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Autoimmune diseases encompass a wide range of disorders characterized by

disturbed immunoregulation leading to the development of specific

autoantibodies, which cause inflammation and multiple organ involvement.

However, its pathogenesis remains unelucidated. Furthermore, the cumulative

medical and economic burden of autoimmune diseases is on the rise, making

these diseases a ubiquitous global phenomenon that is predicted to further

increase in the coming decades. Coumarins, a class of aromatic natural products

with benzene and alpha-pyrone as their basic structures, has good therapeutic

effects on autoimmune diseases. In this review, we systematically highlighted the

latest evidence on coumarins and autoimmune diseases data from clinical and

animal studies. Coumarin acts on immune cells and cytokines and plays a role in

the treatment of autoimmune diseases by regulating NF-kB, Keap1/Nrf2, MAPKs,

JAK/STAT, Wnt/b-catenin, PI3K/AKT, Notch and TGF-b/Smad signaling

pathways. This systematic review will provide insight into the interaction of

coumarin and autoimmune diseases, and will lay a groundwork for the

development of new drugs for autoimmune diseases.
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1 Introduction

Autoimmune diseases (AIDs) are inflammatory disorders caused by immune

dysfunction and loss of immune tolerance, leading to the recognition of self-antigens by

the body’s immune system (1, 2). Currently, more than 80 AIDs have been identified,

including rheumatoid arthritis, type 1 diabetes mellitus, and psoriasis (3). AIDs can occur

at any age and are particularly more prevalent in women than in men. It is estimated that

8% to 10% of population worldwide is afflicted by AIDs (4). Autoimmunity and

autoimmune diseases have been increasing dramatically in many parts of the world in
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recent years, possibly due to changes in our exposure to

environmental factors. Current evidence suggests that major

changes in our food, exogenous substances, air pollution,

infections, personal lifestyles, stress, and climate change are

responsible for these increases (5). Autoimmune diseases have a

devastating impact on individuals and caregivers in our society, and

a large amount of healthcare utilization leads to high public and

private costs, and current projections suggest that they will become

more prominent diseases in the future (6). In particular, AIDs pose

a major challenge to the public health system, which is second only

to cancer and cardiovascular diseases, due to their long cycle and

susceptibility to relapse (7–10). Therefore, it is of great importance

and urgency to find effective methods for the prevention and

treatment of AIDs. Coumarins are a class of aromatic natural

products with benzene and alpha-pyrone as its basic structure,

which are widely found in Umbelliferae, Brassicaceae, Asteraceae,

Leguminosae, Orchidaceae (11). Coumarins can be divided into

simple coumarins, furanocoumarins, pyranocoumarins and others

based on the chemical structures (12). Accumulating studies have

shown that coumarins possess a variety of pharmacological

activities such as anti-tumor, anti-inflammatory, and anti-

osteoporosis (13). Nowadays, coumarins have been gaining more

attention from investigators due to its excellent biological activities

in AIDs. Here, we review the latest research data on coumarins for

the treatment of AIDs with the aim of understanding the

pharmacological mechanisms of coumarins and developing novel

agents for the treatment of AIDs.
2 Pathophysiology of
autoimmune diseases

The mechanism by which the immune system prevents

pathogens from attacking the organism is very complex. it can

remove senescent cells and immune complexes from the body

through various immune cells (such as macrophages, dendritic

cells (DCs), T-lymphocytes, B-lymphocytes, etc.), and at the same

time, it can recognize its own tissues and cells as its “self”, thus

forming immune tolerance. Immune tolerance is defined as a state

in which immunologically active cells are unable to produce specific

immune effector cells and specific antibodies when exposed to

antigenic substances, thus failing to execute a normal immune

response (9, 14). In some cases, autoimmune tolerance is

disrupted and the absence of immune tolerance induces the

immune system to produce autoantibodies in response to self-

antigens. Antigen presenting cells (APCs) present autoantigens to

T cells with the participation of major histocompatibility complex

(MHC) molecules (15). T helper cells are stimulated by MHC II and

release different cytokines that can directly trigger macrophages

(MP), monocytes, and B cells (16). T cells control the immune

response by influencing the mixture of interleukins produced. B

cells produce antibodies against their own molecules that react with

accessible cells and directly or indirectly mediate damage (17).

When the immune system produces a strong and sustained immune

response against its own tissues and cells, leading to cellular

destruction or tissue damage and clinical symptoms, it can lead to
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AIDs (18). Broadly speaking, AIDs are diseases caused by the

immune response of the immune system against its own

components. All diseases caused by dysfunctions of the

autoimmune system can be referred to as AIDs.

Genetic, epigenetic, and environmental factors (hormones,

nutrition, drugs, microbiota, apoptosis, and others) are

predisposing factors for autoimmunity (19). Although AIDs are

considered rare, epidemiologic data show that nearly 3-5% of the

population suffers from type 1 diabetes (T1D) and autoimmune

thyroid diseases (20). According to clinical manifestations, AIDs

can be categorized into two categories: systemic AIDs and organ-

specific AIDs (3, 21). Systemic AIDs are those in which immune

response causes pathological damage to multiple organs and tissues

throughout the body, mainly including rheumatoid arthritis (RA),

systemic lupus erythematosus (SLE), Sjögren′s syndrome (SS) and

others. Organ-specific AIDs refer to patients whose lesions are

generally confined to a specific organ and caused by an autoimmune

response against the particular organ. It mainly includes

Hashimoto’s thyroiditis (HT), Graves’ Disease (GD), myasthenia

gravis (MG) and others.

