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randomization analysis
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and Zhuming Lu1*†
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2Department of Breast Cancer Center, Chongqing University Cancer Hospital, Chongqing, China,
3Chongqing Key Laboratory for Intelligent Oncology in Breast Cancer (iCQBC), Chongqing University
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Background: Previous studies have highlighted the crucial role of immune cells in

lung cancer development; however, the direct link between immunophenotypes

and lung cancer remains underexplored.

Methods: We applied two-sample Mendelian randomization (MR) analysis, using

genetic variants as instruments to determine the causal influence of exposures

on outcomes. This method, unlike traditional randomized controlled trials

(RCTs), leverages genetic variants inherited randomly at conception, thus

reducing confounding and preventing reverse causation. Our analysis involved

three genome-wide association studies to assess the causal impact of 731

immune cell signatures on lung cancer using genetic instrumental variables

(IVs). We initially used the standard inverse variance weighted (IVW) method and

further validated our findings with three supplementary MR techniques (MR–

Egger, weighted median, and MR-PRESSO) to ensure robustness. We also

conducted MR–Egger intercept and Cochran’s Q tests to assess heterogeneity

and pleiotropy. Additionally, reverse MR analysis was performed to explore

potential causal i ty between lung cancer subtypes and identified

immunophenotypes, using R software for all statistical calculations.

Results: Our MR analysis identified 106 immune signatures significantly

associated with lung cancer. Notably, we found five suggestive associations

across all sensitivity tests (P<0.05): CD25 on IgD- CD24- cells in small cell lung

carcinoma (ORIVW =0.885; 95% CI: 0.798–0.983; PIVW =0.022); CD27 on IgD+

CD24+ cells in lung squamous cell carcinoma (ORIVW =1.054; 95% CI: 1.010–

1.100; PIVW =0.015); CCR2 on monocyte cells in lung squamous cell carcinoma

(ORIVW =0.941; 95% CI: 0.898–0.987; PIVW =0.012); CD123 on CD62L+

plasmacytoid dendritic cells (ORIVW =0.958; 95% CI: 0.924–0.992;

PIVW =0.017) as well as on plasmacytoid dendritic cells (ORIVW =0.958; 95% CI:

0.924–0.992; PIVW =0.017) in lung squamous cell carcinoma.
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Conclusion: This study establishes a significant genomic link between immune

cells and lung cancer, providing a robust basis for future clinical research aimed

at lung cancer management.
KEYWORDS

Mendelian randomization, lung cancer, immune cells, causal relationship, genome-wide
association studies
1 Introduction

Lung cancer remains one of the most prevalent malignancies

globally, ranking second in incidence and leading in cancer-related

deaths (1–3). Due to its significant incidence and mortality, lung

cancer represents a critical public health challenge, emphasizing the

need for effective preventive strategies (4, 5). Identifying potential

causal relationships between risk factors and lung cancer is essential

for developing these strategies.

Recent advancements in tumor immunology have underscored

the importance of understanding the role of immune cells within the

lung cancer microenvironment. This understanding is crucial for

advancing immunotherapy drug development. The immune system

plays a complex role in tumorigenesis; it can suppress tumor growth

by eliminating cancer cells, yet it can also promote tumor progression

by providing growth and survival factors. For instance, the presence of

CD3+ tumor-infiltrating lymphocytes is associated with improved

overall survival (OS) in non-small cell lung cancer (NSCLC) (6) and

hepatocellular carcinoma (7). Elevated levels of FoxP3+ Tregs are

linked to poorer outcomes in several cancers, includingmelanoma and

breast cancer. Conversely, an improvement in OS has been reported in

colorectal and head and neck cancers, with variable results in lung

cancer regarding disease-free survival (DFS) (8). B-cell infiltration has

shown mixed outcomes across different cancers, enhancing survival in

breast cancer (9) but presenting inconsistent results in melanoma,

hepatocellular carcinoma, ovarian and head and neck cancers (10).

