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Eastern Piedmont A. Avogadro, Novara, Italy
Although the pathological significance of myeloid cell heterogeneity is still poorly

understood, new evidence indicates that distinct macrophage subsets are

characterized by specific metabolic programs that influence disease onset and

progression. Within this scenario, distinct subsets of macrophages, endowed

with high rates of heme catabolism by the stress-responsive enzyme heme

oxygenase-1 (HO-1), play critical roles in physiologic and pathological

conditions. Of relevance, the substrates of HO-1 activity are the heme groups

that derive from cellular catabolism and are converted into carbon monoxide

(CO), biliverdin and Fe2+, which together elicit anti-apoptotic, anti-inflammatory

activities and control oxidative damage. While high levels of expression of HO-1

enzyme by specialized macrophage populations (erythrophagocytes) guarantee

the physiological disposal of senescent red blood cells (i.e. erythrocateresis), the

action of HO-1 takes on pathological significance in various diseases, and

abnormal CO metabolism has been observed in cancer, hematological

diseases, hypertension, heart failure, inflammation, sepsis, neurodegeneration.

Modulation of heme catabolism and CO production is therefore a feasible

therapeutic opportunity in various diseases. In this review we discuss the role

of HO-1 in different pathological contexts (i.e. cancer, infections, cardiovascular,

immune-mediated and neurodegenerative diseases) and highlight new

therapeutic perspectives on the modulation of the enzymatic activity of HO-1.
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Introduction

The growing interest on the relevance of myeloid cell

specialization in disease (1), is fueling new efforts to therapeutically

re-educate their functions (2). Notably, macrophage phenotypic

heterogeneity originates during fetal development from embryonic

progenitors, which differentiate into self-regenerating subsets of

tissue-resident macrophages (TRMs) and become essential for

tissue homeostasis and repair (3). A list of abbreviations and

acronyms used in the manuscript has been included in Table 1. In

adults, blood monocytes are derived primarily from the bone marrow

and orchestrate effector and repair functions of defense, also

acquiring phenotypic traits of TRMs. In pathology, immunological

stresses promote alterations of the myelopoietic output, defined as

emergency (4), which lead to the generation of different myeloid

populations endowed with specialized functions and distinct

metabolic traits (5). This emergency response largely depends on

inflammatory signals, which instruct differentiation and maturation

of hematopoietic precursors, in a demand-adapted fashion (6).

Although such heterogeneity may offer both beneficial and

detrimental contributions to therapy, we are not yet able to select

the myeloid phenotype with the greatest benefit. New studies are now

delineating distinct myeloid subtypes, whose functional

specializations appear to take on distinct pathophysiological

meanings in the different pathologies, including cancer (7).

The HO-1 enzyme encoded by the Hmox1 gene was first

described in 1968 as a key microsomal component, which together

with the HO-2 enzyme isoform, encoded by the Hmox2 gene, forms

the heme oxygenase (HO) system involved in catalyzing heme

oxidation and its related degradation. While Hmox1 can be
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induced throughout all tissue types but is most highly expressed

within the spleen and liver, Hmox2 is constitutively and ubiquitously

expressed, with specific enrichment in the testes and brain (8).

Further, in contrast to HO-1, which is mainly involved in iron

homeostasis, angiogenesis, mitochondrial function, and regulation

of innate and adaptive immunity, regulating tissue responses to

damage in pathophysiological states (9), HO-2 appears more as a

physiological regulator of cellular functions and is involved in oxygen

and redox sensing, neovascularization and neuroprotection (10).

The process of heme synthesis has been extensively reviewed

11–13). While erythrocytes produce around 85% of total heme

content in the organism necessary for complete hemoglobinization,

the predominant portion of the remaining synthesis occurs in the

liver, which is highly enriched in cytochromes p450 (14). The

biological activities and metabolism of free heme have been

studied extensively, due to its hydrophobic and highly reactive

properties, which confer it the ability to induce the formation of

hydroxyl radicals, thereby promoting lipid oxidation, protein

damage, and cell death (15). While hemoglobin heme undergoes

synthesis in erythrocytes and ultimate degradation in the

reticuloendothelial system (12), the final products of heme

catabolism catalyzes the breakdown of heme into biliverdin,

carbon monoxide (CO), and free iron, which display powerful

anti-inflammatory and antioxidant potential (Figure 1) (12, 16).

As depicted in Figure 1, cytochrome p450 reductase reduces the

HO-1/ferrous heme complex, generating ferrous heme which binds

and activates molecular oxygen through a protonation reaction,

that in turn determines the formation of the reactive intermediate

Fe3+-OOH and the formation of hydroxyheme. Next, oxygen

activation promotes the conversion of ferric hydroxyheme to
FIGURE 1

The heme oxygenase enzyme reaction and products. Heme is enzymatically degraded into biliverdin (BV), carbon monoxide (CO) and Iron. Biliverdin
(BV) is subsequently transformed into bilirubin (BR) by biliverdin reductase (BVR). Iron can be bound by Ferritin, a protein able to store iron. The
heme molecule provides a variety of fundamental biological functions as forming of various apo-heme proteins like hemoglobin, nitric oxide
synthase and cytochromes. The HO-1-derived product CO could exert anti-inflammatory, anti-proliferation, anti-apoptosis, and vasodilation effects
in immune system. BR can perform a crucial role in anti-inflammation, anti-proliferation, anti-apoptosis, anti-oxidation, and free radical scavenger.
Moreover, iron-induced ferritin could play a cytoprotective, anti-oxidative and iron storage effect. A list of abbreviations and acronyms used in the
manuscript has been included in Table 1.
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ferrous verdoheme and CO. A final round of oxygen binding and

activation of Ferrous verdoheme determines the cleavage of the

heme porphyrin ring and the generation of ferric iron biliverdin.

Next, NADPH-cytochrome p450 reductase imposes the reduction

of ferric biliverdin and the consequent release of free ferrous, as well

as of biliverdin that is metabolized to bilirubin by biliverdin

reductase (17). This cascade of reactions is thought to occur in

respirating organisms whose cell types express and require the

regulation of heme. Here, we review the homeostatic and

immunoregulatory functions of HO-1, whose induction

differentially affect the course of various pathologies.
Role of myeloid heme oxygenase 1 in
tumor progression

A vast literature points out that the inducible enzyme HO-1 plays a

pivotal role in cellular adaptation to various stress factors, from oxidative

insults to hypoxia, thus maintaining redox homeostasis and preventing

cell damage through its cytoprotective, antioxidant and pro-surviving

properties (18–20). As such, it is not surprising that HO-1 is widely

expressed in cancer (i.e. glioblastoma, melanoma, bladder, breast,

colorectal, renal cancer, prostate) (21) and that its overexpression

correlates with cancer invasiveness, resistance to therapies and poor

prognosis in different tumors (21–26). In particular, TCGA pan-cancer

analysis shows that Hmox-1 expression is significantly associated with

epithelial-mesenchymal transition (EMT) in most tumors and

accordingly, HO-1 target genes modulate adhesion, signaling,

transport and other key cellular functions in neoplastic cells,

promoting tumor cells proliferation and dissemination (27, 28).

Indeed, heme and iron metabolism are key determinants of energy

metabolism, hence affecting cancer cell functions and immune

responses (29), as well as metabolic disorders (30).

In support of this conclusion, genetic polymorphisms of HO-1

promoter have been associated with an increased risk of cancer

progression and a high degree of therapy failure (31). Moreover,

alteration of the Kelch-like ECH-associated protein 1/nuclear factor

erythroid 2–related factor 2 (Keap1/Nrf2) pathway, a major

regulator of cytoprotective responses to oxidative that

continuously targets Nrf2 for proteasome degradation (32), is also

associated with tumor progression (33). Under stress conditions,

the conformational change of Keap1 promotes the transcriptional

activity of Nrf2 and consequently the expression of antioxidant

genes such as heme oxygenase 1 (HO-1) (34). Recently, KEAP1

mutations were connected to adverse outcomes in NSCLC patients

undergoing immunotherapy (33). Of relevance, Nrf2 is involved in

the regulation of various molecules and enzymatic activities that

control drug metabolism (35) as well as in multidrug resistance

(36). In agreement, Di Biase et al. reported in the 4T1 breast cancer

and B16 melanoma models that fasting mimicking-diet (FMD)

caused reduction in HO-1 expression in cancer cells, sensitizing

them to doxorubicin and cyclophosphamide, promoting

intratumoral accumulation of cytotoxic CD8+ T cells and

reducing tumor-associated Tregs activation (37).
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Despite this evidence mainly poses for the protumoral role of

HO-1, controversial anti-tumoral roles of HO-1 has also been

reported (i.e. hepatocellular carcinoma, lung mucoepidermoid

carcinoma) (38, 39), highlighting the complexity of the HO-1

activity in cancer and suggesting that HO-1 mediated functions

are cell type, metabolism and TME dependent (23). These

discrepancies also emerge from the specialized role that HO-1

displays during different stages of tumor development. In fact,

while HO-1 deficiency in normal cells enhances DNA damage

and carcinogenesis, HO-1 overexpression in cancer cells promotes

cancer cell proliferation, survival and tumor angiogenesis (40).
HO-1-expressing protumor myeloid cells

The tumor-promoting action of HO-1 is implemented by the

biologically active catabolites of heme degradation not only through

their action on tumor cells, but also hampering immune cells

functionality and favoring pro-metastatic events (41). Borrowing

from the physiological role of HO-1-expressing macrophages

during the process of erythrophagocytosis (42), HO-1 expression

has been frequently reported in malignant cells and tumor

associated macrophages (TAMs) (7, 43–46). However, HO-1 can

also be expressed by dendritic cells, regulatory T cells and

endothelial cells (25, 47, 48). Thus, the tissue-specific contribution

of HO-1 in tumor progression and as a therapeutic target still

represents a hot undefined topic in cancer research. Within this

scattered scenario, the major tumoral source of myeloid-related

HO-1 are TAMs (7). These highly plastic cells are able to express

distinct transcriptional and functional programs in response to the

different cues in the TME, adopting distinct spectra of pro- or anti-

inflammatory phenotypes (49, 50). Due to the breadth of its tumor-

promoting roles and anti-inflammatory activities, HO-1 expression

has been associated with biased M2-like TAMs and several recent

reports proved its selective up-regulation in specific TAM subsets

(7, 22, 44, 45, 51, 52). Reflecting the opposite and dynamic

relationship intervening between therapeutic and pathological

inflammation towards tumor development (53), the activity of

HO-1 appears to be stage-dependent, with preventive function in

the early oncogenic phases and of promotion action during tumor

progression (54).