The imbalance of immune cells activation and regulation

caused by the failure of lymphocyte self-tolerance mechanisms is

considered to be a major driver of the progression of human AIDs

(22). The production of autoantibodies is a key event in the

development of AIDs. Under the influence of T cells or innate

triggers, self-tolerance is first interrupted, and the B-cell response

leads to systemic autoimmunity and the production of pathogenic

autoantibodies, which are the main immune abnormality in AIDs

(23). Expansion of self-reactive T cells is a biomarker of many AIDs,

which is essential in the orchestration of innate and adaptive

immune responses and in the induction of tissue damage. Among

them, CD4+ T cells make important contributions by secreting

various cytokines, chemokines and cell-cell interactions. IL-17-

producing CD4+ T cells (Th 17 cells) are the core of the disease

pathogenesis. When activated by antigen presenting cells (APCs),

CD4+ T cells differentiate into different cell lines with unique

functions, including helper T (Th) 1, Th2, Th17, and regulatory T

(Treg) cells, each of which secretes its own set of cytokines (24). A

balance is required to maintained between Th cell activation and

Treg cells-mediated inhibition to maintain effective immune

homeostasis. Disruption of this balance lead to lymphocytes

generating an immune response and/or producing antibodies

against their own cells and tissues (25).

The T cell subsets involved in the inflammatory response are

mainly Th1 and Th17. Th1 cells are generated from CD4+ T

lymphocytes activated by interleukin (IL)-12 through the STAT4

signaling pathway and the transcription factor T-bet, mainly

secreting cytokines, such as IL-2, IL-12, interferon-gamma (IFN-

g) and tumor necrosis factor-alpha (TNF-a), and participate in the

cellular immune response (26). Th2 cells are induced by IL-4

through the STAT6 signaling pathway and the transcription

factor GATA-3, mainly secreting IL-4, IL-5, IL-6, IL-10 and IL-21

to participate in the immune response. Th1 plays a certain role in

inhibiting the activation of Th2, and the two regulate and constrain

each other, putting the body in a dynamic balance of cellular

immunity and humoral immunity (27). Th 17 cells are one of the
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most predominant pathogenic cells among Th cells, and their main

function is to secrete cytokines IL-17A, IL-17F, and IL-22. Their

activation and proliferation require multiple transcription factors

(such as NF-kB, STAT3) and specific cytokines (such as

transforming growth factor-b (TGF-b), IL-6, IL-23) (28, 29). Treg
cells, as an important factor in the maintenance of immune

tolerance by the organism, can regulate the stable state of

lymphocytes. Under the induction of the specific transcriptional

regulator Forkhead box protein P3 (Foxp3), they exert anti-

inflammatory effects by releasing anti-inflammatory cytokines

such as IL-10 and TGF-b (30).

Recent studies have confirmed the role of immune cells and

cytokines in AIDs. For example, multiple sclerosis (MS) is a chronic

inflammatory autoimmune disease of the central nervous system,

characterized by a positive correlation between the imbalance of the

Th17/Treg ratio and the severity of MS symptoms (31, 32).

Similarly, inflammatory bowel disease (IBD) and SLE are AIDs

characterized by elevated levels of pro-inflammatory cytokines IL-1

and LTB4 (33). Furthermore, it is known that psoriasis is caused by

activation of the IL-23/Th17 cytokine axis (34, 35). In UC patients,

the increasement of IL-1, IL-6 and TNF-a are observed. In addition,

elevated levels of IL-6 can also be observed in patients with T1D, RA

and psoriasis (36). Studies have confirmed that Th17 cells are

critical for the severity of collagen-induced arthritis and RA (37).

Similarly, IL-17 and TNF-a-induced increase in intestinal barrier

permeability can promote the development of Crohn’s disease

(CD), ulcerative colitis (UC), and MS (38, 39).

AIDs are the result of a combination of genetic predisposition

and environmental factors. Genome-wide association studies

(GWASs) has been widely used to identify susceptibility genes for

AIDs and has identified many relevant mutations in T cells,

including Single Nucleotide Polymorphism (SNPs) in IL-23R, IL-

17A/F, IL-21, JAK2, STAT2, CARD9, CCR6, and others (40). In

addition, epigenetic mechanisms influence the development of many

AIDs under the influence of environmental factors. M6A-modified

regulatory factors can be involved in T cell-mediated autoimmune

diseases. It was found that the m6A-modifying demethylase ALK-

BH5 promotes IFN-g and CXCL2 mRNA stability in CD4+ T cells,

which in turn enhances CD4+ T cell pathogenicity in experimental

autoimmune encephalomyelitis (EAE), whereas the demethylase

FTO does not function (41). In experimental autoimmune uveitis,

the presence of METTL3 in autoreactive Th17 attenuates Th17

pathogenicity by enhancing ASH1L mRNA stability to reduce IL-17

and IL-23 receptor expression (42). However, in psoriasis, T cell-

specific deletion of ALKBH5 instead exacerbates skin inflammation

(43). Epigenetic modifications regulate the body’s inflammatory

response and immune response at multiple levels through DNA

methylation, histone acetylation, and microRNAs, while the DNA

sequence remains unchanged (44). For example, due to the reduced

expression of H3K4 methyltransferase Ash1L, Tregs in RA patients

express low levels of Foxp3 while Ash1L can enhances TGF-b/Smad

signaling promotes Treg differentiation, inhibits histone deacetylase

1 (HDAC1), and reduces histone deacetylation of Foxp3 (45).
Frontiers in Immunology 03
3 Clinical status of coumarins in
autoimmune disorders

Coumarins are a class of natural compounds widely found in

nature (46). Modern pharmacological and clinical studies have

shown that coumarins have pharmacological effects such as anti-

tumor (47), anti-inflammatory (48), anti-osteoporosis (49),

cardiovascular and neuroprotection (50), anti-bacterial (51), anti-

tuberculosis (52), and photosensitization (53). In addition,

coumarins are effective in the treatment of several AIDs in

studies. Therefore, coumarins need more attention. The chemical

structures of the constituents were screened using the PubChem

database (http://pubchem.ncbi.nlm.nih.gov) and the structures of

the most widely studied coumarins are given in Figure 1.

