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ReCARving the future: bridging
CAR T-cell therapy gaps with
synthetic biology, engineering,
and economic insights
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Cancer Center, Washington, DC, United States, 2Center for Gene and Cellular Immunotherapy,
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Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment

of hematologic malignancies, offering remarkable remission rates in otherwise

refractory conditions. However, its expansion into broader oncological

applications faces significant hurdles, including limited efficacy in solid tumors,

safety concerns related to toxicity, and logistical challenges in manufacturing and

scalability. This review critically examines the latest advancements aimed at

overcoming these obstacles, highlighting innovations in CAR T-cell

engineering, novel antigen targeting strategies, and improvements in delivery

and persistence within the tumor microenvironment. We also discuss the

development of allogeneic CAR T cells as off-the-shelf therapies, strategies to

mitigate adverse effects, and the integration of CAR T cells with other therapeutic

modalities. This comprehensive analysis underscores the synergistic potential of

these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell

therapies, providing a forward-looking perspective on their evolutionary

trajectory in cancer treatment.
KEYWORDS
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1 Introduction

The concept of chimeric antigen receptor (CAR) T-cell therapy represents a

transformative advance in cancer immunotherapy, bridging the innate power of cellular

immunity with the precision of molecular targeting. The genesis of this revolutionary

therapy dates back to the late eighties when the first CAR was engineered (1, 2), signifying

the inception of a new era in targeted cancer therapy. These early constructs laid the

foundational framework for what would become a series of iterative and transformative

advancements in the field (3).
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Over the ensuing decades, CAR T-cell therapy has evolved

dramatically, propelled by significant technological innovations and a

deeper understanding of cancer immunology. Initial clinical successes

were most notable in hematologic malignancies, such as acute

lymphoblastic leukemia (4, 5) and diffuse large B-cell lymphoma (6),

where remission rates previously unattainable with traditional therapies

were achieved. This was evidenced by landmark clinical trials that

demonstrated profound responses in patients resistant to conventional

treatments, establishing CAR T-cells as a pillar of modern oncological

therapy (7–12).

Despite these impressive outcomes, expanding CAR T-cell

therapy to broader oncological applications, particularly solid

tumors, has encountered significant challenges (13). Key obstacles

include the immunosuppressive tumor microenvironment (TME),

antigen escape variants, and the physical barriers that impede CAR

T-cell infiltration and function (13). Moreover, systemic toxicities

such as cytokine release syndrome (CRS) and neurotoxicity pose

severe risks, limiting the therapy’s widespread application (14, 15).

Furthermore, the individualized manufacturing process for CAR T-

cell therapy introduces logistical and economic hurdles (16),

including high costs and variability in the quality of patients’ T cells.

Recognizing these hurdles, the scientific community has

embarked on a quest to refine and evolve CAR T-cell strategies to

overcome these barriers. This review examines emerging strategies

shaping the future of CAR T-cell therapy, including next-generation

CAR constructs, improved manufacturing processes, and novel

combination therapies. It highlights the potential of these

strategies to broaden the applicability of CAR T-cell therapies

across a wider range of cancers providing a forward-looking

perspective on their evolution in cancer treatment. Additionally,

this review critically analyzes the field’s current gaps, controversies,

and future directions, emphasizing the multifaceted challenges and

opportunities in advancing CAR T-cell therapies Table 1

and Figure 1.
2 Core strategies and innovations in
CAR T-cell therapy

2.1 Synthetic biology and engineering:
redefining CAR T-cell design
and manufacturing

Despite its promise, the efficacy of CAR T-cell therapy remains

limited, with durable remissions being achieved in only 40% of

diffuse large B-cell lymphoma patients (17). Enhancing the design

of chimeric antigen receptor (CAR) constructs is a critical area of

research aimed at augmenting the efficacy of CAR T-cell therapies.

This effort involves the engineering of CARs with advanced

signaling capabilities and the integration of safety features to

address the limitations observed with first-and second-generation

CAR T cells (18).

A range of innovative strategies focusing on the refinement of

CAR constructs and optimization of manufacturing protocols have

emerged. For example, multiplexed CARs targeting multiple tumor-

associated antigens aim to forestall tumor escape mechanisms by
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addressing antigen loss or heterogeneity (19, 20). Similarly, the

development of “modular” or “universal” CAR systems offers

adaptable targeting capabilities through switchable, bispecific

adaptors, enhancing the precision of CAR T-cell engagement with

diverse tumor antigens (21–26). Furthermore, synthetic Notch

(SynNotch) receptors represent a cutting-edge advancement in

CAR T cell engineering, employing a dual antigen recognition

strategy for activation. This novel approach uses SynNotch

receptors to initiate transcription of a CAR after interacting with

a predefined primary antigen, ensuring activation is strictly tumor

specific (27–29). This two-step activation process allows for more

precise tumor targeting and minimizes off-tumor activity,

enhancing safety and reducing potential toxicities associated with

conventional CAR T cell therapies. In addition to these innovations,

Hybrid CARs technologies combine features from both T-cell

receptors (TCRs) and CARs to enhance the targeting of cancer-

specific antigens and reduce tonic signaling, enabling the

engineered cells to recognize and engage with intracellular

antigens presented at ultra-low densities on cancer cells by MHC

molecules (30–36). This advancement will potentially broaden the

therapeutic applicability of CAR technology, allowing it to target the

entire proteome of a cancer cell.

Advancements in CAR T-cell design have led to the development

of “third generation” CAR T cells, which represent a next-generation

approach aiming to enhance the efficacy and longevity of these

therapies. By integrating multiple co-stimulatory molecules into

the CAR structure, these sophisticated constructs are designed

to provide enhanced activation and sustained support to the CAR

T cells (37, 38). Additionally, “armored” CAR T cells are genetically

modified to enhance their efficacy and persistence. These modifications

allow armored CAR T-cells to secrete active cytokines or express

other pro-inflammatory ligands to enhance their anti-tumor

activity, helping them better survive, disrupt, and modulate the

tumor microenvironment, improving their function in hostile

conditions (39–41).