Despite significant progress in immune cell research, the links between

immunophenotypes and lung cancer remain inconsistent, often

limited by small sample sizes, study design flaws, and unaddressed

confounders (11–13). The introduction of genome-wide association

studies (GWAS) has been transformative, providing new pathways to

investigate cancer etiology (14, 15).

In this context, Mendelian randomization (MR), which uses

genetic variants as instrumental variables (IVs) to establish causal

relationships between exposures and outcomes, offers a powerful

epidemiological tool (16). MR is advantageous because it uses

genotypes that are fixed at conception, thus reducing bias from

confounding factors and reverse causation (17, 18). This study

employs a two-sample MR approach, using single nucleotide

polymorphisms (SNPs) to evaluate the causal impact of immune
02
cells on lung adenocarcinoma (LUAD), lung squamous cell

carcinoma (LUSC), and small cell lung carcinoma (SCLC).
2 Materials and methods

2.1 Study design

Our two-sample MR study design is depicted in Figure 1. The

validity of our MR analysis was ensured by meeting three essential

criteria: the first criterion confirmed a significant link between the

IVs and immunophenotypes. Second, the IVs were free from any

relationships with confounding elements. Finally, outside of

exposure elements, there was no impact of the IVs on outcomes

through other pathways (19).
2.2 Genome-wide association study data
sources for lung cancer

We obtained GWAS summary data for lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), and small cell lung

carcinoma (SCLC) from J. D. McKay et al. (20) via the IEU-

OpenGWAS platform. The study involved 21,363 lung cancer

patients, namely, 11,273 LUAD, 7,426 LUSC and 2,664 SCLC

patients and 55,483, 55,627, and 21,444 controls (Supplementary

Table 1). In the quality assurance stage, SNPs exhibiting suboptimal

imputation (R2 < 0.3 or Info < 0.4) or a minor allele frequency

greater than 0.01 were excluded. Approximately 8 million SNPs

were retained for the GWAS.
2.3 Sources of immunity-wide GWAS data

We sourced comprehens ive GWAS data for 731

immunophenotypes from the largest study to date, involving

3,757 Europeans (21). Approximately 22 million SNPs, adjusted

for sex and age (including age squared), were genotyped with high-

density arrays and imputed employing a reference panel based on

Sardinian sequences (22).
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2.4 Selection criteria for IVs for
731 immunophenotypes

To identify sufficient SNPs (number >3) for both exposure and

outcome analyses, we selected SNPs with genome-wide suggestive

significance (P<1×10-5). This method is frequently utilized in MR

research as it encompasses a wider array of variations, particularly

when there are limited genome-wide significant SNPs available for

analysis (23). Independent SNPs were identified using a clumping

process with stringent criteria (r2 < 0.001, window size 10,000 kb)

using the European 1000 Genomes reference panel (17). Following

steps evaluated the robustness of these IVs in predicting causal

effects using the F-test (24). The formula used in the design is

outlined in Supplementary Table 2. An F-statistic greater than 10

typically signifies strong IVs, and any immunophenotypes with an

F-statistic below 10 were discarded (25). The PhenoScannerV2

database (http://www.phenoscanner.medschl.cam.ac.uk/) was

employed to identify and remove SNPs directly linked to cancer

and other recognized confounders in cancer progression, such as

smoking (26, 27) and alcohol consumption (28). In the reverse MR

analysis, the threshold for statistical significance was established at

P < 5 × 10–8, using a clumping parameter analogous to that used in

the forward-direction analysis.
2.5 MR statistical analysis

In this MR study, we investigated the causal associations

between immune cell profiles and different subtypes of lung
Frontiers in Immunology 03
cancer (LUAD, LUSC, SCLC) using the standard inverse variance

weighted (IVW) approach. We also applied MR-Egger and

weighted median methods as supplementary analyses to IVW,

especially in scenarios where a significant fraction of variants (up

to 50% or less) might originate from potentially invalid IVs (29, 30).