In preclinical models of Lewis lung carcinoma (LL2) and

pancreatic ductal adenocarcinoma (PDAC), a distinct subset of

HO-1+ F4/80hi TAMs with an M2 phenotype co-expressing the

fibroblast activation protein alpha (FAP+ HO-1+ TAMs) and

representing 10% of the total TAMs population, has been

described to be the major tumor source of HO-1 (51).

Conditional ablation of FAP+ HO-1+ TAMs in an immunogenic

ovalbumin (OVA)-expressing LL2 tumor, using diphtheria toxin in

a bone marrow chimera of a FAP/diphtheria toxin receptor (DTR)

transgenic mouse, or pharmacological inhibition of HO-1 with tin

mesoporphyrin (SnMP), decreased LL2 and PDAC tumor growth,

confirming the pro-tumoral and immunosuppressive role of TAMs-

derived HO-1 (51, 55).
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FAP+ TAMs have been described also in human (56) and

murine breast tumors (44). By using the preclinical 4T1 model of

breast adenocarcinoma, Muliaditan et al. (44) showed that an IL-6-

dependent protumorigenic FAP+ HO-1+ TAM population

expresses a cytokine profile similar to that which characterizes

wound repair. Since inhibition of HO-1 results in a delay in wound

closure (57), the action of HO-1 in tumorigenic processes is

increasingly consistent with the Dvorak’s definition of tumors as

“non-healing wounds” (58). Of note, FAP+ HO-1+ TAMs were

predominantly located in the perivascular region of tumors and

supported trans-endothelial tumor cells migration and metastatic

spread. The study also demonstrated that the heme catabolite

carbon monoxide (CO) directly facilitates tumor cells migration

and, accordingly, SnMPIX-mediated pharmacological inhibition of

HO-1 prevented metastatic spread (44).

In line, a distinct subset of bone marrow-derived M2 polarized

F4/80hi HO-1+ TAMs was recently described to play a specialized role

in forming a pro-metastatic TME, promoting immunosuppression,

EMT transition of angiogenesis and inhibition of T cell-mediated

antitumor immunity (7). This population accumulates in the blood of

cancer bearers (i.e. fibrosarcoma (MN/MCA1) and melanoma (B16/

F10)) and preferentially localizes at the invasive tumor margins under

the influence of NF-kB1/CSF1-R/C3a signaling axis, which converges
on Nrf2 activation to support HO-1 expression. Importantly,

pharmacological inhibition with zinc protoporphyrin IX (ZnPPIX)

or myeloid-specific ablation of HO-1 blocked metastasis formation

and improved the efficacy of anti-PD-1-mediated immunotherapy

(7). Noteworthy, HO-1 expression in peripheral monocyte subsets as

well as in tumor lesions discriminates survival among metastatic

melanoma patients, suggesting HO-1 myeloid cells as a new

prognostic indicator and a novel antimetastatic target (7).

In an aggressive spontaneous mouse model of breast cancer

(MMTV-PyMT), TAMs were reported to be the major intratumoral

source of HO-1, playing a crucial role in orchestrating

immunosuppressive circuits that occur in the TME (22).

Consistently, in this experimental setting, specific conditional

ablation of HO-1 in the myeloid lineage improved the proportion

of cytotoxic CD8+ T cells expressing IFNg, granzyme B and TNFa,
while pharmacological inhibition of HO-1, using SnMPIX,

increased the antitumor activity of 5-fluorouracil (5-FU) in a

CD8+ T cell-dependent manner (22). Importantly, HO-1

inhibition appeared as a potentially crucial immunotherapy

target, hierarchically more important than PD-1. Moreover,

treatment of MMTV-PyMT tumors with SnPPIX displayed

increase response to chemotherapy compared to anti-PD-1

neutralizing antibody, suggesting that SnPPIX could be used as

immune checkpoint therapy (22). The link between HO-1-

expressing TAMs and cancer progression was further supported

in immunogenic OVA-expressing murine thymic lymphoma model

(EG/-OVA) (45). In this tumor, HO-1 is upregulated during the

differentiation of monocytic Ly6Chi cells into TAMs, becoming a

key molecular effector of their immunosuppressive functions.

Specific myeloid ablation of HO-1 or its pharmacological

inhibition increased the anti-tumor response, improving the anti-

tumor efficacy of a therapeutic anti-tumor OVA vaccine (45). It was

also recently described an essential role of CX3CR1+ gut
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macrophages in resolving inflammation in the intestine, where

they protect against colitis-associated cancer by regulating

HMOX-1 expression (59).

Noteworthy, HO-1 could directly skew the polarization of

macrophages (60); indeed, myeloid-specific ablation of HO-1 in

bone marrow-derived macrophages (BM-DMs) treated with either

M1- (LPS) or M2- (IL-4) polarizing signals produced an increase in

the expression of M1 markers (CXCL10, IL-1b, MCP1), along with

the decrease of M2 markers (Arg1 and CD163) (61). Other evidence

shows in a murine breast cancer model (4T1) that following

phagocytosis of cellular debris from tumor cells treated with

chemotherapy (paclitaxel) TAMs upregulate the expression of

HO-1, which in turn hinders M1 polarization and attenuates the

response to chemotherapy. In contrast, genetic or pharmacological

inhibition of HO-1 in TAMs reinstates M1-like polarization by

restoring an immunogenic TME during chemotherapy, favoring the

recruitment and activation of cytotoxic CD8+ T cells (62, 63). Along

this line, Magri et al. reported that pharmacological inhibition of

HO-1 in BM-DMs isolated from glioblastoma samples, with the

HO-1 inhibitors ZnPPIX and OB-24, significantly reduced cell-to-

cell- (i.e. PD-L1/PD-1) and soluble-dependent (i.e. IL-10)

immunosuppressive mechanisms. Strikingly, HO-1 inhibition also

prevented expression of immunosuppressive enzymes involved in

amino acid catabolism (i.e. IDO1 and ARG2) (64). HO-1 inhibition

by ZnPPIX was reported to repolarize M2-like protumor TAMs to

antitumor M1-like macrophages also in the 4T1 breast cancer

model (65). The influence of HO-1 on the TME immunoprofile

was highlighted by Alaluf et al., who reported that myeloid-specific

ablation of HO-1 induced global transcriptional and epigenetic

alterations not limited to the conventional M1/M2 polarization

state of TAMs, but rather leading to extensive dysregulation of the

central molecular signature of the TME (45).
The HO-1/CO pathway in
cancer development

CO is a highly toxic gas due to its high affinity for hemoglobin,

250 times greater than oxygen. Due to its strong bond with heme

iron, CO inhibits the transport of oxygen in the blood, while

interacting with cytochrome c oxygenase and cytochrome p450 it

inhibits cellular respiration and promotes tissue death (66). Despite

the role of CO gasotransmitter has been the subject of various

studies, its role in cancer is still largely unclear and both tumor-

promoting and anti-tumor activities have been reported (67). It was

demonstrated that CO directly modulates macrophage polarization

in vitro, skewing their phenotype toward the anti-inflammatory one

(68) and dampening their activation through M1-oriented signaling

(i.e. TLR and MAPK) (69), with downregulation of the pro-

inflammatory cytokines TNFa and IL-1band increased IL-10

production (20). Consistently, in non-cancer settings, in vitro

treatment of human monocyte-derived DCs with CO has been

reported to block TLR3- and 4-induced phenotypic maturation and

alloreactive T cell proliferation (70).

Accordingly, in vitro treatment of macrophages with carbon-

monoxide releasing molecules (CORMs) enhances STAT3/STAT6
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activation to induce their anti-inflammatory phenotype (7). In

contrast, by using the in vivo A549 lung carcinoma model,

Nemeth et al. showed that exposure to low doses of exogenous

CO polarizes macrophages toward a pro-inflammatory M1-like

phenotype through ROS-dependent activation of MAPK/Erk1/2-

c-myc pathway, which negatively regulates HO-1 expression

leading to an anti-tumor effect (71).

HO-1 catabolites can also influence the activation states and

phenotype of a variety of cell populations in the TME, enhancing

immune evasion and ultimately contributing to tumor progression

(41). In this regard, CO inhibits the maturation of dendritic cells

(DCs) by maintaining them in a pro-tolerogenic state and

supporting HO-1 expression through increased IL-10 production

(47, 70). Consistently, HO-1 expression contributes to imprint a

pro-tolerogenic signature of DCs (72). The product of heme

degradation biliverdin has also been reported to induce IL-10

production in macrophages through a PI3K-Akt dependent

pathway (73), while both CO and bilirubin down-regulate

expression of MHCII on DCs, restraining their ability to present

antigens CD4+ T cells (70, 74).