Given its immunomodulatory activity, coumarin has become a

pharmacological tool for the treatment of various AIDs. Currently,

coumarin combinations are used in the treatment of skin and AIDs

such as psoriasis (54). Furanocoumarins are a class of natural plant

photosensitizers. Studies have confirmed that furanocoumarins can

increase the body’s sensitivity to long-wave ultraviolet light (53).

PUVA, a combination of psoralen (P) and ultraviolet A (UVA), is

increasingly being used to treat chronic plaque-type psoriasis and

chronic palmoplantar psoriasis, and has become a second-line

therapy for patients with moderate to severe psoriasis (55–61). In

the treatment of severe chronic atopic dermatitis, PUVA therapy

provides better short- and long-term efficacy than UV therapy alone

(62–64). PUVA is also safe and effective in the treatment of

cutaneous T-cell lymphoma (65). And, PUVA therapyis effective

in patients with cutaneous T-cell lymphoma (CTCL) complicated by

ankylosing spondylitis (AS) (66). In patients with alopecia areata

(AA), dilutions of psoralen were applied to the patient’s scalp, and

hair regrowth was observed in 6 of 9 patients after up to 10 weeks of

treatment (67). Also, PUVA is effective in patients with AA (68, 69).

In clinical practice, coumarins have been used regularly in

the treatment of vitiligo. Psoralen and bergapten can increase

the tolerance of human skin to radiation and produce

hyperpigmentation when exposed to ultraviolet light (70). In

addition, in a clinical study evaluating the photochemotherapeutic

properties of bergapten microcrystalline formulations, the data

results showed that bergapten was almost completely free of

phototoxic and drug intolerance reactions, and that other side

effects, such as severe erythema, itching, and nausea, were seen

only rarely. Bergapten may be used as a photochemical therapy

(PUVA) as an important alternative therapy (71). A study

investigated the distribution of bergapten in the skin following oral

administration of the drug. Bergapten concentrations in the skin

following single andmultiple oral doses of the drug were measured at

healthy and psoriatic sites in 10 patients with psoriasis. The results

showed that after oral administration of bergapten, accumulation

levels were higher in the more external layers of the skin, the drug

had a high affinity for the stratum corneum, and drug concentrations

were similar in healthy and psoriasis sites, suggesting that lesions did

not affect the distribution of the drug in the skin (72).
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4 Coumarins act on immune cells and
cytokines in autoimmune disorders

AIDs have been categorized into several types and more than 80

such diseases have been identified. Coumarins can act on immune

cells and cytokines to exert beneficial effects on AIDs. The

regulatory effects of coumarins on significant immune cells and

cytokines are shown in Figure 2.

RA is a chronic, systemic autoimmune disease with

symmetrical, erosive, inflammation occurring in multiple joints as

its main clinical manifestation. CD83 is a dendritic cell marker that

belongs to the immunoglobulin superfamily and is closely

associated with autoimmune diseases (73). TNF-b, which

mediates a variety of inflammatory and immunostimulatory

responses (74). Sterol regulatory element‐binding protein 1

(SREBP1), a transcription factor, is a major regulator of genes

that control cellular lipid homeostasis (75). Synergistic treatment

with Imperatorin and b‐sitosterol significantly up-regulated the

expression levels of TNF-b, CD83, and SREBP1 in peripheral blood

CD4+ T cells, which improved the severity of arthritis in collagen-

induced arthritis (CIA) rats (76). In addition, imperatorin inhibits

cell proliferation and induces apoptosis in RA fibroblast-like

synoviocytes (RA-FLSs) cells through mitochondrial/caspase-

mediated signaling pathways (77). Migration inhibitory factor

(MIF) is a pleiotropic inflammatory cytokine important in both

innate and adaptive immune responses, and studies have

demonstrated that elevated levels of MIF expression are observed

in synovial tissues of RA patients compared to healthy individuals

(78). Isopsoralen has been shown to ameliorate RA by targeting
Frontiers in Immunology 04
macrophage MIF, as evidenced by a significant decrease in serum

production of IL-6, IL-1b, and cartilage oligomeric matrix protein

(COMP) but an increase in IL-10 production in CIA mice (79).

SLE is a chronic autoimmune disease in which 75% to 80% of

patients have skin manifestations, such as erythema of the cheeks,

rashes, and skin ulcers (80). Double-negative (DN) T cells are

defined by the lack of CD4 and CD8 and the ability to produce pro-

inflammatory cytokines, such as IFN-g, which have been implicated

in the pathogenesis of SLE in humans and mice (81). Umbelliferone

reduced DN T cells, plasma cells, IFN-g+CD4+ T cells, and T

follicular helper cells (CD3+TCRb+CD4+CXCR5+PD1+) and

increased the percentage of Treg cells in lupus nephritis MRL/lpr

mice (82).

MS is a common clinical neuroimmune disease, which occurs in

young and middle-aged people between the ages of 20 and 40, with

more female patients than male patients, strong relapses, and a high

disability rate (83). EAE is the classical animal model of MS.

Different coumarins including daphnetin, plumbagin,

umbelliferone, and osthole can treat EAE. Daphnetin attenuates

EAE by up-regulating Th2 and Treg cells and inhibiting Th1 and

Th17 cells, as evidenced by increased expression of anti-

inflammatory cytokines and transcription factors (IL-4, IL-10, IL-

33, GATA3, Foxp3), and decreased pro-inflammatory cytokines

and transcription factors (IL-17, TNF-a, IFN-g, STAT4, T-bet,
STAT3, ROR-gt) production (84). In addition, daphnetin reduced

pro-inflammatory cytokines, including IL-17, IFN-g, IL-6, IL-12a,
and IL-23a, in brain tissues of EAE mice. Heme oxygenase-1

(HO-1) is a typical antioxidant and anti-inflammatory factor. The

study confirmed the ability of daphnetin to inhibit IL-1b, IL-6, and
FIGURE 1

Chemical structures of coumarins used in studies.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1432846
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2024.1432846
TNF-a production and significantly elevate HO-1 levels in

lipopolysaccharide (LPS)-stimulated mouse BV2 microglial cells

(85). A study looking at the effects of plumbagin on EAE found that

plumbagin inhibited the differentiation, maturation, and function of

human monocyte-derived DCs, as well as inhibited Th1 and Th17

cell polarization (decreasing the expression levels of IL-6, IL-1b, and
IL-23), and promoted Th2 cell polarization (up-regulating the

expression level of IL-4) (86). Umbelliferone attenuates clinical

symptoms in EAE mice by inhibiting the activation of autoreactive

T cells, suppressing Th1 cell polarization, and increasing the level of

Foxp3+ regulatory T cells (87). The effects of osthole on EAE have

also been reported. Osthole augments the therapeutic efficiency of

neural stem cells and inhibits the reduction of nerve growth factor

(NGF) and the elevation of IFN-g in EAE mice (88, 89).