In the pursuit of enhancing the efficacy and persistence of CAR T-

cell therapies, researchers have innovated and refined manufacturing

protocols. The integration of CRISPR/Cas9 gene editing represents a

revolutionary stride in CAR T cell manufacturing. This precise gene-

editing technology allows for the specific deletion of CAR T genes in an

effort to bolster CAR T cell persistence and functionality, such as the

knockout of genes encoding inhibitory receptors (42), epigenetic

modifiers (43), and those mediating CAR T exhaustion (44). In

parallel, advancements in vector technology have substantially

improved the delivery of genetic material into T cells (45). Viral

vectors, known for their high efficiency in gene delivery, have been

optimized to enhance transduction rates while minimizing the risk of

insertional oncogenesis—a concern with earlier-generation vectors

especially retroviral vectors (46). Modern lentiviral and retroviral

vectors offer stable gene transfer, which is crucial for the long-term

expression of CAR genes (47). Non-viral engineering strategies have

also progressed, offering more scalable and potentially safer alternatives

to viral methods (48). These include transposon-based systems like

Sleeping Beauty (49), which enable stable gene integration, and mRNA

electroporation (50), which provides a transient expression that can be

advantageous for safety. Additionally, non-viral methods such as the
frontiersin.org
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TABLE 1 Innovative strategies in CAR T Cell Therapy.

Strategy Objective Mechanism Potential Outcomes

Synthetic
Biology
and
Engineering

Multiplexed CARs
19, 20

Prevent tumor escape due to
antigen loss or heterogeneity

Target multiple tumor-associated antigens to
address antigen variability and loss

Enhanced tumor targeting and reduction in
tumor escape mechanisms

Modular/Universal
CARs 21–26

Increase flexibility
in targeting

Use of switchable, bispecific adaptors to
redirect CAR T cells against various
tumor antigens

Greater adaptability and precision in
targeting tumors

Synthetic Notch
(SynNotch) CARs
27–29

Enhance specificity and
safety of activation

Use dual antigen recognition strategy to
initiate CAR transcription only after
interacting with a primary antigen

More precise tumor targeting, reduced off-
tumor activity, enhanced safety, and reduced
potential toxicities

Hybrid CARs 30–36

Enhance targeting of cancer-
specific antigens and reduce
tonic signaling

Combine TCR and CAR features to recognize
intracellular antigens presented by MHC
molecules at ultra-low densities

Broadened therapeutic applicability, ability to
target the entire proteome of cancer cells

Armored CAR T
cells 39–41

Enhance efficacy
and persistence

CAR T cells engineered to secrete cytokines
or express pro-inflammatory ligands

Increased persistence and efficacy, and
modulation of the TME

Manufacturing
Advancements

CRISPR/Cas9 gene
editing 42–44

Enhance CAR T cell
functionality and persistence

Genetic modifications to secrete cytokines or
express pro-inflammatory ligands

Improved anti-tumor activity, survival, and
function in hostile tumor microenvironments

Advancements in
Vector Technology
46–47, 49–52

Improve gene delivery
efficiency and safety

Optimization of viral vectors (lentiviral,
retroviral) for stable gene transfer and
reduced oncogenesis risk, non-viral methods
(transposon-based systems, mRNA
electroporation, CRISPR) for scalable and
precise gene editing

Enhanced transduction rates, long-term CAR
gene expression, increased safety and
therapeutic efficacy

Targeting specific T
cell subsets 54, 55

Maximize therapeutic
persistence and efficacy

Selection of Tcm and Tscm for longevity and
potent antitumor responses, inclusion of both
CD4+ and CD8+ T cells for synergistic effects

Enhanced long-term antitumor activity,
durability, and therapeutic outcomes

Optimizing
Production and
Reducing Costs
154–172

Streamline production,
enhance efficiency, and
reduce costs

Automated manufacturing systems, point-of-
care production units, advanced cell
expansion techniques, AI and ML
integration, non-viral gene transfer methods,
economic analysis, local manufacturing
facilities, streamlined regulatory approvals

Reduced production time and costs, increased
efficiency, improved accessibility,
standardized treatments, expanded access in
underserved regions, enhanced
regulatory compliance

Targeting
Novel Antigens

Tumor-specific and
neoantigens 65–67

Expand efficacy across
diverse cancer types

Identifying and targeting tumor-specific
antigens (TSAs) and neoantigens unique to
cancer cells

Minimized off-target effects, personalized
treatment, broader therapeutic applicability

Targeting cancer
stem cells (CSCs)
75–77

Eradicate sources of tumor
regrowth and metastasis

Engineering CAR T cells to recognize and
eliminate CSC-specific antigens

More durable responses, reduced likelihood
of cancer relapse

Enhancing
Solid
Tumor
Targeting

Enhancing homing
and penetration
78–82

Improve CAR T-cell
trafficking and infiltration
in tumors

Engineering CAR T cells to express
chemokine receptors, incorporate matrix-
degrading enzymes, and target
tumor vasculature

Enhanced trafficking and infiltration, direct
tumor starvation, boosted antitumor efficacy

Overcoming the
immunosuppressive
TME 39–41, 83–88

Counteract the suppressive
effects of the
tumor environment

Development of "armored" CAR T cells, PD-
1–CD28 switch receptors, knockdown of
intracellular inhibitors, metabolic adaptations,
and inhibition of tumor-derived exosomes

Improved CAR T-cell survival and function
in hostile TME, enhanced anti-tumor activity

Synergistic
Combination
Therapies

Integration with
Other Cancer
Treatments 95, 96,
98–103, 108, 109,
111–115

Overcome barriers in
immunotherapy and
enhance CAR T cell efficacy

Combination with ICIs, TKIs, DNA damage
repair inhibitors, angiogenesis inhibitors, low-
dose chemotherapy, radiation therapy,
oncolytic viruses, and BiTEs

Synergistic anti-tumor effects, enhanced CAR
T cell functionality, better local control in
solid tumors, reduced antigen escape

Allogeneic
CAR T-
cell Therapy

Allogeneic CAR T-
cell Therapy 116–
119, 121–125

Provide a standardized,
ready-to-use
treatment option

Use healthy donor T cells, bulk
manufacturing, genetic modifications to
prevent GVHD (e.g., TCR knockout,
ADR integration)

Immediate availability, reduced
manufacturing time and costs, consistent
therapeutic outcomes

(Continued)
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CRISPR complex delivery system for manufacturing CAR T cells offers

enhanced safety by avoiding viral vector risks and ensuring precise gene

editing without affecting other genome areas, thus minimizing

off-target effects. The technology is also versatile, allowing for both

gene knock-ins and knock-outs, enhancing the functional capabilities

of CAR T cells and their therapeutic efficacy and safety (51, 52) Table 2.
FIGURE 1