The HO-1/CO axis has also been described to play a critical role

in FoxP3-mediated immune suppression (48, 75). In glioma

patients, HO-1 mRNA expression has been linked to Foxp3

induction in infiltrating CD4+CD25+ Treg cells and correlated

with glioma progression and grading (48), while in the preclinical

model of malignant glioma the expression of HO-1 improved the

survival of Tregs in the hypoxic regions of the TME (75). HO-1-

mediated suppression of T cell proliferation is not only associated

with Treg cell expansion, as growing evidence demonstrates the

ability of HO-1/CO to directly block the expansion of effector T cell

populations (76). CO has been described to suppress the secretion

of IL-2, a cytokine required for T-cell entry into the cell cycle (76)

and CO-mediated inhibition of CD3-activated T cell proliferation is

highly dependent on caspase-3 and -8, which are regulated by

p21Cip1 (77). HO-1 was also reported to suppress natural killer (NK)

activation and their effector functions, through interfering with the

expression of activator receptors (NKG2D, NKp46 and NKp30), as

well as blocking their ability to secrete IFNg and TNFa (78). In

acute myeloid leukemia (AML), HO-1 has also been described to

prevent cytotoxic effects of NK by inhibiting CD48 expression, a

ligand of the NK-activating receptor 2B4, through Sirt1-H3K27-

dependent pathway (79). Numerous studies also highlight an

intriguing direct pro-metastatic role of HO-1/CO on tumor cells

(28). CO has been reported to increase glioma cell survival and

migration (80–82), while HO-1 silencing using small interfering

RNAs (siRNAs) causes downregulation of VEGF-induced vimentin

and endothelial cell proliferation, resulting in impaired angiogenesis

and reduced tumor progression (81). In agreement, myeloid

expression of HO-1 facilitates tumor metastasis by promoting the

formation of a premetastatic niche and increasing tumor

colonization at the metastatic site (82).

The preclinical and clinical observations available today are

consistent with the crucial role played by HO-1 in arresting cancer

immune recognition and supporting tumor progression and

pharmacological targeting of HO-1 and its catabolites is acquiring

solid confirmation as promising anticancer therapy.
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HO-1 in immune-mediated diseases

HO-1 plays a critical role in the maintenance of immune-

homeostasis, as this enzyme elicits a strong impact in both innate

and adaptive immune responses. In particular, the expression of

heme oxygenase by immune cells and, later on, its products of

reaction exert extensive antioxidant and anti-inflammatory

properties associated with beneficial outcomes in inflammatory

disorders (18). Consistently, a chronic inflammatory condition is

observed in Hmox1-knockout mice, paralleled to an accumulation

of polymorphonuclear cells, increased number of monocytes in the

spleen and lymphocyte count in peripheral blood (83).

In accordance with the beneficial role of this cytoprotective

enzyme, different polymorphisms in the Hmox1 promoter region

determine different levels of HO-1 induction, associated either with

protective functions or with increased susceptibility towards

autoimmune and inflammatory diseases, such as rheumatoid

arthritis (RA) or systemic lupus erythematosus (SLE) (84).

Consolidated evidence also supports a key role of HO-1 in

controlling intestinal and lung inflammation (85, 86). Supporting

this evidence, the presence of a long allele in a (GT)n microsatellite

polymorphism in Hmox-1 gene promoter leading to decreased

expression of HO-1, gives rise to a pronounced risk and higher

susceptibility to develop autoimmune disease, such systemic lupus

erythematosus (87). On the other hand, the presence of a short (S)

allele, provoke an increase in the production of HO-1 leading to a

protection in developing immune-mediated disorders (18, 88). The

up-regulation or the downregulation of this enzyme in immune-

mediated disorders therefore makes it a possible inflammatory

marker for autoimmune diseases (83).

In RA patients a significant increase of HO-1 levels was observed in

synovial fluid and peripheral monocytes, as an adaptive mechanism for

limiting inflammation and toxicity (89). Furthermore, induction of

HO-1 in SLE confers an anti-inflammatory phenotype to monocytes

and DCs, while myeloid cells in these patients show downregulated

HO-1 levels, suggesting that its deregulation is involved in disease

progression (90). According to the HO-1 protective functions, the anti-

inflammatory effects of IL-10 in macrophages appear to be mediated

via induction of HO-1 (91, 92).

HO-1-derived CO plays a crucial immunomodulatory role, by

acting on different immune cells, including dendritic cells,

macrophages and regulatory T cells (93). Indeed, HO-1 induction

fosters the polarization of macrophages towards an anti-

inflammatory M2-like profile and promotes a tolerogenic

phenotype in DCs (83, 94), both reducing the activation of T cells

and favoring the Treg differentiation, resulting in the suppression of

autoreactive responses (47). All this reveals the strong impact that

HO-1 elicits in the context of immune-mediated diseases, as well as

its centrality for the maintenance of immune homeostasis.
HO-1 in inflammatory bowel diseases

Accumulating evidences indicate that induction of HO-1

expression act as an endogenous defensive mechanism to reduce

tissue injury in the intestinal tract associated with chronic
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inflammatory conditions (i.e. Inflammatory bowel disease/IBD),

including Crohn’s disease (CD) and Ulcerative Colitis (UC) (95).

Chronic intestinal inflammation is promoted by different

conditions, including infections and autoimmune diseases, and is

characterized by massive immune cell infiltration, edema and

alterations of the epithelium structure (96). Of note, HO-1 is

shown to be transcriptionally induced in the intestinal tract in

response to oxidative stress (97, 98) and pharmacological evidence

supports the protective role of HMOX1 in intestinal inflammation.

In the model of colitis induction by administration of Dextran

Sulfate Sodium (DSS), administration of HMOX1 inductor/

activator CoPP significantly reduced the intestinal histological

damage as compared to control animals (99). This protective

response was mimicked by administration of the HMOX1

inducer hemin, which also reduced number of Th17 cells and

increased number of Treg cells in mesenteric lymph nodes

(MLN) and spleen (100).

Of particular note, a strong association between the

development of IBD and the immune response to microbial

infections has been described, the mechanistic basis of which are

still unclear. In this context, it is important to note that HMOX1-

like enzymes are expressed in bacteria and CO can therefore directly

interact with the heme groups of the bacterial electron transport

chain (101). These evidences support an increasingly central role of

HO-1 and CO in the cross-talk between the microbiota and the

mucosal immune compartment, suggesting HO-1 as a new

therapeutic target for inflammatory bowel disease (102).
HO-1 in inflammatory lung diseases

Mounting evidence indicates that in various pulmonary diseases,

such as acute respiratory distress syndrome (ARDS) and interstitial

lung disease (ILD), an increase in HO-1 expression in alveolar

macrophages reflects the activation of an M2 macrophage

phenotype polarized against oxidative stress (103, 104). In

agreement, serum heme oxygenase (HO)-1 level has been indicated

as a potential marker of acute progression of interstitial lung disease

(ILD) (105). Preclinical models of acute lung injury (ALI) (i.e.,

hyperoxia, sepsis, and ventilator-induced lung injury) have

highlighted the protective effects of the HO-1/CO system (93). In

the lipopolysaccharide (LPS)-induced lung injury mouse model, up-

regulation of HO-1 by gene transfer limited neutrophil influx and

pro-inflammatory response, protecting against ALI. This protective

effect was reproduced by treatment with CO (250 p.p.m.), resulting in

downregulation of the p38 MAPK-dependent pro-inflammatory

cytokine response and upregulation of IL-10 (20). Furthermore,

gene transfer of HMOX1 also protected against ALI induced by

influenza A virus infection, reducing the influx of inflammatory cells

(106). Neutrophil accumulation is a major cause of damage in many

lung diseases, including cystic fibrosis (CF). Macrophages from

patients with CF have been observed to exhibit a defect in the

heme oxygenase-1 (HO-1)/carbon monoxide (CO) pathway. Recent

evidence has shown that systemic administration of PP-007, a CO

releasing/O2 transfer agent, rescues the PI3K/HO-1 axis in CF

macrophages and decreases the hyperinflammatory response to
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LPS, suggesting the HO-1 pathway as a potential candidate

therapeutic target (107). This is consistent with the abundant

expression of HO-1 observed in monocytes/macrophages

responsible for resolving the inflammatory response, whose

dysregulation leads to hyperinflammation in CF, asthma, COPD

and fibrotic lung diseases (108, 109). Human respiratory syncytial

virus (hRSV) is the leading cause of severe lower respiratory tract

infections in children. Upregulation of HO-1 with cobalt

metalloporphyrin protoporphyrin IX (CoPP) in hRSV-infected

mice significantly reduced disease-related body weight loss and

induced an upregulation of IFN-a/b in the lungs, indicating that

HO-1 plays an important role in the development of the antiviral type

I IFN response in the airways (106). Despite no direct evidence has

been collected on the connection between HO-1 and COVID-19

severity, HO-1 expression has been reported in these patients and its

serum levels have been proposed as a useful marker for evaluating

disease severity (110, 111).
HO-1 in neurodegenerative disorders

The upregulation of HO-1 in the central nervous system (CNS)

constitutes a mechanism of cellular adaptation to stress, which

crucially mediates the resolution of neuroinflammation through the

activation of antioxidant, antiapoptotic and anti-inflammatory

properties (112). In agreement, much evidence indicates a

cytoprotective effect of HO-1 in the pathogenesis of

neurodegenerative diseases, including amyotrophic lateral

sclerosis (ALS), including Alzheimer’s disease (AD), Huntington’s

disease (HD) and Parkinson’s disease (PD) (113). Accordingly,

while Nrf2-dependent activation of HO-1 is related to a protective

and beneficial effect in neurons, this pathway drives the

transcription of genes involved in iron quenching, chelation and

transport (114, 115), as well as in prevention of lipid peroxidation

(116, 117), resulting cytoprotective action on cells and tissues.