Psoriasis is primarily a refractory disease mediated by T-

lymphocytes with a combination of genetic and environmental

effects (90). Daphnetin treatment inhibits the proliferation and

inflammatory response of human HaCaT keratinocytes and

ameliorates imiquimod (IMQ)-induced psoriasis-like skin injury

in mice and attenuates the IMQ-induced upregulation of

inflammatory cytokines, including IL-6, IL-23A, and IL-17A (91).

Treatment of psoriasis mice with an ointment containing osthole

was found to reduce the secretion of TNF-a, IL-12, IL-17, and IL-23
in the skin of mice (92).

UC is a chronic non-specific inflammatory bowel disease, with

lesions mainly located in the mucous membrane and submucosa.

The main clinical manifestations include abdominal pain, diarrhea,

and bloody stools (93). Treatment with decursin and decursinol

inhibitthe production of IL-6, TNF-a, cyclooxygenase (COX)-2,
Frontiers in Immunology 05
hypoxia inducible factor (HIF)-1a, and prostaglandin E2 (PGE2) in

colonic tissues of UCmice induced by dextran sulfate sodium (DSS)

(94). Decursinol angelate ameliorates DSS-induced colitis by

modulating Th17 cell responses, which is reflected in its ability to

reduce the mRNA level of RORgt in Th17 cells and the expression of
IL-17 in CD4+ T cells (95). In addition, plumbagin reduces the

expression of circulating inflammatory monocytes (CD14+/CD16

+) and cytokines (TNF-a and IFN-g) in UC mice (96). Osthole

treatment down-regulated the levels of pro-inflammatory Th1-

associated cytokines (TNF-a) and Th17-associated cytokines (IL-

17) and up-regulated the levels of anti-inflammatory Th2-

associated cytokines (IL-4 and IL-10) (97). Another study

confirmed that daphnetin can improve UC by regulating Treg/

Th17 balance (98). In addition, the therapeutic effects of esculin,

bergapten, esculetin and scoparone have been reported in UC

(99–102).

Type 1 diabetes mellitus (T1DM) is an autoimmune disease in

which pancreatic b cells are destroyed, resulting in an absolute lack

of insulin (103). Umbelliferone increases the number of Foxp3+

regulatory T cells, thereby alleviating the severity of type 1 diabetes

(104). In addition, imperatorin acts as a Takeda G-protein-coupled

receptor 5 (TGR5) and G-protein-coupled receptor 119 (GPR119)

agonist, inducing glucagon-like peptide (GLP-1) secretion and

lowering blood glucose levels in type 1 diabetic rats through

activation of TGR5 and GPR119 (105).

Chronic prostatitis (CP) is a common and intractable

genitourinary chronic inflammatory disease in young and middle-

aged men, characterized by slow onset, stubbornness, recurrent

episodes, and intractability. The autoimmune response caused by
FIGURE 2

Coumarins act on immune cells and cytokines in autoimmune disorders.
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the imbalance of CD4+ T cell differentiation was found to be an

important etiological factor of CP. 4‐methylumbelliferone could

reduce the severity of experimental autoimmune prostatitis (EAP)

in experimental EAP mice by significantly decreasing the

proportion of Th1 cells (106).
5 Coumarins targeting various
signaling pathways

Coumarin-like chemicals are notable for their anti-tumor

properties. In recent years, accumulated studies have shown that

coumarins exhibit promising immune regulatory effects in AIDs.

Each type of coumarin targets different immune cells, thus

triggering a large number of different intracellular signaling

pathways, ultimately regulating the host’s immune response. The

modulation of several signaling pathways leads to alterations in the

expression of pro-inflammatory genes, which ultimately lead to an

improvement in immune environment. To date, most of the

mechanistic studies have been conducted in animal experiments.

Many mechanistic studies have been conducted in animal and cell

experiments. The action of coumarins in AIDs are summarized in

Figure 3 and Table 1.
5.1 Mitogen-activated protein kinases
(MAPKs) pathway

The family of MAPKs includes several subfamilies such as c-Jun

n-terminal kinase (JNK), p38 MAPK, and extracellular signal-

regulated kinases (ERK), which can regulate proliferation,

differentiation, apoptosis, or survival, cellular activities such as
Frontiers in Immunology 06
inflammation and innate immunity (107, 108). There is

connectivity and relative independence between different

signaling pathways in the MAPK family. The c-Jun N-terminal

kinase/stress-activated protein kinase (JNK/SAPK) and p38 kinase

are activated by environmental stress and inflammatory signals,

whereas extracellular signal-regulated kinase (ERK1/2/5) is mainly

activated by growth factor receptors and some cytokine receptors.

Once activated, MAPK will phosphorylate different proteins, acting

as other kinase translation regulators and transcription factors,

leading to cellular responses (109). Signals can be transmitted

from the cell surface to the nucleus by activated MAPK to

increase the expression of relevant inflammatory genes and

promote the secretion of a variety of inflammatory factors, such

as COX-2, PGE2, Monocyte chemoattractant protein-1 (MCP-1),

IL-1b, IL-6, and TNF-a (110). Several studies have reported the

inhibitory effects of coumarins on JNK, ERK1/2, and p38. These

inhibitory effects lead to a reduction in the expression and release of

pro-inflammatory mediators (IL-1b, IL-6, COX-2, MCP-1, e.g.).