Core strategies and innovations in CAR T-cell therapies, highlighting advance

Frontiers in Immunology 04
The strategic selection of specific T cell subsets is pivotal in honing

the efficacy of CAR T cell therapies. Central memory T cells (Tcm) and

stem cell-like memory T cells (Tscm) are being employed due to their

inherent longevity, robust proliferative abilities, and potent antitumor

responses (53). These cells are known for their self-renewal capacity

and long-term memory, providing a persistent immunological
TABLE 1 Continued

Strategy Objective Mechanism Potential Outcomes

Advanced
Strategies to
Mitigate
Toxicities

Enhancing Safety
and Control
127–143

Reduce toxicities and
enhance control in CAR T-
cell therapies

Integration of safety switches (inducible
caspase-9, ADCC switches), small molecule-
based switches, SUPRA CARs, Dual CARs,
inducible promoters, drug-responsive
elements, sound/light activation

Rapid elimination of CAR T cells in severe
side effects, precise targeting, reduced off-
target effects, minimized risk of
overactivation and associated toxicities

Local delivery of
CAR T cells 89–144

Minimize systemic exposure
and reduce
widespread toxicities

Administering CAR T cells directly to the
tumor site

Reduced risk of widespread toxicities,
enhanced local control of tumors

Prophylactic
Medications and
Predictive
Techniques145–153

Reduce severity of CRS and
neurotoxicity, predict and
manage toxic responses

Use of medications like tocilizumab and
anakinra, biomarker monitoring, fractionated
dosing, CRISPR/Cas9 gene editing,
development of mouse models

Preemptive reduction of CRS and
neurotoxicity, better prediction and
management of toxic responses, identification
of key inflammatory pathways, improved
safety interventions
ments in design, engineering, an
d safety features.
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presence against tumors. Leveraging these subsets is instrumental in

creating a pool of CAR T cells with superior proliferative capacity,

long-term persistence, and potent antitumor activity (54, 55).

Additionally, the inclusion of both CD4+ and CD8+ T cells could

further enhance the therapeutic potential of CAR T-cell constructs.

CD4+ T cells, often termed helper T cells, are crucial for their

supportive role in immune modulation and enhancing the function

of CD8+ T cells, which are primarily responsible for executing

cytotoxic actions against tumor cells. Incorporating both subtypes

not only facilitates a robust and sustained antitumor immune

response but also capitalizes on the synergistic interactions between

them to maximize therapeutic outcomes (56–58) Table 3.

Interdisciplinary approaches are crucial in advancing CAR T-cell

therapy by integrating insights from bioinformatics, materials
Frontiers in Immunology 05
science, immunology, single-cell studies, and various omics

technologies. Bioinformatics plays a pivotal role in analyzing large-

scale genomic and proteomic data to identify new targets (59) and

understand complex cellular behaviors (60, 61). Furthermore, single-

cell technologies and omics analyses enable the detailed study of

individual cell behaviors and responses, providing a more nuanced

understanding of the variability and efficacy of CAR T-cell therapies

(62). These interdisciplinary efforts are vital for tailoring therapies to

individual patients’ unique biological contexts, ultimately enhancing

the precision and effectiveness of CAR T-cell treatments (Figure 2).

The integration of synthetic biology and advanced engineering in

CAR T-cell therapy brings forth transformative prospects for

improving therapeutic efficacy and safety. However, this progress is

accompanied by substantial challenges and controversies. Innovations
TABLE 2 Comparison of viral, non-viral gene delivery, and CRISPR/Cas9 Gene Editing in CAR T-Cell Therapy.

Feature Viral Gene Delivery Non-Viral Gene Delivery CRISPR/Cas9 Gene Editing

Efficiency
High transduction efficiency; stable
gene expression. Lower efficiency; often transient expression.

High editing efficiency; permanent
modifications possible.

Cost
Higher due to production complexities and
biosafety requirements.

Generally lower, simpler
production processes.

Variable; high initial development cost but
decreasing as technology matures.

Safety
Risk of insertional mutagenesis and immune
response to viral components.

Reduced risk of insertional mutagenesis;
lower immunogenicity.

Risk of off-target effects and unintended
genetic alterations.

Scale-Up
Scalable but complex due to stringent
regulatory requirements. Easier to scale up and less regulated.

Scalable, but requires precise control and
validation of editing tools.

Flexibility
and Control

Less control over gene expression
post-delivery.

Higher control, including potential for
repeat dosing.

High precision in gene modification; allows
targeted gene disruptions and insertions.

Technological
Maturity

Well-established in clinical settings with
approved products.

Emerging technologies, fewer examples of
clinical validation.

Rapidly evolving; increasing clinical
applications but still less mature than
viral methods.

Integration Into
Host Genome

Permanent integration possible, leading to
long-lasting effects.

Usually no integration, leading to transient
effects unless integrating non-viral systems
are used.

Targeted integration can be achieved;
depends on the CRISPR system and delivery
method used.
TABLE 3 Comparison of CD4+ vs. CD8+ T Cell Subtypes in CAR T-Cell Therapy.

Feature CD4+ T Cells CD8+ T Cells

Role in Immunity
Primarily help activate other immune cells; provide support and
enhance the immune response. Primarily responsible for directly killing infected or cancerous cells.

Outcomes in Therapy
Enhance overall immune response, can contribute to more sustained
disease control when included.

Often more effective at rapid tumor clearance; essential for immediate
cytotoxic activity.

Proliferative Capacity
Generally lower proliferative capacity compared to CD8+ T cells but
crucial for long-term immunological support and memory. Higher proliferative capacity, crucial for immediate antitumor activity.

Persistence
Longer persistence in the body, which helps in maintaining a
prolonged immune response against cancer cells.

Shorter persistence than CD4+ cells, but efforts to engineer longer-
lasting CD8+ cells are ongoing.

Therapeutic Efficacy

Important for cytokine production and helping CD8+ T cells function
optimally. Often engineered in CAR T-cell therapies for
balanced responses.

Typically show higher efficacy in terms of direct tumor cell
destruction in the short term. Used predominantly in most CAR T-
cell constructs.

Synergistic Potential

Synergize with CD8+ T cells to enhance and sustain antitumor
response. Can be engineered to help modulate the
tumor microenvironment.