Results were presented as odds ratios (ORs) with 95% confidence

intervals (CIs). To identify any potential horizontal pleiotropy or

outliers among the SNPs, we implemented the MR-Egger intercept

test (29) and the Mendelian Randomization Pleiotropy Residual

Sum and Outlier (MR-PRESSO) test (31). The reliability of our MR

results was verified using the Cochran Q statistic to evaluate SNP

heterogeneity (32). A sensitivity analysis called “leave-one-out” was

conducted, where SNPs were sequentially removed. This analysis

was complemented by applying the IVW-random method to the

remaining set of SNPs to determine the influence of outlying

variants on the findings (33). For thorough analysis of

heterogeneity, we generated forest and scatter plots. A meta-

analysis was then undertaken to elucidate the causal connections

between the identified immunophenotypes and lung cancer

subtypes by synthesizing MR data from two distinct cohorts (34).

In instances of significant heterogeneity or pleiotropy, adjustments

were made to the ORs and CIs for the meta-analysis. Based on the

degree of heterogeneity observed, the choice was between a fixed-

effects model (I2 ≤ 50%) and a random-effects model (I2 > 50%).

The conclusions from the meta-analysis were considered the

definitive causal relationships (35). To address concerns of

multiple testing, a Bonferroni-corrected significance threshold of

6.84 × 10-5 (0.05/731 for the 731 immunophenotypes evaluated)

was employed. P values between 6.84 × 10–5 and 0.05 were deemed

indicative of suggestive causal links between the exposures and
FIGURE 1

Illustrative schematic of the study methodology. GWAS, genome-wide association study; MR, Mendelian randomization; MR-PRESSO, MR pleiotropy
residual sum and outlier test; IV, instrumental variables.
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outcomes. All analyses were conducted using the “TwoSampleMR”

and “MRPRESSO” packages in R (version 4.2.0).
3 Results

3.1 Selection of IVs

Our two-sample MR analysis identified 106 immunophenotypes

with IVs ranging from 4 to 103 SNPs, indicating suggestive

associations at P<0.05. The IVs for each phenotype showed high

potency, with F-statistics ranging from 19.546 upwards, confirming

their reliability for MR studies.
3.2 Causal effects of immunophenotypes
on 3 lung cancer subtypes

Using the IVW method, significant associations were found

between 36 immunophenotypes and lung adenocarcinoma

(LUAD), 33 with lung squamous cell carcinoma (LUSC), and 37

with small cell lung carcinoma (SCLC), as detailed in Figure 2 and

Supplementary Table 3. Notably, certain immunophenotypes such as

CD4 Treg %T cells in LUAD (ORIVW =1.071; 95% CI: 1.015–1.131;

PIVW =0.013), Unsw mem AC in LUSC (ORIVW =1.134; 95%

CI: 1.047–1.228; PIVW =0.002), and CD25 on CD4+ T cells in

SCLC (ORIVW =1.174; 95% CI: 1.053–1.310; PIVW =0.004) were

associated with increased risk, while CD27 on IgD- CD38br cells

(ORIVW =0.909; 95% CI: 0.841–0.984; PIVW =0.018), SSC-A on HLA

DR+ CD8br cells (ORIVW =0.897; 95% CI: 0.824–0.977; PIVW =0.012)

and CD25 on resting Treg cells (ORIVW =0.840; 95% CI: 0.733–0.963;

PIVW =0.013) showed protective effects across different subtypes

(Table 1; Supplementary Figures 1-4). Additionally, the presence of

CD27 on CD24+ CD27+ cells was associated with an increased risk

across all three lung cancer subtypes (for LUAD, ORIVW =1.039; 95%

CI: 1.006–1.072; PIVW =0.019; for LUSC, ORIVW =1.041; 95% CI:

1.003–1.080; PIVW =0.032; for SCLC, ORIVW =1.072; 95% CI: 1.010–

1.137; PIVW =0.022). Similarly, CD27 on memory B cells also showed

increased risks for lung cancer subtypes (for LUAD, ORIVW =1.047;

95%CI: 1.009–1.086; PIVW =0.014; for LUSC, ORIVW =1.053; 95%CI:

1.008–1.099; PIVW =0.020; for SCLC, ORIVW =1.093; 95% CI: 1.002–

1.192; PIVW =0.045). The results imply a shared biological pathway

among these subtypes of lung cancer, influenced by CD27 expression

on CD24+ CD27+ cells and memory B cells, as outlined in Table 2

and Supplementary Figures 5-8. The genetic variants that clarify the

links between these immunophenotypes and lung cancer are detailed

in Supplementary Tables 4-15.
3.3 Sensitivity and pleiotropy analysis

Due to potential biases from weak instruments in the IVW

approach, we expanded our study to incorporate additional

sensitivity and pleiotropy assessments, with detailed findings

listed in Supplementary Table 3. Noteworthy, pleiotropic effects

were observed for SSC-A on HLA DR+ CD8br cells in LUSC (PMR-
Frontiers in Immunology 04
PRESSO Global =0.039). The combined outcomes from IVW, MR-

Egger, and weighted median methods across immunophenotypes

with suggestive links are displayed in Figure 3. Furthermore,

we discerned five immunophenotypes with suggestive links that

passed all sensitivity analyses (P<0.05) (Table 3; Supplementary

Figures 9-12): CD25 on IgD- CD24- cells in SCLC (ORIVW =0.885;

95% CI: 0.798–0.983; PIVW =0.022), CD27 on IgD+ CD24+ cells in

LUSC (ORIVW =1.054; 95% CI: 1.010–1.100; PIVW =0.015),

CCR2 on monocyte cells in LUSC (ORIVW =0.941; 95% CI:

0.898–0.987; PIVW =0.012), CD123 on CD62L+ plasmacytoid

dendritic cells (DCs) of LUSC (ORIVW =0.958; 95% CI: 0.924–

0.992; PIVW =0.017), and CD123 on plasmacytoid DCs of LUSC

(ORIVW =0.958; 95% CI: 0.924–0.992; PIVW =0.017). Additional

validation through MR analysis utilized GWAS data for SCLC (ieu-

a-988: 2,791 patients and 20,580 controls) and LUSC (ieu-a-989:

7,704 patients and 54,763 controls), with results detailed in

Supplementary Tables 16, 17. Genetic variants clarifying the

associations between these five immunophenotypes and lung

cancer are summarized in Supplementary Tables 18-22. In reverse

MR analyses, a suggestive link was observed for LUSC risk and

CCR2 on monocyte cells (ORIVW =0.888; 95% CI: 0.790–0.999;

PIVW =0.048). Lung cancer subtypes with at least two robust MR

findings were included in the meta-analysis, whose results are

compiled in Supplementary Table 23. Four immunophenotypes

demonstrated a suggestive correlation with LUSC risk: CD27 on

IgD+ CD24+ cells (OR = 1.0567; 95% CI: 1.0263 to 1.0880;

P = 0.0002), CCR2 on monocyte cells (OR = 0.9483; 95% CI:

0.9238 to 0.9735; P < 0.0001), CD123 on CD62L+ plasmacytoid

DCs (OR = 0.9629; 95% CI: 0.9414 to 0.9850; P = 0.0011), and

CD123 on plasmacytoid DCs (OR = 0.9630; 95% CI: 0.9414 to

0.9850; P = 0.0011). Additionally, CD25 on IgD- CD24- cells was

linked to a decreased risk of SCLC (OR = 0.8701; 95% CI: 0.8175 to

0.9260; P < 0.0001). The findings indicate the reliability of the causal

relationship between the identified immune phenotype and

subtypes of lung cancer.
4 Discussion

This MR study marks a significant advance in understanding

the causal effects of immune cell signatures on lung cancer, focusing

on three specific subtypes. Leveraging a robust two-sample MR

framework that incorporates IVW, MR-Egger, and weighted

median approaches, our study advances beyond earlier

observational research that predominantly concentrated on

correlations (36, 37). By utilizing the most comprehensive GWAS

datasets currently available for the immunophenotyping of

peripheral blood, our research significantly enhances the

investigation into the connections between immune cells and

disease, expanding the scope further than prior studies (38, 39).

Moreover, we utilized meta-analysis to consolidate data from

multiple studies, thereby enhancing the robustness of our

conclusions. The discovery of 106 immune signatures, particularly

five key associations such as CD25 on IgD- CD24- cells in SCLC

and CCR2 on monocyte cells in LUSC, enriches our understanding

of these cells’ causal involvement in lung cancer.
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This research offers insightful hypotheses regarding the

mechanistic roles of these immune signatures in lung cancer. The

diverse interactions of immune cell subsets within the tumor

microenvironment hint at their potential influence on tumor

growth, apoptosis, and microenvironment dynamics. The distinct

responses observed across lung cancer subtypes emphasize the

specificity of immune reactions and suggest potential avenues for

therapeutic intervention. Of the 106 immune signatures studied,

five showed significant links to lung cancer subtypes, including

CD25 on IgD- CD24- cells in SCLC, CD27 on IgD+ CD24+ cells in
Frontiers in Immunology 05
LUSC, CCR2 on monocyte cells in LUSC, CD123 on CD62L+

plasmacytoid DCs in LUSC, and CD123 on plasmacytoid DCs in

LUSC, pointing to their roles in cancer development.

Significantly, our results emphasize the association of CCR2 with

monocyte cells in LUSC. CCR2-positive monocytes are attracted to

the LUSC tumor microenvironment in response to signals from

cancer-associated fibroblasts via CCL2, contributing to an

immunosuppressive environment (40, 41). Additionally, these

monocytes, once present in inflamed lung areas, tend to reduce

local CCL2 levels (42). Concurrent studies, like that by Lei Li and
FIGURE 2

Forest plot depicting the Mendelian randomization analyses for associations between various immunophenotypes and lung cancer subtypes.
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colleagues, have shown high CCL2 levels in the tumor

microenvironment as predictors of survival in lung cancer patients

(43). There is also evidence that CD24 facilitates interactions among

B cells, with CD24-deficient mice displaying B-cell anomalies (44).

High CD24 levels have been identified as adverse prognostic factors

for progression-free and cancer-specific survival in NSCLC patients

(45, 46). Moreover, this research highlights the essential role of DCs

in LUSC, where tumor-infiltrating mature DCs correlate with better

NSCLC prognosis (47, 48).

Despite its strengths, this study has limitations. Firstly, the

cohort comprised mainly European individuals, which might limit

the generalizability of the findings to more diverse populations.

Second, the selection criteria for IVs were relatively permissive,

establishing a significance level at P < 1 × 10−5, potentially leading to

the incorporation of false-positive variants, potentially introducing

bias into the results. Nevertheless, the F-statistics for all IVs
Frontiers in Immunology 06
exceeded 10, mitigating the concern for weak instrument bias.

Third, despite our thorough examination for possible secondary

phenotypes of IVs and the ability to conduct multiple sensitivity

analyses, the potential for pleiotropy cannot be entirely dismissed.

Fourthly, no immunophenotypes showed a statistically significant

association with lung cancer risk after Bonferroni correction.

