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Design of a Helicobacter pylori
multi-epitope vaccine based
on immunoinformatics
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Guimin Su1,2* and Lin Du1,2*

1Research and Development Centre, Beijing Zhifei Lvzhu Biopharmaceutical Co., Ltd., Beijing, China,
2Beijing Bacterial Vaccine Engineering Research Centre, Beijing, China
Helicobacter pylori (H. pylori) is an infectious bacterium that colonizes the

stomach of approximately half of the global population. It has been classified

as a Group I carcinogen by the World Health Organization due to its strong

association with an increased incidence of gastric cancer and exacerbation of

stomach diseases. The primary treatment forH. pylori infection currently involves

triple or quadruple therapy, primarily consisting of antibiotics and proton pump

inhibitors. However, the increasing prevalence of antibiotic resistance poses

significant challenges to this approach, underscoring the urgent need for an

effective vaccine. In this study, a novel multi-epitope H. pylori vaccine was

designed using immunoinformatics. The vaccine contains epitopes derived

from nine essential proteins. Software tools and online servers were utilized to

predict, evaluate, and analyze the physiochemical properties, secondary and

tertiary structures, and immunogenicity of the candidate vaccine. These

comprehensive assessments ultimately led to the formulation of an optimal

design scheme for the vaccine. Through constructing a novel multi-epitope

vaccine based on immunoinformatics, this study offers promising prospects and

great potential for the prevention of H. pylori infection. This study also provides a

reference strategy to develop multi-epitope vaccines for other pathogens.
KEYWORDS

Helicobacter pylori, immunoinformatics, multi-epitope vaccine, vaccine, multiepitope
based vaccine
Introduction

Helicobacter pylori (H. pylori) is a microaerophilic, Gram-negative bacterium that

colonizes the mucous layer of the human gastric epithelium (1). Infection with H. pylori

typically occurs during childhood and is primarily transmitted among individuals through

fecal-oral and oral-oral routes (2). Approximately half of the global population is infected

withH. pylori, with infection rates varying across countries and regions. In western countries,

the infection rate ranges from 20% to 40%, while in Asia and developing countries, it can
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reach as high as 70% to 90% (3, 4). H. pylori infection has been

associated with various gastrointestinal diseases in humans, including

chronic gastritis, gastric ulcers, mucosa-associated lymphoid tissue

(MALT) lymphomas, and gastric cancer. The inflammation and

damage caused by H. pylori infection are responsible for

approximately 75% of stomach cancers and 5.5% of malignancies

worldwide. Therefore, the World Health Organization classifies H.

pylori as a Group I carcinogen (5–7).

The current therapeutic strategies for H. pylori infection

primarily involve triple or quadruple therapy, which encompasses a

combination of two or three antibiotics, proton pump inhibitors

(PPIs), and bismuth salts (8). Nevertheless, it has been documented

that H. pylori is progressively developing resistance to conventionally

administered antibiotics, culminating in a deterioration of the efficacy

of antimicrobial regimens. Furthermore, antimicrobial therapy is

beset with several disadvantages, such as high costs, severe adverse

effects, and the looming possibility of reinfection (9). Consequently,

there exists an urgent imperative to explore more efficacious

methodologies for the management of H. pylori infection.

Vaccination has been conclusively validated as an efficacious

approach for the prevention and treatment of infectious diseases.

Extensive research efforts have been dedicated to the development

of a H. pylori vaccine. However, the development of a mature H.

pylori vaccine that provides satisfactory immune protection

continues to pose significant challenges (10–12). The efficacy of

monovalent vaccines, which are composed of a single H. pylori

antigen, is limited. In contrast, multivalent vaccines that target

multiple H. pylori antigens are anticipated to exhibit superior

immunogenicity compared to monovalent vaccines (13–15).

Nevertheless, the construction and expression of recombinant

subunit vaccines containing several antigens are complicated by

the large molecular weights of the individual protein antigens from

H. pylori. Epitopes are specific regions on an antigen molecule that

are specifically recognized by antibodies or T cell receptors.

