke

Ischemic stroke leads to interruption or reduction of cerebral

blood flow, leading to a depletion of energy in the ischemic

central region and subsequent irreversible neuronal necrosis (24).

Disruptions in glucose and energy metabolism within the

ischemic penumbra result in diminished Na+/K+-ATPase activity,

subsequently perturbing ion homeostasis (25). Cell membrane

depolarization causes Ca2+ influx and thus increases intracellular

calcium concentrations, which induces an excessive release of the

neurotransmitter glutamate (26, 27). The binding of glutamate to

the receptors increases entry of Ca2+, thus causing mitochondrial

dysfunction and inducing necrosis, which promotes cytotoxic

oedema and inflammation in the surrounding tissue (28).

Following a cerebral infarction, activated microglia release

vasoactive mediators and pro-inflammatory cytokines such as

interleukins (ILs) and tumor necrosis factor-a (TNF-a),
which promote significant leukocyte infiltration and initiate

neuroinflammation. These inflammatory cells also stimulate the

generation of reactive oxygen species (ROS), leading to oxidative

stress and further exacerbating the inflammatory reaction (29).

Additionally, oxidative stress triggers the production and

activation of matrix metalloproteinases (MMPs), leading to the

degradation of tight junction proteins (TJPs) in endothelial cells

and compromising the integrity of the BBB (30). This disruption

allows toxic substances from the blood and peripheral immune cells

to enter the affected brain regions, exacerbating brain edema

and neuroinflammation.

Collectively, ischemic stroke triggers a cascade of pathological

mechanisms that lead to neuronal damage, with inflammation

playing a central role. SalA emerges as a potential modulator of

the post-stroke neuroinflammation. This intervention has the

potential to induce positive outcomes through the reduction of

ROS and pro-inflammatory cytokines, ultimately leading to

potential improvements in BBB integrity and mitigation of post-

stroke neuroinflammation.
1.2 Pharmacokinetic characteristics of SalA
in ischemic stroke

In order to preliminarily analyze the druggability of SalA,

toxicological assessment and pharmacokinetic studies were

conducted in non-diseased animals following oral or intravenous

administration (31–33). The acute toxicity studies reported an

LD50 of 1161.2 mg/kg in mice and identified a lethal dose range

for Beagle dogs between 455–682 mg/kg through single intravenous

SalA injections (31). In the subchronic toxicity study, intravenous

SalA injections at 20, 80, and 300 mg/kg over four weeks in dogs

revealed the no observed adverse effect level of 20 mg/kg, with

higher doses associated with transient hepatic and renal effects and

reversible thymus weight reduction (31). Notably, SAA showed no

genotoxic effects in both the Ames test and the in vivo bone marrow

micronucleus assay. These findings emphasize the importance of
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liver and kidney function monitoring during SAA administration,

while its non-genotoxic nature supports its potential use in clinical

settings and as a functional food ingredient.

Oral dosing in rats has illustrated a linear correlation between

doses and the maximum plasma concentration (Cmax), which were

measured as 31.53 µg/L for a 5 mg/kg dose, 57.39 µg/L for a 10 mg/

kg dose, and 111.91 µg/L for a 20 mg/kg dose. However, despite its

linear characteristics, the oral bioavailability of SalA was

determined to be suboptimal, with a range of 0.39% to 0.52%.

The limited permeability of SalA across the heterogeneous human

epithelial colorectal adenocarcinoma cell (Caco-2) monolayer may

account for this observed constraint in bioavailability, as indicated

by an apparent permeability coefficient of less than 10-6 cm/s (32).

In a distinct investigation utilizing beagle dogs, SalA exhibited

prompt absorption subsequent to oral delivery, achieving

maximum plasma levels within a two-hour timeframe. The

absolute bioavailability was determined with a range of 1.47% to

1.84%, indicating quantifiable absorption via the oral route albeit at

a diminished efficacy (33) Intravenous administration in rats

delineated a mean residence time (MRT) of 2.91 hours and a

half-life (t1/2) of 1.96 hours at a 5 mg/kg dose, indicating a

relatively rapid systemic clearance (32).