With further validation in larger populations and additional SNP

analysis, identifying these immune signatures as biomarkers could

enhance risk prediction, early detection, and prevention strategies in

clinical settings. These advances may pave the way for more

personalized cancer treatments. Additionally, the identified immune

cells serve as promising targets for experimental investigation to

determine their impact on lung cancer and the development of

innovative immunotherapies. Specifically, focusing on the pathways

that regulate these immune cells might facilitate the development of

new immunotherapies for lung cancer. As immunotherapy
TABLE 1 The most detrimental and protective factors for lung cancer subtypes.

Trait Exposure
IVW MR-Egger

Weighted
median

OR
(95% CI)

P-
value

OR
(95% CI)

P-
value

OR (95% CI)
P-

value

Lung adenocarcinoma CD4 Treg %T cells
1.071

(1.015-1.131)
0.013

1.044
(0.965-1.129)

0.303 1.028(0.960-1.101) 0.427

Lung squamous
cell carcinoma

Unsw mem AC
1.134

(1.047-1.228)
0.002

1.050
(0.862-1.280)

0.634 1.075(0.961-1.203) 0.205

Small cell lung carcinoma CD25 on CD4+ T cells
1.174

(1.053-1.310)
0.004

0.985
(0.829-1.170)

0.866 1.195(1.037-1.378) 0.014

Lung adenocarcinoma CD27 on IgD- CD38br cells
0.909

(0.841-0.984)
0.018

0.869
(0.608-1.243)

0.457 0.915(0.823-1.019) 0.105

Lung squamous
cell carcinoma

SSC-A on HLA DR+
CD8br cells

0.897
(0.824-0.977)

0.012
0.973

(0.848-1.117)
0.703 0.954(0.860-1.059) 0.379

Small cell lung carcinoma CD25 on resting Treg cells
0.840

(0.733-0.963)
0.013

0.794
(0.516-1.223)

0.315 0.772(0.639-0.934) 0.008
fro
TABLE 2 Causal effects between CD27 on CD24+ CD27+ cells and CD27 on memory B cells with lung cancer subtypes.

Trait Exposure
IVW MR-Egger

Weighted
median

OR (95% CI)
P-

value
OR (95% CI)

P-
value

OR (95% CI)
P-

value

Lung adenocarcinoma
CD27 on CD24+ CD27

+ cells
1.039

(1.006-1.072)
0.019

1.045
(0.992-1.101)

0.113 1.035(0.985-1.088) 0.175

Lung squamous
cell carcinoma

CD27 on CD24+ CD27
+ cells

1.041
(1.003-1.080)

0.032
1.021

(0.961-1.085)
0.507 1.042(0.987-1.099) 0.135

Small cell lung carcinoma
CD27 on CD24+ CD27

+ cells
1.072

(1.010-1.137)
0.022

1.021
(0.923-1.130)

0.689 1.026(0.941-1.118) 0.563

Lung adenocarcinoma CD27 on memory B cells
1.047

(1.009-1.086)
0.014

1.037
(0.978-1.100)

0.235 1.043(0.993-1.097) 0.093

Lung squamous
cell carcinoma

CD27 on memory B cells
1.053

(1.008-1.099)
0.02

1.057
(0.986-1.133)

0.134 1.074(1.012-1.140) 0.018

Small cell lung carcinoma CD27 on memory B cells
1.093

(1.002-1.192)
0.045

1.089
(0.946-1.254)

0.248 1.077(0.980-1.183) 0.123
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increasingly becomes a cornerstone of cancer therapy, our results could

provide significant contributions to the domain.

In summary, our research offers critical insights into the links

between immune signatures and lung cancer, potentially leading to

new therapeutic strategies. Continued investigation is essential to

fully decipher these interactions and their implications for treating

and preventing lung cancer.
Frontiers in Immunology 07
5 Conclusion

In conclusion, this investigation marks the first comprehensive

MR study to explore the causal links between immunophenotypes

and specific lung cancer subtypes using genome-wide data,

providing initial insights into how immune cell signatures might

affect lung cancer risk. Utilizing the IVW method and various
FIGURE 3

IVW Mendelian randomization estimates, MR–Egger estimates, and weighted-median estimates for the associations between immunophenotypes
and lung cancer subtypes. IVW, inverse variance weighted; MR, Mendelian randomization.
TABLE 3 Statistically significant association between five potential immune cell signatures and lung cancer.