Vaccines designed based on epitopes represent an innovative

direction in vaccine development and offer an effective strategy

for the development of multivalent H. pylori vaccines (16, 17).

Immunoinformatics has emerged as a pioneering field in the

investigation of novel vaccines. With the rapid evolution of

genomics, proteomics, human immunology, and structural

biology, the employment of immunoinformatics tools to predict

and identify neoantigens and epitopes has revolutionized the

approach to pathogenic vaccine development. The synergistic

integration of reverse vaccinology and immunoinformatics in the

design of multi-epitope vaccines represents a promising avenue for

future vaccinological endeavors.

H. pylori infection in the host involves the coordinated action of

numerous bacterial proteins. These include flagellar proteins, which

facilitate motility and aid in traversing the viscous stomach

environment (18). Additionally, H. pylori produces, an enzyme

that catalyzes the conversion of urea into carbon dioxide and

ammonia, thereby increasing the local pH and creating a less

acidic microenvironment around the bacterium. This allows it to

survive in the otherwise harsh acidic conditions of the stomach. The

active center of urease is located on the urease B subunit (UreB) (19,

20). Adhesion proteins mediate binding to the gastric epithelial cells,
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promoting colonization (21). Key adhesion proteins in H. pylori

include Blood group antigen-binding adhesin A (BabA), Sialic acid

binding adhesin (SabA), Adhesion associated lipoproteins A/B

(AlpA/AlpB), among others (22, 23). Furthermore, H. pylori

possesses various virulence factors that lead to alterations in cell

signaling, cytoskeletal rearrangements, and induction of pro-

inflammatory responses (24, 25). Cytotoxin-associated antigen L

(CagL) and cytotoxin-associated antigen A (CagA) are part of the

type IV secretion system (T4SS), which is encoded by Cag

Pathogenicity Island (Cag PAI). CagA is transported into host cells

to exerts its virulent effects, a process in which CagL is involved (26–

28). Vacuolar cytotoxin A (VacA) serves as a principal virulence

factor, capable of inducing cellular vacuolization (29). Neutrophil

activating protein (NAP) is released by H. pylori bacteria near the

monolayer region of the gastric epithelium, and triggers the

inflammatory response (30). Gamma-glutamyl transpeptidase

(GGT) facilitates the conversion of glutamine to glutamic acid and

ammonia, as well as catalyzes the transformation of glutathione into

glutamic acid and cysteine. GGT can induce cell cycle arrest,

apoptosis, and necrosis of gastric epithelial cells (31).. As a crucial

virulence factor, High-temperature requirement A (HtrA) functions

as both a molecular chaperone and serine protease, playing a

significant role in bacterial stress response and the cleavage of the

human cell adhesion molecules (32–34).

In this study, a comprehensive literature review and analysis were

conducted to identify candidate proteins of H. pylori with potential for

vaccine development. Considering the important role of these proteins

in H. pylori infection, UreB, SabA, BabA, VacA, CagA, GGT, HtrA,

NAP and CagL were selected as antigens to design this vaccine. Online

servers ABCpred and IEDB were utilized to predict B cell and T cell

epitopes from these nine candidate proteins. The VaxiJen application

predicted antigenicity. Dominant epitopes were selected based on

antigenicity prediction results, and linked by different linkers. A

complete multi-epitope antigen sequence was designed and subjected

to rigorous evaluation for the rationality of vaccine design through

analysis of physicochemical properties (ExPASy ProtParam), secondary

(Prabi server) and tertiary structures (I-TASSER), molecular docking

(Cluspro2.0), and dynamic simulation (Gromacs-2023). The novel

immunogenicity of the multi-epitope vaccine was also simulated

using an online server. The codon-optimized DNA sequence of the

vaccine was subsequently cloned in silico into a protein expression

vector, paving the way for subsequent experimental validation.
Methods

Selection of target proteins

In this study, the selection of source proteins for a multi-epitope

vaccine was based on their virulence, importance, antigenicity, and

immunogenicity. The proteins chosen were UreB, SabA, BabA,

VacA, CagA, GGT, HtrA, NAP, and CagL. The protein information

of H. pylori strain 26695 was obtained from the UniProt (35)

(https://www.uniprot.org/), a universal protein resource database.