Synergy with CD4+ T cells enhances their effectiveness and longevity
in the host.

Clinical Implications

Enhancements in CD4+ CAR T-cell designs are aimed at improving
their antitumor functions and persistence, reflecting their role in
achieving durable remissions.

Focus on enhancing the cytotoxic capacity and persistence to improve
immediate and long-term clinical outcomes.
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FIGURE 2

The integration of interdisciplinary approaches in advancing CAR T-cell therapy, combining insights from bioinformatics, materials science,
immunology, single-cell studies, and omics technologies to enhance the precision and effectiveness of treatments.
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such as multiplexed, modular, and SynNotch CAR systems provide

unprecedented precision in tumor targeting, potentially reducing off-

target effects and enhancing treatment specificity. Despite these

advancements, the complexity and novel nature of these designs

prompt concerns about their predictability and consistent

performance in diverse clinical scenarios. The scientific community

continues to debate the ideal balance between the sophistication of

these designs and the practicalities of manufacturing, scalability, and

regulatory approvals. Ethical considerations and the dynamic nature of

regulatory standards further complicate the rapid adoption and

implementation of these advanced therapies. Importantly, there is a

critical need for comprehensive clinical trials to rigorously evaluate the

long-term safety and efficacy of these next-generation CAR T cells.

Such trials are essential to ensure that these innovative treatments can

be safely integrated into clinical practice and can deliver sustained

benefits to patients. As research progresses, streamlining

manufacturing processes and establishing robust and more cost-

effective regulatory frameworks will be pivotal in overcoming current

limitations. Together, these steps will help to unlock the full potential of

CAR T-cell therapies, extending their benefits beyond hematologic

malignancies to include the effective treatment of solid tumors.
2.2 Expanding the horizon: targeting novel
antigens for enhanced specificity and
efficacy in CAR T-cell therapy

In the advancement of CAR T-cell therapy, a key focus has been

on identifying and targeting new antigens to expand the therapy’s

efficacy across diverse cancer types. Researchers are exploring
Frontiers in Immunology 06
tumor-specific antigens (TSAs) and neoantigens that are unique

to cancer cells, minimizing off-target effects and personalizing

treatment (63–67). Oncoviral proteins (68, 69) and cancer testis

antigens (CTAs) and other embryonic antigens (70, 71) provide

new targets, especially in cancers associated with viral infections

and limited normal tissue expression, respectively.

Targeting cancer stem cells (CSCs) with CAR T cell therapy is

an emerging strategy aimed at eradicating the root of tumor

regrowth and metastasis. CSCs are elusive targets due to their low

abundance and expression of conventional antigens, but their role

in driving tumor progression and recurrence makes them logical

targets (72, 73). CAR T cells are being engineered to recognize CSC-

specific antigens to selectively target and eliminate these progenitor

cells, potentially leading to more durable responses and reducing

the likelihood of cancer relapse (74–77).

The pursuit of targeting novel antigens in CAR T-cell therapy

represents a cutting-edge approach that holds promise for

enhancing treatment specificity and expanding efficacy across

diverse cancer types. While the use of tumor-specific antigens and

neoantigens offers a pathway toward more personalized and less

toxic treatments, significant challenges remain. Identifying and

validating effective targets that are unique to cancer cells without

affecting normal tissue is complex and requires rigorous testing.

Furthermore, the targeting of cancer stem cells, though promising

for preventing recurrence, presents issues of selectivity and safety

due to their low abundance and heterogeneity. Continued

advancements in antigen discovery, coupled with an integrative

approach that combines CAR T-cell therapy with other treatment

modalities, are critical for overcoming current limitations and fully

realizing the potential of this powerful therapeutic tool.
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2.3 Strategies to enhance CAR T-cell
therapy in solid tumors: homing,
penetration, and overcoming
immunosuppressive microenvironment

Addressing the formidable challenges posed by solid tumors

necessitates innovative strategies in CAR T-cell therapy, focusing on

two critical areas: enhancing homing and penetration, and

overcoming the immunosuppressive tumor microenvironment

(TME). Solid tumors present a unique set of barriers, including a

dense extracellular matrix and a hostile TME characterized by

immune-suppressive cells and factors. To improve CAR T-cell

homing, research has pivoted towards engineering CAR T cells to

express specific chemokine receptors that match the chemokines

secreted by tumors, thereby enhancing their trafficking and

infiltration capabilities (78, 79). Furthermore, modifications are

being explored to facilitate penetration through the tumor’s dense

matrix by incorporating matrix-degrading enzymes into CAR T-cell

designs (80, 81). Another emerging strategy is targeting tumor

vasculature with CAR T cells engineered to attack specific

endothelial markers which offers a dual benefit: direct tumor

starvation and enhanced immune cell infiltration, boosting

antitumor efficacy (82).

Simultaneously, strategies to counteract the immunosuppressive

effects of the TME are critical. This includes the development of

“armored” CART cells capable of secreting cytokines to modulate the

TME, making it more conducive to T-cell activity, as discussed in the

previous section (39–41). Additionally, various genetic modifications

are being considered, including the design of PD-1–CD28 switch

receptors (83), which are engineered to convert inhibitory signals into

stimulatory ones, and the knockdown of intracellular inhibitors (84)

to maintain CAR T-cell activation and effector functions. Metabolic

adaptation is also key, where CAR T cells are engineered to withstand

the nutrient deprived and hypoxic TME (85). Enhancements to the

CAR T metabolic pathways enable them to maintain functionality

and survive in the harsh tumor conditions (86, 87). In addition,

there’s a growing interest in inhibiting tumor-derived exosomes,

which often carry immunosuppressive molecules (88). By

preventing these exosomes from reaching and impairing CAR T

cells, it’s possible to preserve the T cells’ vigor and anti-tumor activity,

further bolstering their effectiveness against solid tumors.

Local delivery of CAR T cells is an innovative method where

CAR T cells are administered directly into the tumor site, offering a

concentrated attack while potentially reducing systemic toxicity

(89, 90). This targeted approach may improve the efficiency of CAR

T-cell penetration and functionality within the solid tumor

microenvironment. Advancing this concept, researchers are

leveraging nanotechnology to develop novel delivery systems.

These nano-carriers can protect CAR T cells during transit,

enhance their migration and infiltration into tumors, and provide

controlled release mechanisms, which could lead to improved

persistence and efficacy of the CAR T cells (91, 92).