For example, osthole inhibited the expression of p38 MAPK, COX-

2, inducible nitric oxide synthase (iNOS), and IkB a in LPS-induced

RAW 264.7 cells and decreased the levels of NO, PGE2, TNF-a, and
IL-6. On this basis, in DSS-induced UC mice, osthole decreased the

expression of NF-kB p65 and p-IkB a in colonic tissues (111).

Similarly, osthole significantly inhibited the phosphorylation of p38,

which was induced by 2,4,6-Trinitrobenzenesulfonic acid (TNBS)

in mice or by LPS in Raw264.7 cells, and strongly inhibited IL-1b,
IL-6, COX-2, and MCP-1. Interestingly, the inhibition by protein

kinase A (PKA) partially reversed the suppressive effects of osthole

on p38 phosphorylation in LPS-stimulated cells (112). In

endometriotic animal models and cells (End1/E6E7 and VK2/

E6E7), fraxetin reduced endometriotic lesions by inhibiting P38/

JNK/ERK phosphorylation, inducing apoptosis, and generating
FIGURE 3

The main point of action of coumarins in autoimmune diseases.
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TABLE 1 Coumarins targeting signaling pathways.

Signaling Pathways Coumarins Actions References

MAPKs pathway Osthole Inhibiting the phosphorylation of IkB a and p38 pathway proteins
alters pro-inflammatory cytokine production and expression

(111, 112)

Fraxetin, imperatorin,
plumbagin,
daphnetin, esculetin

Suppressed the phosphorylation of ERK, JNK, AKT and p38
pathway proteins

(113–115, 117–119)

4-methylumbelliferone inhibiting ERK1/2 signaling and increasing the number of Foxp3+ T
cells in an ERK1/2-dependent manner

(116)

Osthole Regulating the NLRP 3 inflammasome by activation of AMPK (120)

TGF-b/Smad signaling pathway Umbelliferone, esculetin downregulated TGFb1 and p-smad2/3 levels, while inhibiting
nuclear translocation of NF-kB p65 and increasing Nrf 2
protein levels

(127, 128, 130)

Esculetin Reduced levels of TGF-b 1 and fibronectin (129)

NF-kB signaling pathway Umbelliferone, plumbagin,
daphnetin, scopoletin, osthole,
imperatorin, esculetin

Modulates NF-kB signaling pathway and reduces levels of pro-
inflammatory cytokines, dendritic cells, and NLRP3 inflammasome.

(136–142, 147–149)

PI3K/AKT signaling pathway Imperatorin inhibits activation of the PI3K/AKT/NF-kB pathway (153)

Fraxetin reduced phosphorylation of AKT and S6 levels and S6 protein levels (113)

Umbelliferone inhibits AKT phosphorylation to prevent bone loss and
suppresses osteoclastogenesis

(154)

Keap1/Nrf2 signaling pathway Columbianadin regulates the Keap1/Nrf2 signaling pathway and inhibits NF-
kB activation

(157)

Imperatorin regulates the expression of Nrf-2, ARE and HO-1, thereby inhibiting
pro-inflammatory cytokine secretion

(158)

Esculetin inhibiting complement activation and enhancing Nrf2
signaling pathway

(128)

Umbelliferone activating Nrf2 signal transduction (159)

Esculetin decreases the expression of Keap1 (160)

Wnt/b-catenin signaling pathway Umbelliferone reduces the levels of pathway-associated proteins (Wnt1, LRP6, p-
GSK-3b, b-catenin, cyclin D1, and c-Myc) and inhibits b-catenin
nuclear translocation

(163, 164)

JAK/STAT signaling pathway Plumbagin, daphnetin inhibits the phosphorylation of STAT1, STAT3, and STAT4, as well
as the upstream kinases JAK 1 and JAK 2

(170, 171)

Colombianadin inhibited the JAK1/STAT3 pathway to attenuate the inflammatory
response and regulated the NF-kB pathway and Keap1/Nrf2 pathway

(157)

Epigenetic modulation Umbelliferone Activation of SIRT1 resulting in the inhibition of NF-kB, TLR4
and iNOS

(177)

Osthole Downregulates n6 -methyladenosine-modified TGM2 and attenuates
the NF-kB signaling pathway

(179)

Daphnetin reduces gene expression of the methyltransferases DNMT1,
DNMT3a and DNMT3b and demethylates the proapoptotic genes
PDCD5, FasL, DR3 and p53

(178)

Esculetin restores histone H3 acetylation (K9/14) and mono-methylation (K4) (129)

Osthole increases miR-1224-3P expression and decreases AGO1 expression
and inhibits pro-inflammatory cytokine levels

(181)

Notch signaling pathway Agrimonolide decreasing the mRNA and protein levels of Notch-1, Jagged-1, and
DLL4 and inhibiting the phosphorylation of JAK2 and STAT3

(186)
F
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reactive oxygen species (ROS) (113). Imperatorin was able to

attenuate symptoms associated with a mouse model of

psoriasiform dermatitis by inhibiting the phosphorylation of ERK,

JNK, and AKT. Meanwhile, the inhibitory effects of imperatorin on

cell responses and signaling could be reversed by a PKA inhibitor,

suggesting that cAMP/PKA is involved in the anti-inflammatory

effects of imperatorin (114). In addition, inhibition of p38 activation

by imperatorin has been reported (115). 4-methylumbelliferone (4-

MU) inhibits ERK 1/2 signaling and increases the number of

Fox P3+ T cells in an ERK1/2-dependent manner, thereby

inhibiting hyaluronan synthesis to restore immune tolerance in

autoimmune insulitis (116). Additionally, other coumarins, such as

plumbagin, daphnetin, and esculetin have been shown to reduce

inflammation by interfering with the MAPKs pathway (117–119).