Protein sequences were downloaded in FASTA format. The

research process is illustrated in Figure 1.
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B cell and T cell epitope prediction

The online prediction tool ABCpred achieved 72.94% accuracy

in predicting linear B-cell epitopes based on amino acid anchoring

pairs (APC) (36). The ABCpred (37) (https://webs.iiitd.edu.in/

raghava/abcpred/ABC_submission.html) and immune epitope

database IEDB (38, 39) (http://tools.iedb.org/main/bcell/) were

utilized to predict linear B lymphocyte epitopes of candidate

proteins. Additionally, the online tools available on IEDB website

(40, 41) (http://tools.iedb.org/main/tcell/) were employed to predict

T cell epitopes. According to the epitope prediction results, the

dominant epitopes of each protein with higher prediction rate and

score were selected.
Multi-epitope vaccine construction

Linkers between epitopes can offer the amino acid residue the

greatest degree of flexibility and prevent the expected epitopes from

folding (42). Dominant linear B-cell, cytotoxic T Lymphocytes (CTL),

and helper T Lymphocytes (HTL) epitopes from nine target proteins

were sequentially linked using glycine-proline-glycine-proline-

glycine (GPGPG), lysine-lysine (KK) and alanine-alanine-tyrosine

(AAY), respectively, to generate multi-epitope vaccines.
Antigenicity and allergenicity prediction

The VaxiJen application (http://www.ddg-pharmfac.net/

vaxijen/VaxiJen/VaxiJen.html) is a sequence alignment method-
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independent tool that utilizes hydrophobic amino acids, molecular

weight, and polarity as antigen characteristics. The partial least

squares algorithm is employed to establish a model for predicting

protein antigenicity. VaxiJen demonstrates a prediction accuracy of

70-89%, with a threshold of 0.4 considered indicative of antigenicity

(43). The AllerTOP server (http://www.ddg-pharmfac.net/

AllerTOP/index.html) is a predictive tool that has been trained

on a database of allergens and non-allergens. It predicts the

allergenicity of proteins based on their primary physical and

chemical properties achieving an accuracy of approximately 94%.

Upon submission to the AllerTOP server, a protein will be predicted

as “Probable Allergen” or “Probable Non-allergen” (44).
Physicochemical properties evaluation

ExPASy ProtParam (45) (http://web.expasy.org/protparam/)

was used to determine the physicochemical parameters of vaccine

constructs based on the sequence and pKa values of amino acids

contained within the protein (46). The parameters computed by

ProtParam include the molecular weight (MW), theoretical

isoelectric point (pI), amino acid composition, estimated half-life,

instability index (considered stable if <40), aliphatic index and

grand average of hydropathicity (GRAVY). ProtParam utilizes the

“N-end rule,” which associates the half-life of a protein with the

properties of its N-terminal residue (47, 48). The aliphatic index of a

protein is calculated based on the volume occupied by aliphatic side

chains, which contributes positively to the thermal stability of

globular proteins (49). The GRAVY value is calculated by

dividing the total hydropathy of all amino acids by the total
FIGURE 1

The process of designing the multi-epitope vaccine.
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amount of amino acids in the protein, indicating the hydrophobic

or hydrophilic nature of the protein (50).
Secondary structure prediction

The secondary structure of vaccines was predicted using the

online tool Prabi server (https://npsa-prabi.ibcp.fr/cgi-bin/

npsa_automat.pl?page=npsa_sopma.html) (51). The number of

conformational states was set to 4 (Helix, Sheet, Turn, Coil),

while other options remain at their default settings.
Tertiary structure prediction, refinement,
and validation