The innovative strategies being developed to enhance CAR T-cell

therapy in solid tumors—focusing on improved homing, penetration,
Frontiers in Immunology 07
and overcoming the immunosuppressive microenvironment—

represent significant advances in the field. While engineering CAR

T cells to express specific chemokine receptors and matrix-degrading

enzymes shows promise in enhancing infiltration into solid tumors,

the complexity and heterogeneity of these tumors pose substantial

challenges. The development of ‘armored’ CAR T cells and other

genetically modified cells intended to modulate the hostile TME is

progressing, yet concerns about safety, specificity, and long-term

effects remain. Debates within the scientific community regarding the

practicality of these complex interventions versus simpler, more

robust approaches underscore the need for a balanced exploration

of these technologies. Extensive clinical trials and continuous

technological improvements are crucial to validate these strategies

and ensure they can be safely and effectively integrated into

patient care.
2.4 Synergistic combination therapies:
enhancing CAR T-cell efficacy through
multimodal treatment approaches

The integration of CAR T-cell therapy with other cancer

treatment modalities is at the forefront of innovative strategies

aimed at overcoming existing barriers in immunotherapy and CAR

T cell therapy. Research is actively pursuing the synergistic potential

of CAR T therapy alongside immune checkpoint inhibitors (ICIs),

which are known to rejuvenate exhausted T cells and enhance the

immunogenicity of the tumor microenvironment (93, 94). This

combination is particularly promising in solid tumors, where ICIs

alone have shown limited efficacy. Numerous clinical trials are

evaluating the efficacy of combining CAR T cells with ICIs like

PD-1 and CTLA-4 inhibitors to potentiate the anti-tumor response

while aiming to mitigate immune-related adverse events (95, 96).

Moreover, the strategic use of targeted therapies such as

tyrosine kinase inhibitors (TKIs) alongside CAR T cells is another

area of exploration (97). TKIs can modulate key signaling pathways

within both tumor cells and T cells, potentially enhancing the CAR

T cells’ ability to persist and remain active in hostile tumor

environments (97, 98). This approach is being tested in various

hematologic and solid tumors, with early trials showing promising

enhancements in CAR T cell functionality and overall survival rates

(98) (NCT04257578, NCT04484012).

Additionally, other targeted therapies like DNA damage repair

inhibitors, which sensitize cancer cells to immunotherapy and

promote infiltration (99), and angiogenesis inhibitors, which can

alter the tumor microenvironment to improve T cell infiltration and

function (100), are being investigated. The combination of CAR T

cells with BRAF and MEK inhibitors (101), EZH2 inhibitors (102),

lenalidomide (103) and others could potentially lead to synergistic

anti-tumor effects, further enhancing the efficacy of CAR T cell

therapies in complex oncological landscapes.

Low-dose chemotherapy is also employed in combination with

CAR T therapy as a bridging therapy, conditioning regimen, or

neoadjuvant and adjuvant treatment (104). Lymphodepletion prior
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to CAR T cell therapy not only creates space for CAR T cells to

expand but also reduces the immunosuppressive regulatory cells,

thereby boosting the efficacy of CAR T cells post-infusion (105,

106). The timing, dosage, and type of chemotherapeutic agents are

critical aspects currently under clinical investigation to optimize

this synergy.

Radiation therapy, used concurrently with CAR T-cell therapy,

is believed to promote effector T cell recruitment, remodel the

tumor vasculature, enhance T cell infiltration, and alter the

suppressive nature of the tumor environment (107). This

combination is particularly examined in solid tumors to increase

local control and potentially generate systemic immune responses

(108, 109). However, fractionation, dosing, and timing of radiation

should be optimized to maximize the potential therapeutic benefits

while minimizing potential risks like radiation-induced T

cell apoptosis.

Oncolytic viruses and bispecific T-cell engagers (BiTEs)

represent innovative combination partners for CAR T cells as

well. Oncolytic viruses can lyse tumor cells, alter the TME to

make it more susceptible to immune cell mediated attack, and

provoke an innate immune response that may prime the tumor for

CAR T cell therapy (110). Multiple studies have demonstrated

various degrees of success and the potential of this combinatory

approach (111–113). Meanwhile, BiTEs can bridge CAR T cells to

tumor cells by targeting two different antigens simultaneously,

which could reduce antigen escape and enhance the specificity of

the CAR T-cell response (114, 115).

In summary, combining CAR T-cell therapy with other cancer

treatments such as ICIs, TKIs, and other targeted therapies is a

promising frontier in oncology. While these combinations show

potential in enhancing efficacy and overcoming resistance,

substantial challenges remain. These include the complexity of

treatment regimens, potential for increased toxicity, and the need

for meticulously designed clinical trials to determine optimal dosing

and scheduling. Further research and interdisciplinary

collaboration are crucial to balance innovation with careful

evaluation, ensuring these therapies can be safely and effectively

integrated into clinical practice, ultimately improving

patient outcomes.
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2.5 Allogeneic CAR T-cell therapy:
innovations for on-demand use and
strategies to prevent graft-versus-host
disease and rejection

Autologous CAR T-cell therapies, while highly personalized,

face significant limitations, including treatment delays, complexity,

and variability in T-cell quality and quantity, which can affect

efficacy. These therapies involve a time-consuming process where a

patient’s own T cells are harvested and engineered to express CARs,

introducing accessibility issues for patients with rapidly progressing

diseases or insufficient T-cell counts. In contrast, allogeneic CAR T

cells, derived from healthy donors and manufactured in bulk,

provide a ready-to-use solution that can be standardized,

potentially leading to more consistent therapeutic outcomes

across different patients. This “off-the-shelf” approach offers

immediate availability, reduces manufacturing time and costs, and

enables rapid deployment in acute clinical settings, making it a

more accessible and cost-effective treatment option for a wider

patient population Table 4.

However, the application of allogeneic CAR T cells introduces

the risk of graft-versus-host disease (GVHD), a serious

complication stemming from the donor immune cells attacking

the recipient’s body. To mitigate this risk, sophisticated genetic

engineering strategies are being employed. These include the

knockout of the T-cell receptor (TCR) alpha chain gene or beta

chain gene (116–118) to prevent the recognition of host cells by the

infused CAR T cells, the use of virus-specific T cells with more

restricted TCR repertoire as a source of generating allogeneic CAR

T cells (119), and the use of non-ab T cells, such as NK cells,

invariant NK (iNKT), gd T cells, or CD4/CD8 double negative T

cells to engineer CAR cells (120–124).