Contrastingly, within the context of ischemic stroke, the

pharmacokinetic profile of SalA is markedly altered due to the

pathophysiological changes in the brain. A comparative

pharmacokinetic analysis of SalA revealed that systemic

circulation exposure to SalA was similar between sham controls

and rats undergoing ischemia/reperfusion (I/R). However, there

was a significant increase in brain exposure to SalA in the I/R group

compared to the sham controls, with a fold change of 9.17,

particularly evident at the early time point of 0.5 hours post-

treatment (22). The increased permeability of the blood-brain

barrier following I/R injury indicates that SalA may penetrate the

compromised barrier and potentially provide neuroprotective

benefits directly to brain tissue (22). Furthermore, metabolomic

analysis demonstrated that SalA administration effectively

mitigated metabolic disruptions associated with I/R injury,

identifying 47 relevant metabolites in contrast to minimal

metabolic changes observed in serum samples (22). Taken

together, these findings suggest that SalA may serve as a

promising therapeutic agent for treating ischemic stroke, given its

pharmacokinetic characteristics that align well with the therapeutic

requirements of the pathological condition of ischemic stroke.
2 Anti-inflammatory features of SalA
in ischemic stroke

2.1 Inhibition of pro-
inflammatory cytokines

The depletion of cellular energy and subsequent necrosis of cells

within the ischemic penumbra initiates a cascade of signaling events

that stimulate inflammatory pathways, resulting in the secretion of

inflammatory cytokines including IL-1b, IL-6, and TNF-a. These
Frontiers in Immunology 03
cytokines are pivotal in the development of ischemic stroke and

contribute to the advancement of neuronal injury. Specifically, IL-

1b and IL-6 play a crucial role in amplifying the inflammatory

response, potentially leading to the activation of other immune cells

such as microglia and astrocytes, which are intrinsic immune cells

within the central nervous system (CNS). TNF-a has the ability to

intensify inflammation by increasing the expression of adhesion

molecules on endothelial cells, thereby promoting the migration of

leukocytes into the ischemic area. SalA has shown significant

efficacy in decreasing levels of IL-1b, IL-6, and TNF-a by

inhibiting toll-like receptor (TLR) 2 and 4 signaling in microglia

in both in vivo and in vitro models of ischemic stroke (34).

Importantly, SalA downregulated TLR2/4 expression at both the

mRNA and protein levels in the affected ipsilateral hemispheres,

while no significant changes were observed in the non-ischemic

contralateral hemispheres. Additionally, deficiency of TLR2/4

significantly decrease the anti-inflammatory efficacy of SalA,

which revealed the TLR2/4-dependent inflammatory inhibition of

SalA in microglia. The anti-inflammatory efficacy of SalA by

inhibiting the TLR2/4 was also confirmed in hepatic ischemia-

reperfusion (35) and heart failure (36). These findings suggest that

TLR2/4 may represent prime targets for the anti-inflammatory

therapeutics of SalA (left parts of Figure 1).

SalA has also been recognized to modulate key signaling pathways

involved in the response to stroke-induced inflammation and

apoptosis. SalA has been demonstrated to regulate the GSK3b/Nrf2/
HO-1 pathway, which plays a crucial role in cellular defense

mechanisms against oxidative stress. The protective function of heme

oxygenase-1 (HO-1) is supported by its ability to inhibit the NF-kB
signaling pathway, resulting in decreased TNF-a expression and

subsequently mitigating inflammatory and apoptotic pathways (37).

Furthermore, SalA has been demonstrated to have a direct action on

the regulation of the NF-kB (38), a transcription factor crucial in

immune response regulation and responsible for promoting the

production of pro-inflammatory cytokines. Additionally, research has

demonstrated that SalA exerts an influence on the PKA/CREB/c-Fos

pathway (39), a signaling cascade that is integral in regulating various

cellular processes, including cell viability and immune response.