The tertiary structure of vaccines was generated using the online

server I-TASSER (https://zhanglab.ccmb.med.umich.edu/I-TASSER/

) based on amino acid sequences (52). According to the C-scores of

structures, the best structure was chosen for further refinement. The

side chains of amino acids was repacked to optimize the quality and

stability model structures by using the online tool GalaxyRefine (53)

(https://galaxy.seoklab.org/). After structure optimization, the

optimal tertiary model structure of the vaccine was verified

using the PROCHECK module in SAVES v6.0 (https://

saves.mbi.ucla.edu/) and the result was shown in the Raman

diagram. ProSA–web (54) (https://prosa.services.came.sbg.ac.at/

prosa.php) was also employed to obtain the Z score, a parameter

representing the rationality of the tertiary model structure.
Molecular docking and dynamic simulation

Cluspro2.0 (55) (http://cluspro.bu.edu/login.php) is an

automatic and efficient rigid-body protein docking server that is

capable of predicting protein-protein interactions. The best

optimized tertiary model structure of the multi-epitope vaccine

was chosen. The molecular dockings between the vaccine and Toll-

like receptor 2 (TLR2, PDB ID 3A7C) or Toll-like receptor 4 (TLR4,

PDB ID 2Z63) were performed by Cluspro2.0 server with all

parameters set to their default values. The docked structures were

visualized by PyMol (56). The stability of vaccine-receptor

complexes was evaluated utilizing the iMODS server (https://

imods.iqf.csic.es/) (57, 58). Molecular dynamics simulation refers

to a collection of molecular simulation methods that use Newtonian

mechanics to simulate the movement of molecular systems. To

analyze molecular motion and assess the stability of the docking

complex, molecular dynamics simulations were conducted using

Gromacs-2023 software (59). The docking complex was solvated in

a cubic box using spc216 water solvent. Subsequently, CL- ions were

added to neutralize the charged protein complex, initial energy

minimization included 50,000 steps of the steepest descent method.

Equilibration was done in phases, and production simulations ran

for 100 ns using NVT and NPT ensembles. Temperature was set at

300 K, and pressure was maintained at 1 atm. Then a 100 ns

molecular dynamics (MD) simulation was conducted. The entire
Frontiers in Immunology 04
MD simulation utilized the all-atomic OPLS force field. The

analysis was conducted using GROMACS tools, and the graphs

were created with Origin 2021.
Immune simulation

In silico immune simulations were carried out using C-ImmSim

online server (https://kraken.iac.rm.cnr.it/C-IMMSIM/index.php).

C-IMMSIM is derived from a universal simulation platform that

appropriately describes the role of immune responses in different

human pathologies (60). Three injections, each containing with

1000 vaccine proteins, were administrated one month apart at 1, 90,

and 270 time-steps (every three steps represent one day in real life)

with total 540 simulation steps. All other simulation parameters

were kept at their default settings.
In silico cloning

The amino acid sequence of the multi-epitope vaccine was

submitted to the website server (https://www.novopro.cn/tools/

codon-optimization.html) for codon optimization. The coding

sequence of the vaccine was then cloned into the pET-28a(+)

vector using SnapGene software.
Results

Prediction of epitopes

To improve the prediction accuracy, two independent methods,

ABCpred and IEDB were utilized to predict linear B-cell epitopes.

For the ABCpred prediction results, we use the score as the selection

criterion, for the IEDB prediction results, we prioritize based on

ranking. We give preference to peptides that have a higher score in

the ABCpred results and are top-ranked in the IEDB predictions,

especially when there is an overlap between the two. To ensure

antigenicity, the VaxiJen application is used to predict the

antigenicity of the selected peptides. Peptides scoring above the

threshold of 0.4 were selected to be the dominant linear B-cell (LBL)

epitopes (Table 1). CTL epitopes were predicted using the Major

Histocompatibility Complex I (MHC I) binding prediction tool of

IEDB, and epitopes with high scores and antigenicity were selected

for multi-epitope vaccine construction (Table 2). The MHC II

binding prediction tool of IEDB was used to predict HTL

epitopes, and the sequences with higher percentile ranks and high

antigenicity were selected as the dominant HTL epitopes (Table 3).
Design and construction of multi-
epitope vaccine