Allogeneic CAR T-cell therapies face significant challenges in

ensuring their evasion of the host immune surveillance and effective

expansion and persistence in patients–pivotal for achieving

sustained antitumor responses. To specifically target this issue,

researchers have innovated by integrating an alloimmune defense

receptor (ADR) which targets activated T and NK cells expressing

the 4-1BB activation marker, thereby evading immune-mediated

rejection while maintaining antitumor efficacy (125). This approach
TABLE 4 Comparison of allogeneic vs. autologous CAR T-Cell therapies.

Feature Allogeneic CAR T-Cell Therapy Autologous CAR T-Cell Therapy

Source of T Cells T cells are derived from healthy donors. T cells are derived from the patient themselves.

Manufacturing Time Shorter preparation time, as cells are pre-manufactured.
Longer preparation time, cells must be collected and
engineered per patient.

Cost Potentially lower cost due to the "off-the-shelf" nature. Higher cost due to the personalized manufacturing process.

Risk of Rejection Higher, due to potential immune reaction against donor cells. Lower, as the cells are the patient’s own.

Risk of GVHD (Graft vs.
Host Disease) Present, requires genetic modifications to reduce risk. Absent, as the cells originate from the patient.

Scalability High, as cells can be produced in large batches. Low, each batch is patient specific.

Availability Immediate availability for use in acute settings. Requires weeks to months for cell preparation.

Clinical Applications May be limited by immune compatibility issues. Broad applicability, especially in approved indications.
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not only enhances CAR T-cell persistence but also minimizes the

risk of graft-versus-host disease. Additionally, optimizing

lymphodepletion and refining gene editing for T-cell robustness

are crucial for overcoming these expansion and persistence

challenges in allogeneic CAR T-cell therapy (117, 126).

The transformative potential of allogeneic CAR T-cell therapy

lies in its ability to provide standardized, ready-to-use treatments

that can be rapidly deployed. Nonetheless, this approach

necessitates advanced genetic engineering to prevent immune

rejection and GVHD. Addressing these challenges involves

navigating complex ethical and regulatory concerns while

ensuring long-term safety and efficacy through rigorous clinical

trials. Balancing innovation with patient safety will be essential to

realize the full potential of allogeneic CAR T cells, making them a

viable option for a broader spectrum of patients globally.
2.6 Advanced strategies to mitigate
toxicities in CAR T-cell therapy:
engineering safety switches and
enhancing control

In the quest to overcome the toxicities associated with CAR T-

cell immunotherapy, several innovative strategies are being

employed to enhance safety and control. The integration of

“safety switches”, such as inducible caspase-9 (127–130) and

antibody-dependent cell-mediated cytotoxicity (ADCC) switches

(131), enables the rapid elimination of CAR T cells in the event of

severe side effects. Additionally, small molecule-based safety

switches have been developed, allowing clinicians to rapidly

deactivate the cells if adverse effects occur (132–134). Another

promising approach is the use of Split, Universal, and

Programmable (SUPRA) CARs, which divide the CAR system

into two distinct components that must interact for activation.

This design enhances control, enables more precise targeting, and

reduces unintended T-cell activation (135, 136).

Similarly, Dual CARs employ a strategy where CAR T cells are

engineered to express two distinct receptors, requiring recognition

of two specific antigens for activation. This dual recognition

system enhances the specificity of CAR T cells, significantly

reducing the risk of off-target effects and increasing the safety

profile of these therapies (137). Control of CAR expression is

achieved using inducible promoters (138, 139) or drug-responsive

elements (140, 141), and innovative methods like sound (142) or

light (143) activation, allowing for precise temporal and spatial

control over CAR expression. This controlled approach helps to

minimize the risk of overactivation and associated toxicities.

Local delivery of CAR T cells, which involves administering

these cells directly to the tumor site, minimizes systemic exposure

and reduces the risk of widespread toxicities often associated with

broader systemic administration (89, 144). Prophylactic use of

medications such as tocilizumab and anakinra is explored to

preemptively reduce the severity of cytokine release syndrome

(CRS) and neurotoxicity (145–147). Techniques like biomarker

monitoring (148) and fractionated dosing (149) are under

investigation to better predict and manage toxic responses by
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moderating CAR T-cell activity. Furthermore, advancements in

cellular engineering, such as CRISPR/Cas9 gene editing, are aimed

at enabling CAR T cells to resist activation by certain cytokines that

contribute to toxicities (150, 151). Mouse models are also being

developed to study the pathogenesis of CRS and neurotoxicity in

CAR T-cell therapy, aiding in the identification of key inflammatory

pathways and the testing of new safety interventions (14, 152, 153).

The implementation of advanced safety strategies such as safety

switches, controlled activation systems, and localized delivery

methods represents a significant advancement in mitigating the

inherent toxicities of CAR T-cell therapy. These innovations offer

enhanced control over CAR T-cell function, potentially reducing

severe side effects and improving patient safety. However, these

sophisticated mechanisms also introduce greater complexity into

therapy design and application, which could impact both the

reliability and cost of treatments. The integration of such

advanced features necessitates rigorous clinical trials to confirm

their efficacy and safety, alongside ethical considerations regarding

access and cost. As research progresses, the challenge will be to

refine these technologies to ensure they enhance therapeutic

outcomes without compromising efficacy, paving the way for

safer, more effective CAR T-cell therapies accessible to a wider

range of patients.
2.7 Optimizing production, enhancing
accessibility and reducing cost: innovative
strategies in CAR T-cell
therapy manufacturing

To tackle the challenges of manufacturing and accessibility in CAR

T-cell therapy, researchers are deploying multiple innovative strategies

aimed at streamlining production, enhancing efficiency, and reducing

costs. Automated manufacturing systems are a pivotal advancement,

utilizing closed-system bioreactors that standardize the production

process, diminish the risk of contamination, and minimize labor costs.

These systems can significantly cut down on the time required to

produce therapeutic doses of CAR T cells (154–156), Table 5. Point-of-

care manufacturing involves the development of compact, on-site

production units within hospital settings, which reduces logistical

complexities associated with the transport of cellular materials and

shortens the turnaround time from collection to infusion. This

approach not only speeds up the treatment process but also aims to

lower overall therapy costs (157, 158).