Trait Exposure
IVW MR-Egger

Weighted
median

OR
(95% CI)

P-
value

OR
(95% CI)

P-
value

OR (95% CI)
P-

value

Small cell lung carcinoma CD25 on IgD- CD24- cells
0.885

(0.798-0.983)
0.022

0.790
(0.676-0.923)

0.007 0.772(0.672-0.887) 0

Lung squamous
cell carcinoma

CD27 on IgD+ CD24+ cells
1.054

(1.010-1.100)
0.015

1.081
(1.015-1.152)

0.023 1.079(1.018-1.144) 0.011

Lung squamous
cell carcinoma

CCR2 on monocyte cells
0.941

(0.898-0.987)
0.012

0.919
(0.864-0.978)

0.017 0.928(0.868-0.992) 0.029

Lung squamous
cell carcinoma

CD123 on CD62L+ plasmacytoid
dendritic cells

0.958
(0.924-0.992)

0.017
0.938

(0.896-0.981)
0.014 0.950(0.904-0.999) 0.047

Lung squamous
cell carcinoma

CD123 on plasmacytoid dendritic cells
0.958

(0.924-0.992)
0.017

0.938
(0.896-0.981)

0.014 0.950(0.903-1.000) 0.049
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sensitivity analyses, we identified strong associations between

specific immune signatures such as CD25 on IgD- CD24- cells,

CD27 on IgD+ CD24+ cells, CCR2 on monocyte cells, and CD123

on both CD62L+ and plasmacytoid dendritic cells with the

development of lung cancer. Our results indicate that these

immune cell signatures hold potential as valuable biomarkers for

the early detection and prevention of lung cancer in clinical settings.

These insights open avenues for further studies aimed at

understanding the mechanisms through which these immune

cells influence lung cancer and developing targeted therapies.

While our study has successfully linked numerous immune cell

signatures with the incidence of lung cancer, additional research is

required to fully understand their roles in the pathogenesis of

lung tumors.
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SUPPLEMENTARY FIGURE 1

Scatter plots illustrating genetic associations of six distinct immunophenotypes
with lung cancer risk across different subtypes: (A) CD4 Treg %T cells in LUAD,

(B) Unsw mem AC in LUSC, (C) CD25 on CD4+ T cells in SCLC, (D) CD27 on
IgD- CD38br cells in LUAD, (E) SSC-A on HLA DR+ CD8br cells in LUSC, (F)
CD25 on resting Treg cells in SCLC.

SUPPLEMENTARY FIGURE 2

Forest plots for six immunophenotypes in lung cancer. (A) CD4 Treg %T cells
in LUAD, (B) Unsw mem AC in LUSC, (C) CD25 on CD4+ T cells in SCLC, (D)
CD27 on IgD- CD38br cells in LUAD, (E) SSC-A on HLA DR+ CD8br cells in
LUSC, (F) CD25 on resting Treg cells in SCLC.

SUPPLEMENTARY FIGURE 3

Leave-one-out plots for six immunophenotypes in lung cancer. (A) CD4 Treg

%T cells in LUAD, (B) Unsw mem AC in LUSC, (C) CD25 on CD4+ T cells in
SCLC, (D) CD27 on IgD- CD38br cells in LUAD, (E) SSC-A on HLA DR+ CD8br

cells in LUSC, (F) CD25 on resting Treg cells in SCLC.

SUPPLEMENTARY FIGURE 4

Funnel plots for six immunophenotypes in lung cancer. (A) CD4 Treg %T cells

in LUAD, (B) Unsw mem AC in LUSC, (C) CD25 on CD4+ T cells in SCLC, (D)
CD27 on IgD- CD38br cells in LUAD, (E) SSC-A on HLA DR+ CD8br cells in
LUSC, (F) CD25 on resting Treg cells in SCLC.