The predicted epitopes of the 9 candidate proteins were

tandemly connected in the order of B cell epitope, CTL epitope,

and HTL epitope. The order of epitopes was adjusted and the
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antigenicity, allergenicity, and physicochemical properties were

predicted. The arrangement order that met all standards was

selected to construct the multi-epitope vaccine. Adding linkers

between epitopes not only effectively prevents the formation of

new epitopes, but also promotes epitope presentation (61, 62). In
Frontiers in Immunology 05
this research, the LBL epitopes were linked by linker GPGPG, the

CTL epitopes were connected by linker AAY which is a preferential

cleavage site for proteasome, and HTL epitopes were connected by

KK which is a target cleavage site for lysosomal protease (63, 64).

The construction of the multi-epitope vaccine is shown in Figure 2.
TABLE 2 The scores and antigenicity of predicted CTL epitopes.

Name Location Sequence Allele Length (aa) Score Antigenicity

UreB 467-475 IPTPQPVYY HLA-B*35:01 9 0.995265 0.7004

BabA 715-723 AELKYRRLY HLA-B*44:03 9 0.985894 1.3304

SabA 5-13 FLLSLSLSL HLA-A*02:01 9 0.920702 1.7958

VacA 307-316 KTHIGTLDLW HLA-B*57:01 10 0.991128 0.5692

CagA 601-609 AEAKSTGNY HLA-B*44:03 9 0.937662 1.143

HtrA 370-378 RLSDDVQGV HLA-A*02:03 9 0.963168 1.2643

GGT 498-507 VSAPRFHMQW HLA-B*57:01 10 0.995623 1.6739

CagL 104-113 MSSPELLLTY HLA-B*57:01 10 0.906037 0.6337

NAP 81-89 ETKTSFHSK HLA-A*68:01 9 0.9477 0.9477
TABLE 1 The scores and antigenicity of predicted linear B-cell epitopes.

Name Start site Sequence Length (aa) Score Antigenicity

UreB 154 TTMIGGGTGPADGTNA 16 0.92 1.0996

BabA 204 TYTYTCSGQGNNNCSP 16 0.94 1.218

SabA 49 KELNDKYEQLNQYLNQVA 18 0.87 0.4238

VacA 400 NADGTIKVGGYKASLTTNA 20 0.95 1.1731

CagA 3 NETIDQTRTPDQTQSQ 16 0.96 0.991

HtrA 4 LKTIRIYSYHDSIKDS 16 0.93 0.5182

GGT 349 AKKIFDTIQPDTVTPS 16 0.91 0.5432

CagL 71 AAIALRGDLALLKANFEA 18 0.9 0.7731

NAP 15 IVLFMKVHNFHWNVKGTD 16 0.9 1.456
TABLE 3 The percentile ranks and antigenicity of predicted HTL epitopes.

Name Location Sequence Allele Percentile rank Antigenicity

UreB 406-420 LSKYTINPAIAHGIS HLA-DRB3*02:02 0.01 0.6540

BabA 666-680 ANFQFLFNMGVRMNL HLA-DRB3*02:02 0.01 1.6171

SabA 1-15 MKKRFLLSLSLSLSL HLA-DRB3*02:02 0.71 0.9369

VacA 1169-1183 GSTNFKSNSNQVALK HLA-DRB3*02:02 0.01 1.3185

CagA 178-192 GNQIRTDQKFMGVFD HLA-DRB1*03:01 0.12 0.5419

HtrA 74-88 SKDGYIVTNNHVIDG HLA-DRB3*02:02 0.8 0.7683

GGT 486-500 NVIDYNMNISEAVSA HLA-DRB3*02:02 0.11 0.8437

CagL 159-173 SLKAYQSNIGGTASL HLA-DRB3*02:02 0.99 1.1898

NAP 15-29 IVLFMKVHNFHWNVK HLA-DRB3*02:02 9.8 1.2673
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Prediction of vaccine features