Through its multifaceted interactions, SalA potentially attenuates

pro-inflammatory pathway and production of pro-inflammatory

cytokines within the infarcted region, suggesting an anti‐

inflammatory and neuroprotective properties against ischemic injury

and therapeutic potential in the context of stroke.
2.2 Regulation of immune cell infiltration

The BBB serves as a crucial interface connecting the CNS with

the peripheral circulation, consisting of endothelial cells, tight

junction proteins (TJPs), and regulated by a complex interplay of

astrocytes, pericytes, and other CNS cells (40). Under physiological

conditions, the BBB enforces a stringent control over the

paracellular and transcellular transport pathways, as well as a

minimal level of transcytosis, thereby preventing the infiltration

of potentially neurotoxic substances from the bloodstream into the
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CNS and maintaining its homeostasis (41). Serious BBB leakage

induced by ischemic stroke causes peripheral immune cell

infiltration, which exacerbates neuroinflammation and induces

brain dysfunction and even death. Consequently, BBB protection

is a standing topic in anti-inflammatory therapy of ischemic stroke.

Previous research indicated that SalA may protect against

peripheral immune cell infiltration after ischemic stroke by

inhibition of the CD11b/CD18 complex, intercellular adhesion

molecule-1 (ICAM-1), soluble epoxide hydrolase (sEH), and

granulocyte adherence (42–47). The modulation of these targets

by SalA is instrumental in attenuating adhesion of peripheral

immune cells to endothelial cells, a critical step in immune cells

migration and subsequent inflammatory cascade. By inhibiting cell

adhesion, SalA diminishes the inflammatory response associated

with ischemic stroke. Moreover, SalA’s suppression of sEH

enhances the protective effects of lipid mediators, which are vital

for endothelial integrity and contribute to the mitigation of vascular

injury and inflammation.

Matrix metalloproteinases (MMPs), such as MMP-2 andMMP-

9, are implicated in the breakdown of TJPs like ZO-1, claudin-5, and

occludin, which are critical for BBB integrity (48). The degradation

of these TJPs by MMPs can lead to disruptions in BBB function

(49). It was observed that I/R led to a significant decrease in the

levels of TJPs, while treatment with SalA effectively prevented this
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decrease by suppressing the I/R-induced increase in MMP-9 (50).

This protective mechanism of SalA is further supported by the

significant reduction in Evans Blue extravasation, indicating a

restoration of BBB permeability. The contributions of SalA on the

BBB are further corroborated by its ability to reduce matrix

metalloproteinase-9 (MMP-9) levels and increase tissue inhibitor

of metalloproteinases-1 (TIMP-1) levels, both of which are essential

for maintaining the structural and functional integrity of the BBB

(50). Furthermore, the protective role of SalA toward the

myocardial ischemia has also been attributed to its suppression of

MMP-9 activity (51). Together, SalA decreases the migration of

peripheral immune cells following ischemic stroke by reducing the

expression of vascular adhesion molecules and inhibiting the

breakdown of TJPs, resulting in vascular protection and

ultimately reducing post-stroke neuroinflammation (right parts of

Figure 1).
2.3 Limitations of current research on SalA

While the collective research efforts have shed light on the

multifaceted anti-inflammatory actions of SalA in targeting various

inflammatory pathways and mediators in ischemic stroke, there is a

notable gap in our understanding of its precise molecular targets.
FIGURE 1

Schematic illustration of SalA’s anti-inflammatory effects during ischemic stroke. Following a cerebral infarction, activated microglia release
vasoactive mediators and pro-inflammatory cytokines, thereby promoting significant leukocyte infiltration and initiate neuroinflammation. SalA, with
its anti-inflammatory effects, specifically targets TLR2/4-mediated inflammatory pathways, the release of pro-inflammatory cytokines, MMP-9-
mediated BBB leakage, and peripheral immune cell infiltrations. The synergistic effects of targeting multiple factors contributed to the improvement
of post-stroke neuroinflammation recovery.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1433590
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2024.1433590
Despite the promising findings that SalA modulates the activity of