SUPPLEMENTARY FIGURE 5

Scatter plots depicting the genetic correlations between two immune
markers and the risk of lung cancer among different subtypes. (A) CD27 on

CD24+ CD27+ cells in LUAD, (B) CD27 on CD24+ CD27+ cells in LUSC, (C)
CD27 on CD24+ CD27+ cells in SCLC, (D) CD27 on memory B cells in LUAD,
(E) CD27 on memory B cells in LUSC, and (F) CD27 on memory B cells

in SCLC.

SUPPLEMENTARY FIGURE 6

Forest plots for assessing the association of two immune phenotypes with lung

cancer risk. (A) CD27 on CD24+ CD27+ cells in LUAD, (B) CD27 on CD24+

CD27+ cells in LUSC, (C) CD27 on CD24+ CD27+ cells in SCLC, (D) CD27 on
memory B cells in LUAD, (E)CD27 onmemory B cells in LUSC, and (F)CD27 on
memory B cells in SCLC.
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SUPPLEMENTARY FIGURE 7

Leave-one-out sensitivity plots for two immunophenotypes across lung
cancer subtypes. (A) CD27 on CD24+ CD27+ cells in LUAD, (B) CD27 on

CD24+ CD27+ cells in LUSC, (C) CD27 on CD24+ CD27+ cells in SCLC, (D)
CD27 on memory B cells in LUAD, (E) CD27 on memory B cells in LUSC, and
(F) CD27 on memory B cells in SCLC.

SUPPLEMENTARY FIGURE 8

Funnel plots for two immunophenotypes of lung cancer. (A) CD27 on CD24+
CD27+ cells in LUAD, (B) CD27 on CD24+ CD27+ cells in LUSC, (C) CD27 on

CD24+ CD27+ cells in SCLC, (D) CD27 on memory B cells in LUAD, (E) CD27
on memory B cells in LUSC, and (F) CD27 on memory B cells in SCLC.

SUPPLEMENTARY FIGURE 9

Scatter plots depicting the genetic correlations between four immune

markers and the risk of lung cancer among different subtypes. (A) CD25 on
IgD- CD24- cells in SCLC, (B) CD27 on IgD+ CD24+ cells in LUSC, (C) CCR2
on monocyte cells in LUSC, and (D) CD123 on CD62L+ plasmacytoid

dendritic cells in LUSC.
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SUPPLEMENTARY FIGURE 10

Forest plots for assessing the association of five immune phenotypes with
lung cancer risk. (A) CD25 on IgD- CD24- cells in SCLC, (B) CD27 on IgD+

CD24+ cells in LUSC, (C) CCR2 on monocyte cells in LUSC, (D) CD123 on

CD62L+ plasmacytoid dendritic cells in LUSC, and (E)CD123 on plasmacytoid
dendritic cells in LUSC.

SUPPLEMENTARY FIGURE 11

Leave-one-out sensitivity plots for five immunophenotypes across lung
cancer subtypes. (A) CD25 on IgD- CD24- cells in SCLC, (B) CD27 on IgD+

CD24+ cells in LUSC, (C) CCR2 on monocyte cells in LUSC, (D) CD123 on

CD62L+ plasmacytoid dendritic cells in LUSC, and (E)CD123 on plasmacytoid
dendritic cells in LUSC.

SUPPLEMENTARY FIGURE 12

Funnel plots for five immunophenotypes of lung cancer. (A) CD25 on IgD-
CD24- cells in SCLC, (B) CD27 on IgD+ CD24+ cells in LUSC, (C) CCR2 on

monocyte cells in LUSC, (D) CD123 on CD62L+ plasmacytoid dendritic cells

in LUSC, and (E) CD123 on plasmacytoid dendritic cells in LUSC.
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