The multi-epitope vaccine designed in this study comprises 458

amino acid residues, with a computed molecular weight of 49.47

kDa and a theoretical isoelectric point (PI) of 9.7, which imply the

fundamental properties of the protein. The predicted antigenicity

probability of the vaccine is 0.9674, surpassing the threshold value

of 0.4, indicating a high likelihood of eliciting an immune response.

Additionally, the vaccine is predicted to be non-allergenic. The

instability index is predicted to be 15.98, suggesting the construct is

stable. The aliphatic index is predicted to be 71.44, indicating that

the construct possesses thermostability. The GRAVY score is

predicted to be -0.423, indicating the hydrophilic character of the

vaccine, which enhances its interaction with other proteins.

Furthermore, the vaccine design is predicted to be soluble in an

aqueous environment, with a solubility score of 0.498. The

computed half-life of the vaccine is 7.2 hours in mammalian

reticulocytes, greater than 20 hours in yeast, and greater than 10

hours in Escherichia coli (Table 4).
Frontiers in Immunology 06
Prediction of secondary structure

The bioinformatics tool Prabi was employed to evaluate the

secondary structure and to enumerate the number of amino acids in

each conformational state. The respective proportions of alpha

helices, extended strands, beta turns, and random coils were

calculated to be 30.13%, 21.40%, 7.86%, and 40.61% (as depicted

in Figure 3). Notably, the highest proportion was observed for

random coils, suggesting a considerable flexibility within the

vaccine structure. The presence of beta turns implies that the

vaccine is likely to be easily recognized by antibodies.
Tertiary structure modeling, refinement
and validation

The I-TASSER online platform was utilized to predict the

tertiary structure of the multi-epitope vaccine. The model with

the highest confidence score was selected for further refinement,

with secondary structures annotated in distinct colors (Figure 4A).

The Ramachandran plot analysis revealed that 89.2% of the amino

acid residues fell within the most favored regions, 8.7% within the

additionally allowed regions, 1.3% within the generously allowed

regions, and 0.8% within the disallowed regions, thereby

corroborating the reliability of the constructed tertiary structure

model (Figure 4B). The z-score is an indicator of the overall model

quality, quantifying the deviation of the structure’s total energy

from the energy distribution expected for random conformations

(65). The ProSA analysis yielded a z-score of -5.15 for the multi-

epitope vaccine, suggesting that the optimized tertiary structure

model possesses good quality (Figure 4C).
Molecular docking and dynamics
simulation of vaccine-TLR complex

For the purpose of conducting molecular docking simulations,

the refined tertiary structure of the multi-epitope vaccine was

subjected to docking with Toll-like receptor 2 (TLR2) and Toll-

like receptor 4 (TLR4) utilizing the ClusPro 2.0. Thirty different

docked poses were generated for each receptor-ligand complex,

exhibiting varied orientations. Given that lower energy scores
FIGURE 2

The structure diagram of the multi-epitope vaccine. Linear B cell epitopes (orange), CTL epitopes (blue) and HTL epitopes (yellow) of nine target
proteins were fused by GPGPG (green), KK (grey) and AAY (light blue) linkers.
TABLE 4 Evaluation of the vaccine construct’s antigenicity, allergenicity,
and physicochemical properties.