It is noteworthy that the beneficial effects of coumarins may also

be associated with increased signaling in the AMPKs pathway. For

example, the anti-RA activity of osthole requires the involvement of

AMPK phosphorylation activation. Osthole can regulate NLRP3

inflammasome by activating AMPK. This result was also reverse-

validated by the experimental application of the AMPK inhibitor

compound C, which blocked the activation of AMPK by osthole

and also attenuated the positive effect of osthole on inflammasome

activation, which was manifested as increased protein levels of

NLRP3, CAS1, ASC and IL-1b (120).
5.2 Transforming growth factor beta/small
mother against decapentaplegic (TGF-b/
Smad) signaling pathway

The TGF-b/Smad signaling pathway is involved in many

cellular processes (121). TGF-b is a multifunctional cytokine

consisting of three isoforms, TGF-b1, TGF-b2, and TGF-b3,
which is widely expressed in different types of cells and tissues,

with TGF-b1 being the major isoform. TGF-b can negatively

regulate immune cell proliferation, differentiation, and activation

and plays an important role in suppressing immunity and

inflammation (122, 123). Smad proteins, on the other hand, are

signal transducers of intracellular TGF-b and mediate most of the

functions of TGF-b (124). One of the mechanisms by which

coumarins can modulate the immune response is through direct

inhibition of the TGF-b/Smad signaling pathway. During diabetes,

the expression of TGF-b is increased in the kidney, which leads to

further deterioration of nephropathy (125). The circulating level of

TGF-b1 is one of the important markers for predicting diabetes-

related renal injury (126). Umbelliferone reduces Renal damage in

type 1 diabetic rats by decreasing the levels of TGF-b1 in Renal

tissue and circulation (127). In the MRL/lpr mouse model, esculetin

significantly down-regulated the levels of TGFb1 and p-smad3 in

renal tissues, as well as significantly inhibited the nuclear

translocation of NF-kB p65 and increased the level of Nrf2

protein in the nucleus, which had a significant therapeutic effect

on murine lupus nephritis (128). In addition, esculetin treatment

protects against the increase in expression of TGF-b1and
fibronectin in type I diabetic rat kidney and hence shows efficacy

in attenuating glomerulosclerosis (129). Another study reported
Frontiers in Immunology 08
that umbelliferone and esculetin could inhibit the activation of

TGF-smad signal, which showed that they could down-regulate the

secretion of fibronectin in HK2 cells stimulated by TGF-b1 and

inhibit smad2/3 phosphorylation, thus playing a beneficial role in

rats with type 1 diabetic nephropathy (130).
5.3 Nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-kB)
signaling pathway

NF-kB is an important intracellular transcription factor that

regulates the expression of a wide range of genes and plays a key

regulatory role in a variety of biological processes including

inflammatory response, cell proliferation, apoptosis, and cell

infiltration (131). NF-kB is phosphorylated by IkB kinase upon

cellular stimulation by chemical or mechanical signals and

subsequently degraded via the ubiquitin-proteasome system. After

IkB degradation, NF-kB dimers detached from IkB are activated by

translation and enter the nucleus to participate in transcription

(132–134). Activated NF-kB regulates the production of

inflammatory factors such as TNF-a, COX-2, and PGE2 in the

nucleus, and participates in and mediates a variety of immune

responses and inflammatory reactions in the body (135). Different

coumarins including umbelliferone, plumbagin, daphnetin,

scopoletin, osthole, imperatorin, and esculetin all inhibit NF-kB
pathways. In FLS of RA, umbelliferone and scopoletin counteract

RA by binding to and inhibiting tyrosine kinases in RA-FLS and

subsequently inhibiting NF-kB (136). Furthermore, umbelliferone

ameliorates RA induced by complete Freund’s adjuvant by

inhibiting the NF-kB signaling pathway in osteoclast

differentiation (137). In a mouse model of EAE, scopoletin

attenuates DCs activation through inhibition of the NF-kB
signaling pathway and significantly reduces central nervous

system (CNS) inflammation and demyelination in EAE mice

(138). The inhibitory effect of daphnetin on NF-kB activation has

been reported in various autoimmune disease models (psoriasis

mice, EAE mice, NZB/WF1 SLE mice) (139–141). Plumbagin has

been shown to reduce the levels of TNF-a, IL-6 and matrix

metalloproteinases (MMPs) in RA mouse cells by inhibiting NF-

kB activation, and its mechanism of action is related to the

inhibition of IkB and NF-kB activation as well as the entry of p65

into the cell nucleus (142). Furthermore, in patients, IL-1b plays a

pathogenic role in the evolution of IgA nephropathy (143), and

serum levels of IL 18 are elevated in IgA nephropathy patients (144).

Mature IL-1b and IL-18 are produced by active caspase-1 from

NLRP3 inflammasome from their respective precursors pro- IL-1b
and pro IL-18 (145, 146). In a mouse model of progressive IgA

nephropathy, osthole blocked the activation of NF-kB and NLRP3

inflammasome, thereby improving renal function and blocking

progressive renal lesions (147). IL-1b A study observing the

effects of esculetin on skin inflammation in psoriasis mice found

that esculetin inhibited the activation of the NF-kB signaling

pathway, including inhibiting the phosphorylation of IKKa and

P65 in psoriatic skin (148). In addition, the inhibitory effect of

imperatorin on NF-kB has been reported in mice with UC (149).
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5.4 Phosphatidylinositol 3-kinase/protein
kinase B (PI3K/Akt) signaling pathway

The PI3K/AKT pathway is an important signaling pathway in

the body, consisting of two protein kinases, PI3K and AKT, which

are involved in the phosphorylation of NF-kB p65 and nuclear

translocation, and contribute to the production of inflammatory

mediators (150, 151). Overall, the PI3K/AKT pathway activates the

signaling pathway upon stimulation of the corresponding upstream

signals, which in turn directs the downstream signaling substances

as well as the cytosolic nucleus to make the corresponding response,

and further regulates the phenomena of cell autophagy, apoptosis,

and inflammation release, which ultimately affects the development

of diseases (152). It is hypothesized that the beneficial effects of

coumarins may be related to the inhibition of signaling pathways in

the PI3K/AKT pathway. It was confirmed that imperatorin

significantly inhibited the activation of the PI3K/AKT/NF-kB
pathway by inhibiting the phosphorylation levels of PI3K, AKT,

and p65 in the ectopic endometrium tissue, thereby significantly

inhibiting the growth and ameliorate the histopathological features

of ectopic endometrium in experimental endometriosis rats (153).