inflammatory signaling pathways and reduces the expression of

inflammatory mediators, potentially through a TLR2/4 dependent

mechanism (34), the precise molecular targets of SalA remain

elusive. The anti-inflammatory effects attributed to SalA, although

significant, are based on observations of downstream effects rather

than direct interactions. It is postulated that SalA’s actions may be

mediated through its binding to other proteins, thereby influencing

downstream signaling pathways or secondary effects. However, the

lack of direct evidence identifying the specific molecular targets of

SalA limits our comprehensive understanding of its mechanism

of action.

To elucidate the direct molecular targets of SalA, advanced

techniques such as Activity-based Probes (ABPs) (52), which can

provide insights into the enzymatic activity and binding preferences

of the compound, are necessary. Furthermore, the application of

Drug Affinity Responsive Target Stability (DARTS) analysis (53)

could offer a means to assess the stability of the target protein in the

presence of SalA, thereby indicating the compound’s binding

affinity and specificity.

Additionally, the Stability of Proteins from Rates of Oxidation

(SPROX) analysis (53) could reveal the impact of SalA on the

oxidative stability of potential target proteins, which is particularly

relevant given the oxidative stress associated with ischemic stroke.

Cellular Thermal Shift Assay (CETSA) (54) and Thermal Proteome

Profiling (TPP) (55) are other valuable methodologies that could be

employed to assess the thermal stability of proteins upon SalA

binding, offering further evidence of direct interactions.

The absence of such biophysical and biochemical analyses in the

current research corpus means that while we can infer the anti-

inflammatory and neuroprotective properties of SalA, we cannot

conclusively demonstrate its direct molecular targets. This gap in

knowledge is a significant limitation, as it impedes the full

realization of SalA’s therapeutic potential and the development of

more targeted and effective treatments for ischemic stroke.

3 Clinical efficacy and characteristics
of salvianolic acid (SA) in acute
stroke treatment

3.1 Clinical studies of SA in acute
stroke treatment

Although there have been limited clinical studies specifically on

SalA for ischemic stroke treatment, numerous studies have

examined the therapeutic properties of salvianolic acids (SA)

extract, a group of hydrophilic phenolic compounds sourced from

Salvia miltiorrhiza, which contain defined SalA (56, 57). A recent

clinical study was designed to evaluate the impact of salvianolic acid

(SA) on improving blood flow to the brain in patients with ischemic

stroke (57). The inclusion criteria mandated that patients be

admitted within 72 hours of the onset of acute ischemic stroke

symptoms, diagnosed with ischemic stroke confirmed by DWI, and
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have a Glasgow Coma Scale score above 5. Conversely, patients with

a history of brain hemorrhage, very low consciousness levels, or

allergies to contrast agents used in MRI were excluded to avoid

complications. This study included a total of 159 patients, 85 in the

SA group and 74 in the control group, with a mean age of

approximately 60 years and an approximately equal gender

distribution. The study was a randomized controlled trial, where

patients were allocated to either the SA group or the control group.

Notably, the study does not specify whether it was double-blinded,

which is a methodological detail that could affect the results’

interpretation. The SA group received a daily dose of 130 mg SA

for 14 days, administered intravenously dissolved in 250 ml of

normal saline, in addition to standard therapy including aspirin and

atorvastin. The control group received standard therapy and an

equivalent volume of normal saline intravenously. The results

indicated that patients treated with SA showed significant

improvements in NIHSS and mRS scores at the 90-day follow-up,

suggesting a potential neuroprotective effect of SA. Notably, the

relative cerebral blood volume in patients with hypoperfusion

improved markedly following SA treatment, as evidenced by

perfusion-weighted magnetic resonance imaging (PWI) images.