In contrast, in conditions of excessive stress, the high

production of this enzyme, as well as its metabolites by neuronal

or immune cells, favors the deposition of mitochondrial iron and

the depletion of bioenergy, which favors the development of

degenerative diseases such as multiple sclerosis (MS) or

Alzheimer’s disease (118).

Abnormal pathways of HO-1 induction via unconventional

signaling pathways have been investigated. Among these,

accumulation of p62, also known as sequestosome 1 (SQSTM-1)

and A170 (119), sequesters Keap1 into aggregates, resulting in

the inhibition of Keap1-mediated Nrf2 ubiquitination and its

subsequent degradation by the proteasome (120). Consistently, in

neurodegenerative diseases it was observed an imbalance in the

signaling pathway of HO-1 induction, leading to the loss of normal

tissues and immune homeostasis, cellular deterioration and

progressive development of neurodegeneration (114). In “stressed”

astrocytes, excessive HO-1 activity can lead to mitochondrial iron

sequestration, macroautophagy, pathological iron deposition, and

bioenergy depletion, which contribute to the development of

neurodegenerative diseases such as Alzheimer’s disease (AD),

Parkinson’s disease (PD), and Huntington’s disease (HD) (121).
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HO-1 in multiple sclerosis

Multiple Sclerosis (MS) is a central nervous system

demyelinating neurodegenerative immune-mediated disease

characterized by the production of inflammatory lesions in the

brain, optic nerve and spinal cord (122). This disorder is also

marked by a pro and anti-inflammatory cytokine imbalance, which

leads on one side to a progressive degeneration of oligodendrocytes

and axons, from another to the proliferation of astrocytes (114). The

importance of an equilibrium in the expression of HO-1 appears as

a pivotal requirement for the maintenance of protective effect and

immune homeostasis preventing the progression of the disease. In

the early stage of muscular atrophy, the enzyme plays the role of

essential regulator of cytoprotective responses (123).

It was reported that the excessive downregulation of Nrf2/HO-1

signaling pathway substantially enhances neuroinflammation and

immune dysregulation associated with oligodendrocyte loss,

advancing the stage of disease (114). Moreover, a severe reduction

of HO-1 expression in peripheral mononuclear cells (PBMCs) from

MS patients was demonstrated during the exacerbation of this

disorder (124). The Experimental autoimmune encephalomyelitis

(EAE) model has been frequently used to better understand the dual

and intricate role of HO-1 in inflammation and its contribution to

the immune system in MS (123, 125). It was observed that during

the acute phase of disease, EAE mice show increased levels of HO-1

expression in microglia, astrocytes and oligodendrocytes (126).

Furthermore, the chronic and constant upregulation of HO-1 by

oligodendrocytes has been associated with a damage in glial cells,

leading to induction of cell death and severe inflammation.

Moreover, the plaques deposed in the spinal cord, during the

progression of the disease, show a strong mitochondrial iron

deposition induced by the secretion of IL-1 and TNF and

provoked by the elevated expression of HO-1 (118).

If on one side the chronic over-expression of HO-1 results

detrimental, on the other Hmox1-deficient mice showed an

aggravated disease, because of the absence of cytoprotective effects

elicited by the HO-1\CO axis. Interestingly, the protective features

of HO-1, and in particular of CO, in MS has been associated with

the inhibition of both CD4+ and CD8+ T cell activation and MHC II

expression by antigen-presenting cells, including DCs, microglia

and infiltrating macrophages (126). Induction of HO-1 expression

by iron-containing porphyrin hemin and treatment with the CO

donor CORM-A1 protects EAE mice from acute disease, showing

improvement in clinical score and reduced incidence of disease

infiltration by polymorphonuclear cells (123). Although the

mechanism of protection of HO-1 in EAE remains to be

investigated, the immunomodulation and cytoprotective

properties it exerts on the central nervous system likely provide a

preventative role in neuroinflammatory diseases.
HO-1 in Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder

characterized by a set of brain lesions caused by the accumulation

of different proteins such as the b-amyloid in fibrillary plaques,
Frontiers in Immunology 07
which give rise to a severe state of inflammation and consequent

tissue damage (127). In this setting, the maintenance of the

expression’s balance in HO-1 signaling pathway appears crucial

in controlling the disease progression. Accordingly, in neuronal

cells this enzyme plays a protective role, mediating the conversion

of prooxidant heme into its degradation and antioxidant products

biliverdin (BV) and bilirubin (BR), which are crucial in the

promotion of an appropriate tissue redox microenvironment

(112, 128). It is established that HO-1 is over-expressed in the

brain of AD patients, mainly in the hippocampus cerebral cortex,

and is co-localized to neurons and neurofibrillary tangles. During

acute brain damage this cytoprotective enzyme can be subjected to a

protracted up-regulation leading to a detrimental effect for the

neuronal tissue (115). The accumulation of mitochondrial iron,

enhanced by glial HO-1 activity, leads to toxicity, protein

accumulation and neuronal death. Further, the abnormal brain

iron mobilization may amplify the oxidative stress and contribute to

the progression of AD (129). Supporting the importance of the

homeostatic equilibrium in HO-1 expression in AD, recent studies

demonstrated that inhibition of HO-1 up-regulation in microglia

reduces inflammation in brain lesions (118). Finally, the

detrimental upregulation of HO-1 in cerebral AD patients,

compared to age-matched non-dementia individuals, makes this

enzyme a possible biomarker and therapeutic target for AD (130).
HO-1 in Parkinson’s disease

Parkinson disease (PD) is a neurodegenerative disorder

characterized by the progressive loss of dopaminergic neurons in

substantia nigra, linked to the chronic movement disorder. Also,

neuroinflammation and the presence of Lewy bodies, formed by the

accumulation of intracellular aggregation of a-synuclein protein,

result dangerous for brain loss of function (131, 132). As for other

neurodegenerative diseases, also in PD patients the role of HO-1 has

been studied for a long time. Of relevance, HO-1 appears

overexpressed both in brain and plasma of Parkinson patients

and its upregulation by astrocytes promotes the a-synuclein
production, with consequent brain impairment and toxicity (115,

118). Lewy bodies contain a huge amount of iron and the

overexpression of HO-1, together with its metabolites, contributes

to the increase in its concentration. Augmented free iron is also

observed in microglia and substantia nigra of PD patients leading to

an impairment of cognitive abilities and neuronal iron-induced cell

death, with progression of the disease (133). Consistently, it is

observed that the upregulation of Nrf2 triggers with cerebral injury

and disease progression, making high the expression of HO-1 (134).
HO-1 in cardiovascular diseases

In spite the decline in mortality observed in recent decades,

cardiovascular diseases still remain the main cause of death

worldwide (135) and represent a urgent unmeet clinical need.

Physiological HO-1 expression levels are usually low in most

body areas, but increase in response to pathological stimuli, to
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buffer ongoing inflammation. This key role of HO-1 in tissue

homeostasis has been documented by various studies and,

remarkably, its cardioprotective effects emerge through its ability

to regulate inflammatory processes and mitochondrial functions

(30), ultimately mitigating damage to the cardiovascular system

(136). Macrophages represent a functionally plastic (137)

homeostatic population present in virtually all tissue, where they

maintain proper organ functions, in part by recycling iron,

regulating heme acquisition and decomposition (138).

Macrophages are claimed as central players in the pathogenesis of

various cardiovascular diseases (i.e. atherosclerosis, thrombosis and

myocardial infarction), through local production of inflammatory

cytokines and factors leading to oxidative stress (139). However,

their ability to express HO-1 ensures antioxidant defenses and

provides cardioprotective and reparative activities (140). As such,

pathways of macrophages differentiation and identification of HO-

1-expressing subsets may provide new strategies to control tissue

injury and/or repair.
HO-1 shapes the anti-inflammatory
phenotype of macrophages in CDVs

HO-1 expression by macrophages critically integrates their M2

polarized phenotype, with specialized anti-inflammatory functions

(60). Previous studies have demonstrated that HO-1 null

macrophages display increasing levels of ROS, enhanced release

of proinflammatory mediators and increased levels of oxLDL

scavenger receptor A (SR-A) expression (141). Moreover, in

response to bacterial products (i.e. lipopolysaccharide) HO-1 is

recruited to the cell membrane caveolae through p38 MAPK-

dependent mechanism, blocking the activated proinflammatory

signaling cascade (142). Moreover, stimulation of macrophages

with the anti-inflammatory interleukin-10 (IL-10) activates HO-1

expression in a p38 MAPK-dependent manner (92), while the

protective activity of IL-10 in response to LPS stimulation is

significantly abrogated after the administration of an HO-1

inhibitor. This evidence corroborates the hypothesis that

engagement of HO-1 in response to IL-10 is an integral part of

the resolution phase of the inflammatory response (143).