Another study reported that fraxetin significantly reduced

phosphorylation of AKT and S6 levels and S6 protein levels in

End1/E6E7 and VK2/E6E7 cells (endometriotic epithelial cell lines)

(113). Furthermore, umbelliferone prevents LPS-induced bone loss

and inhibits RANKL-induced osteoclastogenesis by inhibiting AKT

phosphorylation (154).
5.5 Kelch-like-ech-associated protein 1-
nuclear factor E2-related factor 2 (Keap1/
Nrf2) signaling pathway

Kelch-like-ech-associated protein 1 (Keap1)-nuclear factor E2-

related factor 2 (Nrf2) pathway is closely related to oxidative stress

and inflammation in various organs and systems of the body, and is

considered as the therapeutic target of many organ protection. Nrf2

is the main regulator of cell antioxidant response, and its activity is

precisely regulated by the negative regulatory protein Keap1. The

antioxidant effect of Nrf2 was inhibited by the interaction with

Keap1 (155, 156). The imbalance of Keap1/Nrf2 transcription

activity is related to the pathogenesis of many diseases. Keap1/

Nrf2 axis has become the most important regulator of intracellular

homeostasis and plays an important role in the occurrence and

development of many chronic diseases. Some studies have reported

the regulatory effects of coumarin on Nrf2 and Keap1. For example,

in the collagen-induced RA mouse model, columbianadin can play

an anti-RA role by regulating inflammation and oxidative stress,

and its mechanism includes inhibiting the expression of Keap1 at

mRNA and protein levels, increasing the expression of Nrf2 mRNA

in CIA mice, regulating Keap1/Nrf2 signaling pathway in CIA mice,

and inhibiting the activation of NF-kB (157). In addition,

imperatorin has been proven to interfere with the expression of

Nrf2 in the colon of rats with UC induced by TNBS, and inhibit the

secretion of TNF-a and IL-6 by regulating the expressions of Nrf-2,

ARE and HO-1, thus alleviating the symptoms of UC (158).
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Umbelliferone can also alleviate UC induced by DSS by inhibiting

inflammation, which is related to activating Nrf2 signal

transduction (159). Other studies have reported that esculetin can

treat lupus nephritis in mice by inhibiting complement activation

and enhancing Nrf2 signaling pathway (128). In addition, the

inhibition of esculetin on Keap1 activation has also been

reported. In a study, it was reported that esculetin can reduce the

expression of Keap1 in aorta of hyperinsulinemia combined with

T1DM rats, and has a protective effect on vascular function (160).
5.6 Wngless-type/beta-catenin (Wnt/b-
catenin) pathway

The Wnt/b-catenin signaling pathway, also known as the

Canonical Wnt signaling pathway, is a conserved signaling axis

(161). The Wnt/b-catenin pathway consists of four segments: the

extracellular signaling, membrane segment, cytoplasmic segment, and

nuclear segment. Extracellular signaling is mainly mediated by Wnt

proteins, among which are Wnt3a, Wnt1, and Wnt5a. The cytosolic

fragment mainly contains the Wnt receptor Frizzled and low-density

lipoprotein receptor-related protein (LRP5/6). The cytoplasmic

fraction mainly consisted of b-catenin, Dishevelled (DVL), glycogen

synthase kinase-3b (GSK-3b), AXIN, adenomatous polyposis coli

(APC) protein, and casein kinase-1 (CK-1). Nuclear segments mainly

include b-catenin translocated to the nucleus, T-cell factor/lymphoid

enhancer factor family (TCF/LEF), and b-catenin downstream target

genes such as MMPs and c-Myc (162). Coumarins can alter the Wnt/

b-catenin pathway along multiple steps in the signaling cascade.

Umbelliferone reduces Wnt1 protein levels, activates GSK-3b kinase

by blocking GSK-3b (Ser9) phosphorylation, and reduces the protein

level and nuclear translocation of b-catenin (163). Furthermore, in

FLS from RA rats, Umbelliferone could reduce the activation of the

Wnt/b-catenin pathway by restoring GSK-3b activity, reducing the

levels of pathway-associated proteins (e.g., Wnt1, LRP6, p-GSK-3b
(Ser 9), b-catenin, cyclin D1, and c-Myc), and inhibiting b-catenin
nuclear translocation (164).
5.7 Janus kinase/signal transducer and
activator of transcription (JAK/
STAT) pathway

The JAK-STAT pathway is a signaling pathway from the cell

membrane to the nucleus and is critical in apoptosis, proliferation

and differentiation, body immune function, and inflammatory

response (165, 166). The JAK-STAT pathway consists of JAK-

associated receptors, JAK, and STAT (167). Among them, the

Janus kinase family is a class of non-receptor-type protein

tyrosine kinases including JAK1, JAK2, JAK3, and tyrosine kinase

2 (TYK2) (168). STAT is a class of cytosolic proteins, located

downstream of JAK, including STAT1, STAT2, STAT3, STAT4,

STAT5a, STAT5b, and STAT6 (169). These molecules contribute to

the inflammatory process and, by inference, their inhibition

represents a therapeutic target for the reduction of inflammation.