This suggests that SA may enhance perfusion in hypoperfused

brain tissues, thereby improving neurological outcomes in acute

stroke patients.
3.2 Expanding the clinical understanding of
SalA: recommendations for future research
and methodological considerations

In contrast to the well-defined pharmacological agents commonly

used inWestern medicine, the active constituents of natural medicines,

such as SA and the individual components like SalA, are often not

clearly identified. The underlying mechanisms by which these natural

compounds induce neuroprotection remain largely elusive. the

mixtures of multiple ingredients often overshadow lesser-known

drug interactions, and pharmacokinetic interactions have been

identified within the constituents of the Salvia miltiorrhiza extract

(58, 59). A previous study demonstrated that Sal A increased the area

under measured plasma concentration-time curve of denshensu ((R)-

3-(3,4-Dihydroxyphenyl)-2-hydroxypropanoic acid) and salvianolic

acid B and substantially decreased their clearances, possibly via the

plasma protein binding replacement (59). In light of the identified

pharmacokinetic interactions within the constituents of the Salvia

miltiorrhiza extract, it is crucial for future studies to delve into the

mechanisms of these interactions. Understanding the interplay

between SA and other medications will be paramount in ensuring

patient safety and optimizing the efficacy of SA treatment protocols.

Moreover, in recognition of the complexity of SA which comprises a

suite of compounds including SalA, future clinical investigations

should specifically focus on the use of pure SalA in monotherapy

settings. This targeted approach is designed to yield a more precise

elucidation of SalA's intrinsic therapeutic effects, unencumbered by the

potential interactions or influences of other SA components. This
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approach will provide a comprehensive understanding of SalA's

therapeutic potential as an adjunct therapy, enhancing our

knowledge of its role in the overall treatment strategy for ischemic

stroke without compromising the standard of care.

Furthermore, it is noteworthy that the existing randomized

controlled trials involving SA have predominantly enrolled Chinese

patients (56). This demographic limitation raises questions regarding

the generalizability of our findings to other ethnicities and populations.

To address this, it is essential that forthcoming research endeavors to

include diverse patient cohorts from various geographical regions. Such

inclusivity will not only validate the universal applicability of SA (or

SalA) but also uncover any potential variations in therapeutic responses

across different populations.

In summary, while SA has demonstrated promise in the

treatment of ischemic stroke, a more expansive and rigorous

clinical research agenda is warranted. This includes broadening

the scope to encompass larger and more diverse patient

populations, employing multicenter study designs, implementing

double-blind methodologies, and incorporating assessments of

inflammatory biomarkers. Such an approach will not only bolster

our comprehension of SA (or SalA)’s therapeutic potential but also

pave the way for more efficacious treatment strategies for

individuals afflicted with ischemic stroke and its sequelae.
4 Conclusion

In summary, Salvianolic acid A (SalA) has been recognized as a

multifaceted therapeutic agent showing considerable promise for

the treatment of ischemic stroke. The anti-inflammatory properties

of SalA, which involve the suppression of pro-inflammatory

cytokines, regulation of crucial signaling pathways, and direct

effects on endothelial cells, suggest a potential neuroprotective

role that could yield significant clinical advantages for individuals

suffering from stroke. The pharmacokinetic profile of SalA,

particularly its enhanced brain exposure following I/R injury,

indicates a good fit for the therapeutic demands of stroke

treatment. Clinical studies, albeit limited, have demonstrated

promising findings on the effectiveness of SalA in enhancing

neurological outcomes and cerebral perfusion in individuals

with acute stroke. Further targeted clinical trials are required to

fully understand the therapeutic capabilities of SalA and to establish

the most effective treatment protocols. The incorporation of

SalA into existing strategies for treating ischemic stroke may

provide a supplementary method to traditional pharmacological

interventions, potentially resulting in enhanced patient outcomes

and quality of life.
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