The idea of targeting HO-1 in the myeloid cell compartment

appears advantageous because the main functions of the heme-HO-1

system have been highlighted in the myeloid-mononuclear system (7,

144, 145) and because cardiac healing after myocardial ischemia

depends on the recruitment and local expansion of myeloid cells,

particularly macrophages (146). Macrophages play a key role in the

physiological processes of the cardiovascular system, such as cardiac

contraction (147) and control of blood pressure (148), as well as in

pathology, including clearance of necrotic tissue, tissue remodeling and

self-renewal (149). Consistently, hemin-induced HO-1 expression

provides cardioprotective activity, attenuating ischemic-induced

cardiomyocytes senescence and preventing myocardial infarction

(150). In agreement, mice deficient for Bach1, a negative regulator of

the HO-1-inducing transcription factor Nrf2 (151), have dramatically

higher HO-1 expression in the heart and display resistance to ischemia-

reperfusion-induced myocardial injury (61, 152). The role of HO-1 in
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alternative M2 activation of macrophages was further confirmed in

Bone marrow–derived macrophages (BMDMs) from myeloid-specific

Hmox1–knockout mice, that showed increased expression of

proinflammatory M1-related mediators as CXCL10, IL-1b, and
monocyte chemoattractant protein 1 (MCP-1), along with increased

M2-related markers (i.e. Arg1 and CD163) (61). The scavenger

receptor CD163, in particular, mediates the internalization and

clearance of hemoglobin haptoglobin (Hb-Hp) complexes, thus

providing a fundamental step of heme metabolism, and is mostly

expressed by macrophages (153).

Of relevance, the chemokine ligand CXCL4/PF4 inhibits CD163 in

macrophages, compromising their phagocytic function and

exacerbating the progression of atherosclerosis (154). However,

alternatively activated, hemoglobin-scavenging CD163+ macrophages

are present within atherosclerotic lesions and were also proposed to

promote angiogenesis, vessel permeability, and leucocyte infiltration,

via the CD163/HIF1a/VEGF-A pathway, thereby exacerbating plaque

progression (155). Of note, CD163 exists also as soluble form of CD163

(sCD163), whose levels are induced by Inflammatory factors, including

LPS, through activation of tumor necrosis factor‐a–converting enzyme

(TACE/ADAM) metallopeptidase (156). Importantly, sCD163 levels

were recently associated with established CVD risk factors and with

carotid intima media thickness (157).
HO-1 in ischemic conditions

The heart is enriched in the number of mitochondria due to its

high metabolic demand, making it particularly sensitive to oxidative

stress (158). Dysfunctional coronary blood flow following a heart

attack usually leads to a hypoxic condition that promotes greater

release of free radicals and causes ischemic heart disease, that may

activate a persistent inflammatory condition fueling oxidative

damage and the development of heart failure (159). In response to

oxidative stress, an activated transcription factors signatures (i.e. the

nuclear factor erythroid 2-related factor 2/Nrf2, NF-kB, AP-1 and

Bach1) leads to HO-1 upregulation (160), likely involved in the

defense against pathophysiological stress (161). In particular, Nrf2

binds to the Maf proteins and activates the antioxidant response

element (ARE), sustaining and triggering the expression of HO-1

(162). Nrf2 has been appointed as one of the key modulators of

related genes involved in the antioxidative process, as glutathione S-

transferase (GST), g-glutamyl cysteine synthetase (g GCS) and HO-1

(163). During ischemic heart injury, neutrophils are rapidly recruited

to the injured myocardium to initiate the inflammatory phase. The

transition to resolution is promoted by macrophage efferocytosis of

dying neutrophils, characterized by a time and context-dependent

phenotypic M2 polarized switch, toward repair and resolution; Treg

release of anti-inflammatory signaling also facilitates resolution (164).

Importantly, mice with cardiac-restricted HO-1 overexpression

resisted ischemia/reperfusion (I/R) injury, with improved

contractibility and reduction of infarct size, oxidative damage,

inflammatory cell infiltration and apoptosis (150).

Metabolites resulting from heme degradation, bilirubin and

biliverdin (165), are reducing species and powerful antioxidants,

mostly produced in the spleen following hemoglobin degradation
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by HO-1 (113). Coherently, low levels of BR correlate to

cardiovascular risk, such as ischemic heart disease and

hypertension (166).
HO-1 in myocardial infarction

Myocardial infarction is the most acute manifestation of ischemic

heart disease and one of the most life-threatening cardiovascular

emergences (167). Risk factors also include arterial hypertension,

smoking, dyslipidemia, diabetes mellitus, inactivity and early

development of atherosclerosis, while elevation of myocardial

infraction is found to be one of the cardiac emergency encountered

with COVID-19 pandemic (168). ROS are involved in pathological

myocardial dysfunction and their elimination through the antioxidant

activity of HO-1 can be considered a potential therapeutic approach.

Various cell types contribute to the triggering of sterile inflammation

during tissue injury and myeloid cells, particularly resident cardiac

macrophages of the myocardium, are involved in the regulation of

primary innate immune response, stimulated by the activation of PRRs

by Damage-associated molecular patterns (DAMPs). This release

activates transcriptional factors, such as IRF, NF-kB and AP-1,

causing the production of proinflammatory molecular mediators in

the damaged heart (169). Suppression of these transcriptional pathways

changes the macrophage phenotype favoring an anti-inflammatory

M2-like polarization state, expressing pro-angiogenic properties,

reducing pathological cardiac remodeling and preserving the

ventricular rupture.

During MI, the recruitment of neutrophils and macrophages,

enabled by the up-regulation of specific chemotactic signals of the

CXC (CXCL2 and CXCL5) and CC (CCL2 and CCL5) chemokine

families, guarantees the first line of defense (170, 171). More in-

depth studies have shown that the healing process occurring after

MI involves the early recruitment of inflammatory Ly-6Chigh and

the subsequent accumulation of reparative Ly-6Clow monocytes/

macrophages. Such transition was shown to be controlled by the

Nuclear Receptor Subfamily 4 Group A Member 1 (Nr4a1), which

crucially modulates both the early Ly-6Chigh monocyte

inflammatory and the later Ly-6Clow macrophage reparative

phases in the infarcted myocardium (172). It has also been

observed that the ischemic myocardium accumulates Ly6Chigh

monocytes in greater numbers than their availability in

circulation and that their main source is the spleen (173). Of

relevance, the post-ischemic influx of Ly6G+ neutrophils and

Ly6Chigh monocytes is further exacerbated in Hmox1-deficient

hearts, while treatment with recombinant adeno-associated virus

(rAAV)-encoding human Hmox-1 reverses such phenotype and

attenuates post-ischemic inflammation, in a murine ischemia/

reperfusion model (174). Consistently, HO-1 knock-out mice

showed increased tissue dysfunction post-MI, positively

correlating with a higher number of circulating Ly6Chigh

monocytes and increased number of proinflammatory

macrophages in the damaged cardiac tissue (175).

Strikingly, in neonatal mice, the heart can regenerate fully,

without scarring following MI (176). Interestingly, embryonic-

derived macrophage subsets (MHC-IIlowCCR2− and MHC-
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IIhighCCR2−) resident in the adult heart and owning tissue repair

properties are lost after adult cardiac injury and are replaced by

inflammatory CCR2+ monocyte-derived macrophages that interfere

with the angiogenic process and the restoration of cardiomyocytes,

thus establishing a reduced regenerative potential (177). This

evidence appears in line with the observation that proinflammatory

monocytes and monocyte-derived macrophages support the

reduction of tissue-resident macrophages (176). Of note, after 3

weeks of MI, Hmox1-deficient mice express a pool of blood

monocytic cells associated with expansion of cardiac macrophages

overexpressing the CD11c marker (175), previously shown to release

large amounts of inflammatory cytokines (i.e. IL-1b, TNF-a
and IFNg).
HO-1-expressing macrophages
in atherosclerosis

Coronary heart diseases are clinical manifestations of

atherosclerosis, a process characterized by the development of

atherosclerotic plaques that can lead to obstruction coronary

arteries, ischemia of the cardiac tissue and myocardial infarction.

Such process is supported by circulation of elevated levels of low-

density lipoprotein (LDL), undergoing oxidization and

accumulating at the level of the intima wall of the vessels. Uptake

of oxidized LDL by monocyte-derived macrophages and smooth

muscle cells leads to the formation of foam cells which accumulate

lipid droplets and crucially contribute to development of

atherosclerosis. Infiltrating monocytes are chemoattracted in the

inflamed intima, migrating through the vascular wall and

generating the primary atherosclerotic lesion, also identified as

fatty streak (178).

Activated inflammation at the plaque level releases a cohort of

inflammatory mediators that can induce cell death and the

development of a central necrotic core, which favors plaque

rupture (178). Based on this, emerging therapeutic strategies aim

to target and mitigate inflammatory circuits that support plaque

development and fragility. Several reports proved the HO-1

expression in atherosclerotic plaques (141), as well as its role in

the early stages of atherosclerosis. This is in line with the

detrimental role exerted by oxidative stress on the arterial wall in

proatherogenic conditions (i.e. diabetes, hypertension or

hyperlipidemia) (179). In agreement, it was shown that increased

HO-1 activity markedly reduces the chemotactic recruitment of

monocytes after exposure to oxidized LDL. It has in fact been

verified that the induction of HO-1 by pharmacological or gene

transfer approaches may prevent atherogenesis in preclinical

hypercholesterolemic murine model (180). In analogy, genetic

ablation of HO-1 amplified the development of atherosclerotic

lesions and promoted their progression, thus confirming the

protective role of HO-1 against atherogenesis (181).