Features Assessment

Amino acid number (aa) 458

Molecular weight 49.47

Theoretical isoelectric point (pI) 9.70

Antigenicity 0.9674

Allergenicity non-allergen

Solubility 0.498 (soluble)

Instability index 15.98 (stable)

Aliphatic index 71.44

Grand average of
hydropathicity (GRAVY)

-0.423

Estimated half-life

7.2 h (mammalian reticulocytes, in
vitro)

>20 h (yeast, in vivo)
>10 h (Escherichia coli, in vivo)
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FIGURE 3

Prediction results of secondary structure. Alpha helix, extended strand, beta turn, and random coil accounted for 30.13%, 21.40%, 7.86%, and
40.61%, respectively.
FIGURE 4

Tertiary structure model and model validation. (A) The refined tertiary structure model (red color depicts a-helix, green color depicts coiled structure
and yellow color depicts b-strand). (B) Ramachandran plot of refined tertiary structure model (89.2% of amino acid residues were in most favored
regions). (C) A ProSA validation of refined tertiary structure model by Z-score.
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signify a greater binding affinity, the most favorable docked

complex was identified by the lowest energy score. The energy

scores recorded for the optimal vaccine-TLR2 and vaccine-TLR4

complexes were -343.9 kcal/mol and -1076.2 kcal/mol,

respectively. A representation of the topology and binding
Frontiers in Immunology 08
interactions of the most stable vaccine-TLR2 complex is depicted

in Figure 5A, while those of the vaccine-TLR4 complex are

illustrated in Figure 6A.

Molecular dynamics simulations were conducted on the docked

vaccine-TLR complexes using the GROMACS software package.
FIGURE 5

Molecular docking between vaccine and human TLR2 and iMODS results of the docking complex. (A) Molecular docking result of vaccine with TLR2.
The residues involved in the hydrogen bond are shown on the right-hand side. (B–D) Molecular dynamic simulation of the vaccine-TLR2 complex,
including RMSD value of the complex backbone, RMSF value of side-chain residues, and radius of gyration during the molecular dynamic simulation.
(E–J) Results of iMODS of vaccine-TLR2 docking complex. (E) B-factor; (F) Deformability plot; (G) Variance; (H) Eigenvalue; (I) Covariance matrix
analysis; (J) Elastic network model.
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These simulations were executed for a period of 100 nanoseconds

(ns) to estimate the dynamic behavior and stability of the complex.

The trajectory data generated from the simulations were

subsequently analyzed to calculate the root mean square deviation

(RMSD) of the protein backbone, the root mean square fluctuation
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(RMSF) of the side chains, and the radius of gyration (Rg). The

graphical representations of the RMSD, RMSF, and Rg values for

both the vaccine-TLR2 and vaccine-TLR4 complexes are presented

in Figures 5B–D and Figures 6B–D, respectively, corroborating the

relative stability of the docked complexes.
FIGURE 6

Molecular docking between vaccine and human TLR4 and iMODS results of the docking complex. (A) Molecular docking result of vaccine with TLR4.
The residues involved in the hydrogen bond are shown on the right-hand side. (B–D) Molecular dynamic simulation of the vaccine-TLR4 complex,
including RMSD value of the complex backbone, RMSF value of side-chain residues, and radius of gyration during the molecular dynamic simulation.
(E–J) Results of iMODS of vaccine-TLR4 docking complex. (E) B-factor; (F) Deformability plot; (G) Variance; (H) Eigenvalue; (I) Covariance matrix
analysis; (J) Elastic network model.
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Normal mode analysis utilizing iMODS was employed to

investigate molecular motion. The B-factor, deformability profile,

variance, eigenvalue, covariance matrix analysis, and elastic

network model for both the vaccine-TLR2 and vaccine-TLR4

complexes were elucidated in Figures 5E–J and Figures 6E–J,

respectively. These analyses indicated that the docked complexes

exhibited a high degree of stability.
In silico immune simulation for
vaccine efficacy