Advanced cell expansion techniques are being developed to

improve the yield and functionality of CAR T cells, including

optimizing the growth media (159, 160) and conditions in

bioreactors (161). Artificial Intelligence (AI) and Machine

Learning (ML) have transformative potential in optimizing the

production, enhancing accessibility, and reducing the costs of

CAR T cell therapy. AI can streamline manufacturing processes

through automation and precise control, ensuring consistency and

quality while reducing labor costs (162–164). Machine learning

models can predict patient outcomes from pre-infusion

transcriptomes, outperforming traditional methods (165).

Additionally, neural networks help design CAR constructs with
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optimal signaling motifs, streamlining the development and

enhancing the accessibility of these therapies (166).

Economic analysis is integral to the strategies for optimizing

CAR T-cell therapy manufacturing, enhancing accessibility, and

reducing costs (16, 167). The high cost of CAR T-cell therapies

primarily stems from the complexity of the production processes

and the personalized nature of the treatments. Strategies to reduce

these costs include streamlining manufacturing protocols,

employing automated systems, and developing scalable batch

processes which can reduce labor costs and minimize errors (16).

Economic benefits also arise from shortening production times and

reducing the footprint of manufacturing facilities through point-of-

care production technologies (157, 158). Furthermore, adopting

non-viral gene transfer methods and utilizing less costly reagents

can significantly cut production expenses (48). By lowering the cost

of goods and improving manufacturing efficiency, these therapies

can become more accessible, particularly in low- and middle-

income countries, where the burden of treatment costs is most

pronounced. Engaging in cooperative strategies with global partners

and governments to establish local manufacturing facilities can also

reduce transportation costs and tariffs, further driving down prices

and expanding access (168, 169). These economic considerations

are essential for the widespread adoption of CAR T-cell therapies

and require ongoing innovation and investment to ensure that these

life-saving treatments are affordable and available to all patients in

need, regardless of geographic location.

Efforts to streamline regulatory approvals for new

manufacturing facilities and methods are crucial. Engaging with

regulatory bodies to simplify and expedite the review and approval

processes can significantly decrease the time and financial burden

associated with bringing CAR T-cell therapies to market (170–172).

Additionally, addressing regulatory and ethical considerations is

essential, especially as CAR T-cell therapies involve complex genetic

manipulations and personalized treatment protocols. Regulatory

frameworks must ensure patient safety, manage ethical concerns

related to genetic editing, and handle the implications of using

donor cells in allogeneic therapies. Ethical considerations also

extend to ensuring equitable access to these potentially life-saving

therapies, preventing disparities in healthcare outcomes.

Collaborative dialogues with ethicists, patient advocacy groups,

and regulators are necessary to navigate these aspects effectively,

ensuring that CAR T-cell therapies are not only scientifically sound
Frontiers in Immunology 10
but also socially responsible and accessible to all segments of

the population.

In summary, the innovative strategies aimed at optimizing the

production, enhancing accessibility, and reducing the cost of CAR

T-cell therapies present significant advancements in the field.

Automated manufacturing systems, point-of-care production

units, and global manufacturing networks have the potential to

standardize treatments, reduce production time, and make

therapies more accessible, especially in underserved regions.

However, these advances bring complexities, including high initial

costs, operational challenges, and significant regulatory hurdles.

Moreover, the integration of AI and machine learning promises

further optimization but requires careful implementation to ensure

quality and efficacy are maintained. As the field progresses, a

balanced approach that addresses these technological, regulatory,

and ethical challenges will be crucial for realizing the full potential

of CAR T-cell therapies, making them a viable option for a broader

range of patients globally. This comprehensive strategy will need to

continue evolving, guided by ongoing research and adaptation to

new insights and technological advancements.
3 Discussion

This review underscores the transformative strides being made

in CAR T-cell therapy, with a particular emphasis on overcoming

limitations that have restricted its application beyond hematologic

malignancies. As we venture into novel territories, such as solid

tumors and non-cancerous diseases, the synthesis of

interdisciplinary advances has paved the way for potential

breakthroughs, yet it also presents a complex landscape of

challenges and opportunities.
3.1 Interdisciplinary innovation and
its implications

The integration of bioinformatics, materials science,

immunology , synthet ic b iology, genet ic engineer ing,

immunogenetics, and biomedical engineering has ushered in a new

era of precision in CAR T-cell therapy. The utilization of

computational tools to design CAR constructs and predict
TABLE 5 Comparison of automated vs. manual CAR T-Cell manufacturing techniques.

Feature Automated Closed Systems Manual Processing Methods

Scalability
High scalability due to standardized processes. Can handle larger
batches and multiple productions simultaneously.

Limited scalability. Labor-intensive and harder to scale up due to
reliance on skilled technicians.

Reproducibility
High reproducibility with less variability between batches due to
controlled, consistent processes.

Lower reproducibility with potential for greater variability due to
human involvement in processing steps.

Cost-effectiveness

Potentially more cost-effective in the long run due to reduced labor
costs and increased throughput. High initial investment in
equipment and setup.

Less cost-effective for large-scale production due to higher labor
costs and longer processing times. Lower initial investment.

Quality of CAR T Cells

Consistent quality with automated monitoring and standardized
protocols. Minimizes human error and maintains strict
environmental and process controls.

Quality can vary; highly dependent on the skill and consistency of
the personnel involved. More susceptible to human error.
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therapeutic outcomes is revolutionizing how treatments are

personalized. Synthetic biology and genetic engineering are

enhancing the specificity and efficacy of these constructs, while

immunogenetics helps tailor therapies to individual immune

system variations. Biomedical engineering contributes to the

development of biocompatible materials and advanced delivery

systems that improve the in vivo functionality of therapeutic cells.

However, the translation of these complex designs from the bench to

bedside necessitates innovations in manufacturing processes that can

accommodate such personalized approaches at scale. Future research

should focus on developing modular platforms that can be easily

adapted to incorporate new discoveries and patient-specific data.
3.2 Economic and ethical considerations in
global access

While technological advancements promise to enhance efficacy

and safety, their real-world application raises significant economic

and ethical questions. The high cost of these therapies remains a

formidable barrier to access in low- and middle-income countries.