In this scenario, a number of reports suggest that release of

heme from intraplaque hemorrhage induces an atheroprotective

macrophage phenotype (182–185); indeed, in the complex

atherosclerotic plaques’ microenvironment, macrophages are

simultaneously exposed to a variety of stimuli and, accordingly to
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their known functional plasticity, they polarize into multifunctional

subsets which collectively cooperate to determine the dynamic

evolution of the inflamed plaque, thus influencing atherosclerosis

progression (184, 186, 187). In particular, in addition to the

continuum of macrophage polarization states described within

the M1 and M2 functional extremes (137), plaque-specific

macrophage phenotypes, including Mhem and M(Hb)

macrophages, related to the presence of hemoglobin and

erythrocytes, have been recently identified, which play

atheroprotective roles by preventing foam cell formation and lipid

accumulation, as they highly express genes associated with reverse

cholesterol transport, such as liver X receptor a and b (LXR-a;
LXR-b) and the ATP-binding cassette transporters ABCA1 and

ABCG1 (188–190). Due to the increased expression of molecules

involved in cholesterol efflux, M(Hb) macrophages are

characterized by low levels of lipid accumulation. In particular, M

(Hb) macrophages typically express high levels of mannose receptor

CD206 and the scavenger receptor for the hemoglobin/haptoglobin

(Hb/Hp) complex CD163, participating in the hemoglobin

clearance after plaque hemorrhage. These macrophages are

described to produce both anti- (IL-10, IL-1Ra) and pro-

inflammatory (VEGF, IL-1b) cytokines, while producing less ROS

than other macrophage subtypes and display low iron accumulation

because of the upregulation of ferroportin (FPN) (191).

After endocytosis of the Hb/Hp complex and erythrocytes, the

released heme group primes intraplaque macrophages polarization

toward a Mhem phenotype, with consequent activation of the 5′-
AMP-activated protein kinase (AMPK) and the downstream

transcription factor 1 (ATF1) (188, 189). Activation of the ATF1/

MAPK signaling pathway therefore leads to the expression of HO-1,

LXR-a/LXR-b, and ABCA1/apolipoprotein E (APOE) cascade,

preventing foam cell formation. Thus, since iron levels in

macrophages may drive cholesterol efflux, targeting macrophages

environment manipulating iron levels and/or iron metabolism-

related molecules could interfere with the generation of foam cells

and the development of atherosclerosis.

Conversely, proatherogenic roles of CD163+ macrophages are

also reported (155, 192, 193); indeed, in human and mouse

atherosclerotic lesions M(Hb) CD163+ macrophages are also

associated with promotion of angiogenesis, vessel permeability,

and leucocyte infiltration through a mechanism involving Hb/Hp/

CD163/HIF1a-mediated VEGF induction (194). Therefore, the

plasticity of these cells makes the scenario more intricate,

suggesting that the complete definition of the role of macrophage

subpopulations in plaque needs to be further clarified.
HO-1-expressing macrophages
in hypertension

Arterial hypertension is associated with an increased risk of

cardiovascular disease (CVD) and is responsible for more than 10

million deaths every year (195, 196). While endocrine and

renovascular disorders are responsible for secondary hypertension

in 5 and 15% of hypertensive patients, primary hypertension refers

to patients in which no underlying cause has been found (197).
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Despite its clinical relevance, the causes for its occurrence still

remain unclear, although the role of angiotensin II (AngII) in its

development has been described. In fact, AngII, via its AT1 receptor,

promotes cell growth, inflammation, vasoconstriction, apoptosis,

production of extracellular matrix components and the release of

ROS (9, 198). Specifically, the increase in the renin-angiotensin

system and sympathetic activity contributes to the macrophage

mobilization and to its polarization towards the pro-inflammatory

phenotype (199). A low degree of inflammation facilitates vascular

oxidative stress, leading to the vascular alterations accounting for

increased peripheral vascular resistance (200, 201). The regulatory

role of heme availability for the synthesis of enzymes such as

cyclooxygenase or nitric oxide synthase, both involved in

hypertension development, seems to be responsible for many of

the beneficial effects of HO-1. Oxidative activity, in fact, activates

cyclooxygenases (COX), with the consequent production of

prostaglandins and thromboxanes, both contributing to vascular

alterations and enhances inflammatory responses (202). HO-1 has

been shown to protect against oxidative and inflammatory insults in

hypertension, reducing organ damage and blood pressure, not only

by its expression at the vascular level, but also by shifting

macrophages toward the anti-inflammatory phenotype (203, 204).

Moreover, the antioxidant, anti-inflammatory, antiapoptotic, and

antiproliferative effects of the end products of HO-1 activity would

also provide protective functions (199). In particular, bilirubin (BR)

is one of the most powerful plasma scavenger of ROS and RNS,

inhibiting lipid peroxidation and peroxynitrite-mediated

oxidations, protecting against H2O2 toxicity and increasing NO

half-life (205–207). Coherently, an inverse relationship between

plasma BR levels and systolic blood pressure was reported (208,

209). Consequently, it was suggested that BR might prevent

oxidant-induced microvascular leukocyte adhesion and attenuate

endothelial cell dysfunctions (210), thus limiting inflammation-

driven hypertension (211, 212). Overall, it appears that

pharmacological modulation of oxidative stress and inflammatory

macrophages could represent a viable therapy for the control of

hypertension. The HO-1 product CO is also a potent modulator of

cellular signaling molecules (i.e. p38 MAPK, ERK1/2, JNK, Akt,

NF-kB), which targets mitochondrial activity affecting energy

balance and cellular functions (213). Abnormalities of the heme

oxygenase/carbon monoxide system have been critically linked to

vascular contractility, increased oxidative stress, and imbalanced

cellular apoptosis and proliferation in the vascular wall (214). In

agreement, Broard et al. have also demonstrated that CO negatively

regulates endothelial cell apoptosis, triggering the activation of p38

mitogen-activated protein kinase (MAPK -p38) (215), while

pharmacological induction of HO-1 activity decreases blood

pressure in spontaneously hypertensive rats (214).
HO-1 in infections

The role of Hmox-1 and its degradation products is known to

have strong implications on the ability to control infections and

mitigate their pathological consequences (216). Its relevance in

infections is further highlighted by the worrying growth of
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antibiotic-resistant bacterial strains and the continuous appearance

of new viruses. In the present section, we discuss emerging evidence

on the crucial role of HO-1 in infectious diseases caused by bacteria

and viruses.
Bacterial infections

Mycobacterium tuberculosis (Mtb). HO-1 is expressed in lung

tissues and is activated by stress signals, including ROS and

inflammatory mediators (217, 218). Its contribution in

modulating the host response to Mycobacterium tuberculosis

(Mtb) infection and controlling disease progression is still highly

controversial. It has been previously reported that Mtb infections

can induce HO-1 expression in macrophages in vitro and in lung

tissue in vivo (219). Its activity in macrophages and lungs is

associated with increased heme degradation which promotes CO

production. The release of this gaseous molecule, acting as

regulatory ligand the heme two-component sensor kinases DosS

and DosT, induces the complete Mtb dormancy (Dos) regulon (220,

221), thus promoting the bacilli quiescence and the establishment of

a latent infection. A published study by Costa et al. supports the role

of HO-1 in Mtb survival and replication in the host. The authors

observed that SnPPIX-mediated inhibition of HO-1 significantly

reduced lung bacterial load, with comparable to the effects achieved

with conventional antibiotic therapy. Furthermore, the

combination of SnPPIX and antibiotic therapy promoted faster

resolution of Mtb infection (222). More recently, the same group

found that SnPPIX treatment causes a reduction in intracellular

iron availability in activated macrophages, along with an increase in

IFNg-induced NOS2 expression and subsequent NO production,

resulting in more effective control of bacterial replication. The

authors proposed that HO-1 promotes bacterial survival and

proliferation in host cells, through an iron-dependent intracellular

mechanism (223). However, contrasting evidence by Chinta et al.

indicates that expression of HO-1 in the lungs of patients with

Tuberculosis is associated with lower ROS and RNS production.

The authors reported in Hmox1-deficient mice that lack of HO-1

expression in the damaged lung regions is positively related to an

enhanced ROS and RNS production by neutrophils and

macrophages, as well as with increased susceptibility to Mtb

infections (224).

It should be noted that in the study proposing HO-1 as a

promoter of Mtb infections, HO-1 activity was hindered by

pharmacological inhibitors, whereas Chinta et al. conducted their

experiments on Hmox1-deficient mice. These different approaches

used may make it more difficult to interpret the mechanisms

underlying MtB infection, since HO-1 deficiency was shown to

cause important hematopoietic abnormalities (225). However, the

protective action of HO-1 has been reported using another

Mycobacterium species (i.e. Mycobacterium avium), in which

mice genetically deficient in HO-1 were found to be more

susceptible to infection. In particular, HO-1 deficiency resulted in

an accumulation of heme which exerts a cytotoxic effect in infected

macrophages, increasing their necrotic death and the consequent

release of proinflammatory cytokines (226).
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More recently, the importance of the NRF2/HO-1 pathway in

determining the outcome of M. avium infection has been

demonstrated, thanks to its role in inducing granuloma formation

in infected tissue, to counteract bacterial replication (227).