To assess the immunogenic profile of the multi-epitope vaccine,

in silico immune simulation was carried out using the C-ImmSim

server. The accuracy of this server has been confirmed through both
Frontiers in Immunology 10
retrospective validation and in vivo validation studies (66, 67). The

immunoglobulin activity was evident both in secondary and tertiary

immune responses (Figure 7A). High levels of B-cell, helper T-cell,

and cytotoxic T-cell activities were observed during the immune

procedure (Figures 7B–F). Macrophage activity and dendritic cell

activity were also rapidly increased after each exposure (Figures 7G,

H). High levels of INF-g, IL-2, and IL-10 were also observed

(Figure 7I). This immunogenic profile indicates that the multi-

epitope vaccine could induce effective immune responses.
Codon adaptation and in silico cloning

The nucleotide sequence encoding the multi-epitope vaccine

was optimized utilizing the online codon optimization tool,
FIGURE 7

In silico simulation of immune response using vaccine as antigen. (A) Antigen and immunoglobulins, antibodies are sub-divided per isotype.
(B) B-cell population. (C) B-cell population per state. (D) Helper T-cell population. (E) Helper T-cell population per state. (F) Cytotoxic T-cell
population per state. (G) Macrophage population per state. (H) Dendritic cell population per state. (I) Concentration of cytokine and interleukins, D in
the inset plot is danger signal.
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ExpOptimizer, with Escherichia coli designated as the expression

host. Post-optimization, the codon adaptation index (CAI) of the

sequence reached 0.8 (with an ideal range of 0.8-1.0), and the GC

content was adjusted to 51.82% (within the ideal range of 40%-

60%). The 1374-nucleotide sequence was successfully cloned into

the pET-28a(+) vector, between the ATG start codon and the XhoI

restriction site, using the SnapGene software. The plasmid map of

the resulting expression vector is illustrated in Figure 8, with the

vaccine fragment highlighted in grey.
Discussion

Vaccines are pivotal in curbing the spread of infectious diseases.

Multiepitope vaccines, which harness specific pathogen

components to elicit robust immune responses, represent an

innovative direction in vaccine development (68, 69). These

vaccines are characterized by abbreviated development timelines,

reduced costs, and enhanced safety profiles, rendering them

exceptionally promising. Current research endeavors are

concentrated on the design of H. pylori multiepitope vaccines,

which have demonstrated efficacy in the prevention and

treatment of H. pylori infections (70, 71). In silico computational

vaccine design methodologies offer a more rational and cost-

effective approach compared to traditional strategies.

In this study, nine H. pylori proteins involved in adhesion,

colonization, survival, and virulence were selected for the
Frontiers in Immunology 11
construction of a multi-epitope vaccine. High-scoring and

antigenic epitopes from each protein were chosen as the principal

epitopes. To prevent the formation of neo-epitopes, linker

sequences were incorporated between the epitopes in the final

construct. Secondary structure prediction indicated that the

vaccine possessed a flexible and stable conformation conducive to

antibody binding. The vaccine was predicted to be non-allergenic,

soluble, stable in vitro, and thermally stable.

The tertiary structure of the multi-epitope vaccine was

predicted, refined, and validated. A high-quality tertiary structure

was used for subsequent analyses. Molecular docking revealed that

the vaccine could engage with Toll-like receptors (TLR2 and TLR4)

with favorable affinity. Molecular dynamics simulations

corroborated the high stability of docking complexes.

Furthermore, immune simulation based on the vaccine sequence

injection suggested that the multi-epitope vaccine exhibited

excellent immunogenicity. For experimental evaluation, codon

optimization of the multi-epitope vaccine was executed to

enhance translational efficiency. The optimized sequence was then

cloned in silico into the pET-28a(+) plasmid, setting the stage for

follow-up experiments.

In summary, the assessment of the H. pylori multi-epitope

vaccine is encouraging, highlighting its potential applicability and

offering novel insights for the advancement of H. pylori vaccine

development. Future research will require further experimental

validation to assess the druggability of the constructed multi-

epitope vaccine. Additionally, the strategy employed in this study
FIGURE 8

In silico cloning of vaccine construct into pET-28a(+) vector. The grey region represents the vaccine encoding gene.
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holds significant potential for the construction of multi-epitope

vaccines and should be considered for the development of vaccines

against other infectious agents.
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