Thus, the mechanism by which coumarins can exert
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immunomodulatory effects may be the inhibition of these

molecules. Plumbagin significantly inhibited the phosphorylation

of STAT1, STAT4, and STAT3, as well as the upstream kinases

JAK1 and JAK2, resulting in a reduction in the number of CD4+ T-

lymphocytes and pro-inflammatory cytokines in mice with

experimental autoimmune encephalomyelitis, which ameliorated

the locomotor dysfunction and body weight loss of mice (170).

Similar results were observed in LPS-induced Caco-2 cells, where

daphnetin inhibited the phosphorylation of JAK2 and STAT3

proteins (171). In addition, in mice models of CIA,

colombianadin was able to exert anti-RA effects by modulating

immune and inflammatory responses, and its mechanism of action

included decreasing the phosphorylation levels of JAK1 and STAT3

in the ankle joints of mice with CIA as well as the STAT3 mRNA

expression, suggesting that colombianadin attenuates inflammatory

responses by inhibiting the JAK1/STAT3 pathway. It is worth

mentioning that columbianadin also inhibited the protein

expression of P65, P50, and phosphorylated IkBa in the ankle

joints of mice, inhibited the expression of Keap1 at the mRNA and

protein levels, and increased the expression of Nrf2 at the mRNA

level in CIA mice (157).
5.8 Epigenetic modulation

More and more studies show that epigenetic modification can

regulate the inflammatory response and immune response through

DNA, histone, transcriptional, and post-transcriptional levels (44,

172). Indeed, a series of studies have reported the existence of

coumarin-induced epigenetic modifications leading to gene

activation or silencing in the absence of changes in DNA sequence

(173–176). A novel point of coumarins in cellular control is their

ability to modulate modular epigenetic mechanisms such as DNA

methylation, histone modifications, and posttranscriptional

regulation of microRNAs, thereby regulating immune cell

activation and differentiation. Among various coumarins,

umbelliferone has been shown to be a strong activator of Silent

information regulator 1 (SIRT1), leading to down-regulation of gene

and protein expression of TLR4, NF-kB, and iNOS signaling factors,
as well as decreasing the levels of TNF-a, IL-6, MPO, and VCAM-1

in the colon, resulting in a potent anti-inflammatory effect in acetic

acid-induced UC rats (177). It is reported that esculetin can attenuate

the decrease in histone H3 acetylation (K9/14) and mono-

methylation (K4) in the kidney of rats with type I diabetic

nephropathy induced by streptozotocin (STZ) (129). In addition,

daphnetin had a demethylating effect on the proapoptotic genes

PDCD5, FasL, DR3, and p53 in CIA rat synovial cells, and decreased

the gene expression of the methyltransferases DNMT1, DNMT3a,

and DNMT3b (178). In a study, osthole downregulated n6-

methyladenosine-modified TGM2 to exert its additive effect with

methotrexate and suppress the proliferation, migration, and invasion

of RA-FLSs by attenuating NF-kB signaling pathway, resulting in the

suppression of RA progression (179).

MicroRNAs are small and non-coding regulatory RNAs that

can regulate the translocation and/or degradation of messenger
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RNAs (180). The regulatory effect of coumarin on microRNAs was

also reported. It is reported that osthole can increase the expression

of microRNA-1224-3p (miR-1224-3p) and decrease the expression

of AGO1 in HUM-iCell-s010 RA cells, and decrease the levels of IL-

6 and IL-1b in these cells. This discovery suggests that osthole may

have the potential to treat RA by regulating the expression of miR-

1224- 3 P and AGO 1 and reducing the level of proinflammatory

cytokines (181).
5.9 Other pathways

The Notch signaling pathway is a conserved and important

mechanism for maintaining immune homeostasis by regulating cell

differentiation and modulating inflammation (182). In mammals,

the pathway includes ligands (e.g., Jagged1, Jagged2, Delta1, Delta3,

and Delta4), Notch receptors (Notch1-4), and downstream

signaling components (183, 184). Aberrant activation of the

Notch signaling pathway disrupts Th17/Treg cell homeostasis

(185). Agrimonolide was able to correct the imbalance of Th17/

Treg cells by significantly decreasing the mRNA and protein levels

of Notch-1, Jagged-1, and DLL4, as well as inhibiting the

phosphorylation of JAK2 and STAT3, which effectively attenuated

the symptoms of weight loss and hematochezia, decreased the

expression of inflammatory cytokines, and repaired intestinal

mucosal barrier in UC mice (186). The Hedgehog (HH) pathway

is critical for embryonic development and homeostatic maintenance

of many adult tissues and organs. It is also associated with certain

functions of the innate and adaptive immune system (187). HH,

including sonic hedgehog (SHH), Indian hedgehog (IHH), and

desert hedgehog (DHH) (188). FLSs are the main effector cells

responsible for synovitis and joint destruction in RA. Studies have

shown that the SHH signaling pathway is involved in the aberrant

activation of RA-FLSs, and inhibition of the SHH pathway reduces

the proliferation and migration of RA-FLSs (189). Therefore, the

Hedgehog signaling pathway may be one of the pathways of

coumarins for the treatment of autoimmune diseases, and it also

provides a reference for the further development and utilization

of coumarins.
6 Conclusions

Therapeutic agents available for the treatment of AIDs are

limited, and there are certain shortcomings, such as dosage, route

of administration, and bioavailability. Some therapeutic drugs have

varying degrees of side effects. Given these limitations, we reviewed

various coumarins that shown promising efficacy in AIDs such as

T1DM, UC, SLE, RA, MS. Coumarin can regulate inflammatory

cytokines such as IL-4, IL-6, IL-10, IL-17, IL-23, TNF-a, and IFN-g,
as well as related signaling pathways in immune cells, including

JAK-STAT, Wnt/b-catenin, PI3K-AKT, TGF-b/Smad, MAPKs,

Keap1/Nrf2, Notch and NF-kB pathways. The review provides

new evidence for the discovery of effective and safe new drugs

for AIDs.
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