Together, these findings might suggest a stage-dependent effect of

HO-1, with a cytoprotective role in the initial stages of

Mycobacterium infection, which is gradually lost during disease

progression, due to massive heme release and subsequent ROS

production and oxidative stress (228).
Salmonella thyphimurium

Infection with S. Typhimurium causes severe gastroenteritis,

whose associated inflammatory response is essential for this

pathogen to colonize the intestinal tract (229). The intestinal

inflammation induced by the infection causes an important

dysbiosis, associated with disruption of the colonization barrier,

with symptoms that typically include weakness, prostration, fever,

and diarrhea, which become particularly problematic in

immunocompromised individuals (230) . Similar ly , to

Mycobacterium infection, investigation of HO-1 role in infections

with Salmonella highlighted its dual role in the outcome of the

disease. A great number of studies unravel the protective role of

HO-1 in the infections with this pathogen. Particularly, in an in vivo

murine model of salmonellosis, HO-1 inhibition with ZnPPIX

resulted in an increased apoptosis of liver cells. The mechanistic

association of the defective action of HO-1 with a higher

susceptibility to S. thyphimurium infection, was validated in vitro,

where HO-1 pharmacological inhibition led to a reduced bacterial

killing capacity of macrophages (231). Accordingly, treatment with

CoPPIX, an inducer of HO-1, in mice infected with S.

thyphimurum, may afford protection against the enterocolitis

caused by the pathogen (102). In contrast with the above studies,

other studies have observed that the ZnPPIX pharmacological

inhibition of HO-1 in RAW 264.7 cells, is related to an increased

ROS and RNS production that counteract S.thyphimurum survival

upon infection, suggesting a detrimental HO-1 effect on disease

outcome (232).
Listeria monocytogenes

The Gram-positive bacterium L. monocytogenes is borne

through contaminated food and infection with this pathogen

generally results into mild gastroenteritis. Nonetheless, in elderly

or immunocompromised individuals L. monocytogenes infection

can lead to severe illnesses, including severe sepsis, meningitis, or

encephalitis, that at times may eventually lead to death (233). The

literature reports studies both in favor of the protective effect of

HO-1 against L. monocytogenes, as well as in favor of its infection-

promoting action. That said, in response to poly I:C treatment, mice

with myeloid-specific deletion of HO-1 infected with L.

monocytogenes showed lower levels of IFNg in the blood, along

with improved survival (234). Indeed, myeloid-specific HO-1 is

required for the activation of IFN regulatory factor (IRF) 3 and for
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the production of IFN-b, with the latter increasing the severity of L.

monocytogenes infection (235, 236). Wang and colleagues observed

that L. monocytogenes infection elicits the Tim-3 receptor signaling

pathway in macrophages, which inhibits the NRF2 nuclear

translocation causing the sequential decrease of HO-1 expression.

This mechanism results in an increased susceptibility to L.

monocytogenes in vivo and in vitro, indicating that HO-1 is

instead required to limit the bacterial replication during the

infection (237). This puzzling scenario of interpretations on the

role of HO-1 clearly indicates that we still need to fully understand

how to regulate its activity during the different phases of bacterial

growth, into the different infectious contexts.
Viral infections

Recent studies demonstrate that HO-1 has significant antiviral

activity against a wide variety of viruses (e.g., influenza virus,

respiratory syncytial virus, HIV, hepatitis C virus, hepatitis B

virus, enterovirus 71, dengue and Ebola virus) and that this

activity may occur through the heme degradation products

biliverdin and carbon monoxide, able to respectively inhibit the

function of viral proteases and reactive oxygen species production
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(238). HO-1 indirectly also promotes an antiviral state by inducing

activity of IRF3 and the activation of type I IFN antiviral

functions (239).

Human Immunodeficiency Virus (HIV).Human immunodeficiency

virus (HIV). The human immunodeficiency virus (HIV) is the causative

agent of acquired immunodeficiency syndrome (AIDS). The available

antiretroviral therapies represent the first line of treatment for AIDS,

contributing significantly to reducing the number of deaths (240), but to

date it appears unlikely that they will exterminate the virus. In this

context, several reports dissected the role of HO-1 in HIV infection,

associating its activity with the suppression of the virus replication. HO-1

induction by Hemin treatment significantly suppressed infection and

viral replication of both monocytes and T cells inoculated with R5, X4,

R5X4 tropic viral strains. Such effect was consistent with the inhibition of

Tat-dependent activation of long terminal repeat (LTR) viral promoter.

Consistently, the HO-1 inhibitor tin-protoporphyrin-IX (SnPPIX)

hampered the macrophage resilience allowing the progression of the

infection, indicating that the antiviral protective mechanisms in

monocytes are mediated by HO-1 activity (241). Along with this, it

was reported that bilirubin hinders the protease activity of HIV, thus

affecting virus replication (242). Altogether, the above studies suggest the

protective role of HO-1 and heme catabolism against HIV

infection (242).
FIGURE 2

Distinct roles of myeloid HO-1+ cells in pathology. Multifaced functions of HO-1+ myeloid cells during the onset and progression of several diseases,
depending on the pathological contest. MI, myocardial infarction; MS, multiple sclerosis; PD, Parkinson’s Disease; AD, Alzheimer Disease; RA,
rheumatoid arthritis; Lysteria M, Lysteria Monocytogenes; Salmonella T, Salmonella Thyphimurium; IBD, Inflammatory Bowel Diseases; LD,
Lung Diseases.
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Severe acute respiratory syndrome
coronavirus 2

SARS-CoV-2 is the causative agent of COVID-19, that can

progress to severe pneumonia with acute respiratory distress

syndrome (ARDS) (243). The recent studies of the HO-1 role in

the onset of the disease and its progression are still obscure.

According to few recent studies, treatments with hemin can

attenuate cytokine storms in animal model of sepsis, indicating

the putative role of HO-1 in the protection against the cytokine

storm syndrome observed in COVID-19 patients (244). Moreover,

using a renal cell line (Vero76) infected with SARS-CoV-2 and

treated with hemin, it was observed a reduced virus replication,

indicating the anti-viral role of HO-1 (245). Singh et al. proposed

HO-1 as a protective molecule in the early and late stages of SARS-

CoV-2 infections. In fact, the induced expression of HO-1,

promotes the expression of type I interferon, which coordinates

the anti-inflammatory anti-viral host responses and therefore might

protect against the damage from exacerbated oxidative stress (246).

However, the role of HO-1 in determining the severity of the

infection remains partly to be clarified, as recent the stratification

of patients into survivors and non-survivors showed a significant

increase of blood HO-1 mRNA levels in the later (247).

HO-1 can be released into plasma by leukocytes, macrophages,

smoothmuscle cells, and endothelial cells activated by oxidative stress

or inflammation (248). Grigorov et al. suggested that serum HO-1

concentrations upon hospital admission of COVID-19 patients could

be a useful biomarker for clinical management, proposing that the

increase of HO-1 in the early stage of the disease could be beneficial,

as it would provide protection against oxidative stress and

inflammation (249). However, increased HO-1 expression is not

necessarily linked to increased heme catabolism and hemolysis, but

could rather be a possible consequence of the inflammatory response

as, paralleling the upregulation of blood HO-1, was also reported a

significant increment of serum ferritin levels (249), an acute phase
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reactant that can induce anti-inflammatory response by reducing the

damage caused by free radicals (250, 251).
Conclusions

Accumulating evidence point to the multifaced functions of the

inducible HO-1 form as critical determinants of disease

development since, depending on the pathological contest, its

anti-inflammatory and antioxidant properties may elicit beneficial

or detrimental effects. While a general protective role of HO-1 has

being highlighted in autoimmune, immune-mediated and

cardiovascular diseases, development of different infection and

cancers benefit from its enzymatic activity (Figure 2). Several

HO-1 agonists and antagonists have been used to investigate its

physiological and pathological roles and to develop new potential

therapeutic strategies (Table 2). New studies now aim to define the

transcriptional mechanisms and differentiation and maturation

pathways that regulate HO-1+ myeloid populations in pathology.

Transcriptional (i.e. Nrf2, Maf, AP-1, p50 NF-kB) (7, 252) and

epigenetic events (83), as well as microenvironmental conditions

(i.e. hypoxia) (253) finely tuneHmox-1 gene expression. Above this,

new emergency pathways of hematopoiesis display the capacity to

promote expansion of circulating monocytes and macrophages

endowed with HO-1 activity (7) (Figure 3). Understanding the

interconnection between local (microenviroment) and remote

(emergency myelopoiesis) mechanisms of HO-1 regulation could

improve our ability to therapeutically target its functions in disease,

also considering its dynamic and stage-dependent activity observed

in distinct pathological contexts. Furthermore, making the biology

of HO-1 even more intricate, a body of evidence indicates that the

anti-inflammatory role of HO-1 predominates in the early stages of

the experimental inflammatory diseases. Indeed, hemin-like

compounds or adoptive transfer of hemin-activated macrophages

reduced caerulein-induced pancreatitis, serum amylase and lipase,
TABLE 1 List of abbreviation and acronymous used in the manuscript.

Abbreviation Definition Abbreviation Definition

AMPK 5′-AMP-activated protein kinase LL2 Lewis lung carcinoma

AD Alzheimer's disease LXR liver X receptor

ALS amyotrophic lateral sclerosis M(Hb) hemoglobin-stimulated macrophages

AngII angiotensin II MAPK mitogen-activated protein kinase

AP-1 activator protein-1 MCP-1 chemoattractant protein 1

APOE apolipoprotein E Mhem macrophages heme

Arg1 arginase 1 MI myocardial infarction

ATF1 transcription factor 1 MN/MCA1 fibrosarcoma

B16/F10 melanoma MS Multiple Sclerosis

BMDMs Bone marrow–derived macrophages Mtb Mycobacterium tuberculosis

(Continued)
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decreased pancreatic trypsin generation, and protected from lung

injury (254), while activation of the NRF2/HO-1 pathway, through

administration of Cobalt protoporphyrin IX (CoPP), induced

macrophage differentiation toward a MarcohiHmox1hi anti-

inflammatory erythrophagocytic phenotype, contributing to an

overall decreased inflammatory profile in a murine model of

colitis (255). However, the anti-inflammatory action of HO-1-

inducing compounds observed in these models was evidenced

mainly during the onset phase of the inflammatory response,

while it was found to be lacking when induced after disease onset.

As discussed above, HO-1 deficiency causes important

hematopoietic abnormalities (225) and has an impact on the

regulation of innate and adaptive immune responses.