Future initiatives should explore the development of cost-effective

production methods such as the use of automated and decentralized

manufacturing units. Ethically, there is a need to establish

frameworks that ensure equitable access to these therapies

globally, perhaps through international collaborations and

policy reforms.
3.3 Regulatory evolution

As CAR T-cell therapies evolve, so too must the regulatory

frameworks that govern their development and deployment. The

rapid pace of innovation challenges current regulatory paradigms,

which are often ill-equipped to handle the nuances of advanced

gene and cell therapies. An ongoing dialogue between regulators,

researchers, and industry stakeholders is essential to develop more

adaptive regulatory approaches that can keep pace with

technological advancements while ensuring patient safety.
3.4 Emerging areas of research

Looking forward, CAR T-cell therapies are expanding into

exciting new territories. For autoimmune diseases, these therapies

show promise in conditions like systemic lupus erythematous (173),

multiple sclerosis (174) and type 1 diabetes (175), where they may

modulate immune responses similarly to their actions against

malignant cells. In the realm of aging and degenerative diseases,

CAR T-cells are being investigated for their potential to modify the

aging process and treat age-related ailments (176, 177).

Additionally, the adaptation of CAR T-cell therapies for

infectious diseases suggests a new frontier in managing chronic

infections that resist conventional treatments (178). This expansion

not only broadens the therapeutic potential of CAR T-cell therapies

but also highlights the innovative cross-disciplinary approaches
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being undertaken to overcome current limitations and explore

new applications.
4 Conclusion

The path forward for CAR T-cell therapy involves not only

scientific and technological innovation but also a concerted effort to

address the logistical, economic, and ethical challenges that come with

such profound medical advancements. As we continue to push the

boundaries of what is possible in medical science, a balanced approach

that incorporates clinical needs, patient safety, and equitable access

will be crucial for realizing the full potential of CAR T-cell therapies.
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Glossary

CAR T-cell Therapy

A type of cancer treatment where T cells are modified
to express chimeric antigen receptors (CARs) that
target specific cancer cells

Chimeric Antigen
Receptor (CAR)

Engineered receptors grafted onto T cells to give them
the ability to target specific proteins on cancer cells

Autologous CAR
T-cells CAR T-cells derived from a patient’s own T cells

Allogeneic CAR
T-cells

CAR T-cells derived from healthy donor T cells,
designed for off-the-shelf use

Tumor
Microenvironment
(TME)

The environment surrounding a tumor, including
blood vessels, immune cells, fibroblasts, signaling
molecules, and the extracellular matrix

Cytokine Release
Syndrome (CRS)

A potentially severe side effect of CAR T-cell therapy
involving a large, rapid release of cytokines into
the blood

Neurotoxicity
Toxicity that affects the nervous system, potentially a
side effect of CAR T-cell therapy

Multiplexed CARs
CARs that target multiple antigens to reduce the
likelihood of tumor escape

Modular/
Universal CARs

CAR systems designed for adaptability through
switchable, bispecific adaptors to target diverse antigens

SynNotch Receptors

A dual antigen recognition system where an initial
antigen interaction triggers the expression of a CAR
targeting a second antigen

Hybrid CARs

CARs combining elements of T-cell receptors (TCRs)
and CARs to enhance targeting of cancer-
specific antigens

Third
Generation CARs

CARs with multiple co-stimulatory molecules, designed
to enhance activation, proliferation, and
antitumor efficacy

Armored CARs

Genetically modified CARs that secrete cytokines or
express ligands to enhance survival and anti-tumor
activity in the tumor microenvironment

CRISPR/Cas9
A gene-editing technology used to modify CAR T-cells
for improved functionality and persistence

Transposon-Based
Systems (e.g.,
Sleeping Beauty)

Non-viral gene transfer methods used to integrate CAR
genes into T cells

Central Memory T
cells (Tcm)

T cell subsets known for their longevity and robust
proliferative ability, used in CAR T-cell therapies for
enhanced efficacy

Stem Cell-like
Memory T
cells (Tscm)

T cell subsets with long-term self-renewal capacity,
providing durable antitumor responses

Inducible Caspase-
9 (iCasp9)

A safety switch that triggers CAR T-cell apoptosis
upon activation by a specific drug

Antibody-Dependent
Cell-Mediated
Cytotoxicity (ADCC)

A mechanism by which antibodies promote the
destruction of target cells by immune cells

Split, Universal, and
Programmable
(SUPRA) CARs

CARs divided into distinct components for enhanced
control and precision in targeting

(Continued)
Continued

Dual CARs

CAR T-cells engineered to require recognition of two
distinct antigens for activation, enhancing specificity
and safety

Lymphodepletion

Pre-treatment with chemotherapy to prepare the
patient’s body for CAR T-cell infusion by reducing
immunosuppressive regulatory cells

Oncolytic Viruses
Viruses engineered to selectively infect and kill cancer
cells, used in combination with CAR T-cell therapy

Bispecific T-cell
Engagers (BiTEs)

Molecules that link CAR T-cells to tumor cells by
targeting two different antigens, enhancing CAR T-cell
specificity and activity

Graft-versus-Host
Disease (GVHD)

A condition where donor immune cells attack the
recipient’s body, a risk in allogeneic CAR T-
cell therapy

Alloimmune Defense
Receptor (ADR)

A receptor integrated into CAR T-cells to target and
eliminate activated host immune cells,
preventing rejection

Checkpoint
Inhibitors (ICIs)

Drugs that block proteins which inhibit T cell activity,
used in combination with CAR T-cell therapy to
enhance antitumor response

Tyrosine Kinase
Inhibitors (TKIs)

Drugs that inhibit enzymes involved in signaling
pathways, enhancing CAR T-cell persistence
and activity

Bioinformatics

The application of computational tools to analyze
biological data, crucial for designing CAR constructs
and predicting outcomes

Artificial
Intelligence (AI)

Technology used to optimize manufacturing processes
and predict patient outcomes in CAR T-cell therapy

Economic Analysis
Assessing the cost-effectiveness of CAR T-cell therapies
to enhance accessibility and affordability

Regulatory
Frameworks

Guidelines and standards set by regulatory bodies to
ensure the safety and efficacy of CAR T-cell therapies

Point-of-
Care Manufacturing

On-site production of CAR T-cells in hospital settings,
reducing logistical complexities and treatment delays

Nano-Carriers

Nanotechnology-based delivery systems to enhance
CAR T-cell migration, infiltration, and functionality
in tumors

Senolytic CAR T-cells
CAR T-cells designed to target and eliminate senescent
cells, potentially used in treating age-related diseases
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