Consistently, genetic alteration of HO-1 gene is associated with
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important hematopoietic and organ dysfunctions. Sickle cell disease

(SCD) is an autosomal recessive pathology generated by a genetic

point mutation at the level of b-globin locus. The effects generated

by this mutation results in an abnormal form of hemoglobin,

characterized by red blood cell membrane rigidity and

consequently hemolysis (256). Among the pathological

complications, SCD bearing individuals shown more susceptibility

to precise bacterial infections, including Salmonella, Streptococcus

Pneumoniae and Hemophilus Influenzae, resulting in a potent risk

factor for invasive bacterial infections, where a splenic dysfunction

has been considered the main leading cause (257). Further, tissue

iron overload and anemia were previously reported in a human

patient and mice lacking HO-1 (225). It was found that resident

splenic and liver macrophages were mostly absent in HO-1-
TABLE 1 Continued

Abbreviation Definition Abbreviation Definition

BR bilirubin NF-kB
nuclear factor kappa-light-chain-enhancer of activated
B cells

BV biliverdin NK natural killer

CD163 hemoglobin/haptoglobin scavenger receptor NO nitric oxide

CNS central nervous system Nr4a1 nuclear receptor subfamily 4 group A member 1

CO carbon monoxide Nrf2 NF-E2-related factor 2

COPP cobalt protoporphyrin IX OVA ovalbumin

CORMs carbon-monoxide releasing molecules PBMCs peripheral mononuclear cells

CSF-1 colony stimulating factor 1 PD Parkinson's disease

DAMP Damage-associated molecular patterns PD-1 programmed cell death protein 1

DCs dendritic cells PD-L1 programmed death-ligand 1

EAE experimental autoimmune encephalomyelitis PDAC pancreatic ductal adenocarcinoma

EMT epithelial-mesenchymal transition PI3K phosphatidylinositol 3-kinase

FPN ferroportin RA rheumatoid arthritis

GBM glioblastoma RNS reactive nitrogen species

GST glutathione S-transferase ROS reactive oxygen species

Hb-Hp hemoglobin haptoglobin SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

HD Huntington's disease SCD sickle cell disease

HIF-1a hypoxia inducible factor SLE systemic lupus erythematosus

HIV Human Immunodeficiency Virus SnMPIX tin mesoporphyrin IX

Hmox-1 heme oxygenase 1 (gene) SnPPIX tin protophorphyrin IX

Hmox-2 heme oxygenase 2 (gene) TAMs tumor associated macrophages

HO-1 heme oxygenase 1 (protein) TME tumor microenvironment

HO-2 heme oxygenase 2 (protein) TNF tumor necrosis factor

IFN interferon TRMs tissue-resident macrophages

IL interleukin VEGF vascular endothelial ggrowth factor

IRF IFN regulatory factor ZnPPIX zinc protoporphyrin IX

LDL low-density lipoprotein
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FIGURE 3

Signaling pathways leading to myeloid HO-1 induction in pathology. The scheme shows potential interrelationships between signaling events
promoting transcriptional activation of HO-1 in myeloid cells in different pathophysiological conditions, such as tumors, cardiovascular diseases
(ischemic conditions, MI, atherosclerosis, and hypertension) neurodegenerative disorders (AD, PD), immune-mediated diseases (SLE, MS and RA)
bacterial and viral infections (Salmonella thyphimurium, Listeria monocytogenes, HIV and SARS-CoV-2). Several noxious stimuli (i.e. ROS, hypoxia,
oxidative stress, hemorrhage/heme, free iron) and inflammatory mediators (i.e. IL-6, VEGF, CSF-1, C3a, EGF, HIF-1a) as well as hemoglobin/
haptoglobin through CD163 receptor are known inducers of transcription of HO-1, primarily promoting KEAP-1/Nrf2 nuclear translocation and
nuclear export of the transcriptional repressor BACH1. Activation of MAPK/PI3K/AKT, AP-1 and NF-kB by environmental stresses and cytokines has
also been implicated in HO-1 activation. HO-1, heme oxygenase-1; MI, myocardial infarction, AD, Alzheimer’s disease; PD, Parkinson’s disease; SLE,
systemic lupus erythematosus; RA, rheumatoid arthritis; MS, multiple sclerosis; CSF-1, colony stimulating factor 1; MAPK, mitogen-activated protein
kinase; Nrf2, NF-E2 related factor-2; HIF-1a, hypoxia inducible factor; AP-1, activator protein-1; BACH1, HO-1 transcriptional repressor; ROS,
reactive oxygen species; PI3K, phosphatidylinositol 3-kinase. Created by biorender.com.
TABLE 2 HO-1’s agonists and antagonists.

Disease HO-1 agonist or
antagonist

Mechanism Impact on
disease/therapy

Cancer

LL2 and PDAC Antagonist (SnMP) (49, 53) Suppression of
immunosuppressive role

of TAMs

Decreased tumor growth
and progression

4T1 Antagonist (SnMPIX)
(43, 63)

Abrogation of TAMs pro-
angiogenic activity

Reduced metastatic spread

MN/MCA1;B16/F10 Antagonist (ZnPPIX) (7) Reduced
immunosuppressive

myelopoiesis

Increased activity of anti-PD-
1 immunotherapy

MMTV-PyMT Antagonist (SnMPIX) (22) Improved cytotoxicity of CD8
+ T cells

Increased antitumor activity
of 5-fluorouracil

GBM Antagonist (ZnPPIX;OB24)
(46, 73)

Reduced levels of PD-L1/PD-
1 and IL-10

Recovered of pro-
inflammatory,
antitumor TME

Neurodegenerative

disorders

Multiple Sclerosis Agonist (122, 125) ROS damage Increased levels of astrocytes
and oligodendrocytes

Alzheimer’s disease Agonist (111, 127) Promotion of correct tissue
redox milieu

(Continued)
F
rontiers in Immunology
 15
 frontiersin.org

https://doi.org/10.3389/fimmu.2024.1433113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Consonni et al. 10.3389/fimmu.2024.1433113
deficient conditions and that HO-1−/− macrophages died of

exposure to heme released on erythrophagocytosis. The release of

heme, following the rupture of HO-1−/− macrophages, caused

further tissue inflammation, with initial splenic enlargement

progressing to red pulp fibrosis, atrophy, and functional

hyposplenism, that recapitulated the asplenia of an HO-1–

deficient patient. This genetic evidence further highlights the key
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role of HO-1-expressing erythrophagocytes in tissue homeostasis

and iron redistribution.

It appears clear that the therapeutic potential of HO-1 in mediating

the resolution of inflammation and tissue homeostasis may reside in

specific phases of the inflammatory cascade and the regulation of

hematopoietic output, thus calling for further study to fully characterize

its therapeutic potential in different pathological contexts.
TABLE 2 Continued

Disease HO-1 agonist or
antagonist

Mechanism Impact on
disease/therapy

Reduced severe state of both
inflammation and
tissue damage

Parkinson’s disease Antagonist (114, 117, 133) Reduced iron content in
Lewy bodies

Mitigation of
neuroinflammation, cerebral

injury and a-synuclein
protein sedimentation

Cardiovascular

diseases

Ischemia Agonist (112, 160, 165) ROS damage Tissue Healing

Myocardial infarction Agonist (174, 175) Angiogenesi Cardiac remodeling and
preserving the

ventricular rupture

Atherosclerosis Agonist (181–184, 193) Reduced Foam
cells accumulation

Absence of atherosclerotic
plaques formation

Hypertension Agonist (207–213) Reduction of inflammation-
driven hypertension

Decreases blood pressure

Viral and Bacterial

infections

Mycobacterium Antagonist (SnPPIX)
(220–222)

Reduced intracellular iron
availability in macrophages

Inhibition of bacterial survival
and proliferation

Salmonella thyphimurium Agonist (224) Reduced necriotic death
of macrophages

Cytoprotective role in the
initial stages of infection

Listeria monocytogenes Agonist (CoPPIX) (101) Improved bacterial killing
by macrophages

Decreased susceptibility to
bacterial infection

HIV Antagonist (ZnPPIX) (230) Increased ROS and
RNS production

Reduced bacterial survival

SARS-CoV-2 Agonist (235) Promotion of IFN I Reduced
bacterial proliferation

Agonist (235)
(Hemin; CoPPIX)

Inhibition of viral proteases
and reactive oxygen
species production

Inhibition of Viral replication

Agonist (244)
(Hemin; CoPPIX)

Promotion of IFN I Repression of exacerbated
oxidative stress and
promotion of anti-

inflammatory response

Immune-

mediated diseases

Lupus erythematosus Agonist (252) Polarization of macrophages
towards an M2-like profile

Reduced T cell activation and
increased Treg differentiation

Rheumatoid arthritis Agonist (91) Limited inflammation
and toxicity

Decreased disease progression

IBD Agonist (99) Reduction of Th17 cell
number; increased Tregs

Reduced inflammation

Lung diseases Agonist (107–110) Activation of IFN I response Resolution of
airways inflammation
Their effects are reported in the different pathological contexts, including Cancer, Neurodegenerative disorders, Cardiovascular diseases, Viral and bacterial infections, and Immune-mediated
disorders. The table includes studies and experimental models cited in the manuscript. CoPP, cobalt protoporphyrin IX; ROS, Reactive oxygen species; IFN, interferon; BMDM, bone-marrow
derived macrophages; SnMP, tin mesoporphyrin; ZnPPIX, zinc protoporphyrin IX; 4T1, model of breast adenocarcinoma; LL2, Lewis lung carcinoma; PDAC, pancreatic ductal adenocarcinoma;
MN/MCA1, fibrosarcoma; B16/F10, melanoma; MMTV-PyMT spontaneous mouse model of breast cancer; GBM, glioblastoma.
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