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Neurodegenerative diseases represent a huge healthcare challenge which is

predicted to increase with an aging population. Synucleinopathies, including

Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system

atrophy (MSA), present complex challenges in understanding their onset and

progression. They are characterized by the abnormal aggregation of a-synuclein
in the brain leading to neurodegeneration. Accumulating evidence supports the

existence of distinct subtypes based on the site of a-synuclein aggregation

initiation, genetics, and, more recently, neuroinflammation. Mediated by both

central nervous system-resident cells, peripheral immune cells, and gut dysbiosis,

neuroinflammation appears as a key process in the onset and progression

of neuronal loss. Sex-based differences add another layer of complexity

to synucleinopathies, influencing disease prevalence - with a known higher

incidence of PD in males compared to females – as well as phenotype and

immune responses. Biological sex affects neuroinflammatory pathways and the

immune response, suggesting the need for sex-specific therapeutic strategies and

biomarker identification. Here, we review the heterogeneity of synucleinopathies,

describing the etiology, the mechanisms by which the inflammatory processes

contribute to the pathology, and the consideration of sex-based differences to

highlight the need for personalized therapeutics.
KEYWORDS

neuroinflammation, neurodegeneration, Parkinson’s disease, dementia with Lewy
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1 Introduction

In this review, we discuss the roles of inflammation mediated by central nervous system

(CNS)-resident cells, gut dysbiosis, and peripheral T and B cells in synucleinopathies. We

also highlight the importance of considering sex-based differences in future studies, and

discuss potential therapeutic approaches.

The incidence of neurodegenerative diseases, such as Alzheimer’s and Parkinson’s

disease (PD), is increasing in the US as life expectancy and the elderly population rise
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(1). Constituting the second most common neurodegenerative

disease in the elderly population after Alzheimer’s disease, PD

affects more than 10 million individuals, a number expected to

double over the next 30 years (2, 3). These disorders are typically

characterized by the abnormal aggregation of misfolded proteins

in the central nervous system, namely accumulat ion

of hyperphosphorylated tau and beta-amyloid (Ab) plaques

in Alzhe imer ’ s d i s ea se and a - synuc le in (a - syn) in

synucleinopathies like PD (4). Lewy body diseases such as PD

and DLB, are characterized by a-syn aggregation in Lewy bodies

(LBs) and Lewy neurites (LNs) in neuronal cells. In contrast, in

MSA a-syn first accumulates in glial cytoplasmic inclusions

(GCIs) in oligodendrocytes, interfering with oligodendrocyte

survival and neuronal support (5).

While the precise functions of a-syn are not yet entirely known,

its pre-synaptic localization and association with synaptic vesicles,

indicates a likely role in regulating neurotransmitter release, synaptic

function, plasticity (6, 7) and its ability to bind to lipid membrane (8).

Misfolded and aggregated a-syn in neuronal and glial cells, is

associated with the development of synucleinopathies, such as PD,

Dementia with Lewy Bodies (DLB), and multiple system atrophy

(MSA), and thus understanding the transition from normal to

abnormal a-syn is crucial for our understanding the development

of synucleinopathies. Incidence increases sharply with age, and men

are more affected than women (9, 10). Given the heterogeneity

observed and described across studies within synucleinopathies,

ongoing efforts are focusing on stratifying patients. Recent evidence

suggests sex-based differences in immune responses both at steady

state and in autoimmune diseases (11), though studies on sex

differences in synucleinopathies are limited (12, 13) despite known

sex bias, clinical, and symptomatic differences, as observed in PD

(14). Thus, taking biological sex as a subdividing variable has the

potential to highlight crucial differences and hint towards new

therapeutic approaches.

Although synucleinopathies all involve a-syn aggregation and

neuronal loss, they exhibit differences in clinical and pathological

characteristics. PD typically manifests with a long non-motor

prodromal phase followed by motor parkinsonism, including

rigidity, bradykinesia, and resting tremor (15). During the

prodromal phase, PD patients often experience gastrointestinal

disturbances, consistent with the emerging gut-brain theory

suggesting that a-syn pathology initiates in the gut before

spreading to the brain (16). Rapid eye movement (REM) sleep

behavior disorder (RBD) is also a common prodromal non-motor

symptom across synucleinopathies, occurring in 30-70% of PD

patients, 70-80% of DLB patients, and 70-90% of MSA patients (17).

In later stages, most PD patients develop dementia, progressing to

Parkinson’s disease dementia (PDD). DLB shares clinical

characteristics with PD, but typically dementia presents itself

either preceding or within a year of parkinsonism symptoms (18).

Conversely, MSA does not involve dementia and is primarily

characterized by autonomic nervous system dysfunction,

including urinary incontinence, in addition to cerebellar ataxia

and parkinsonism (19). MSA is notably the most aggressive

synucleinopathy and is associated with a more acute
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inflammatory response, suggesting that enhanced inflammation

contributes to a more aggressive clinical course.

Neuroinflammation is a common feature of neurodegenerative

diseases (20). In a physiological context, the inflammatory response,

primarily mediated by microglia and astrocytes within the CNS, is

essential for maintaining homeostasis by promoting tissue repair

and clearing cellular debris. However, neuroinflammation also plays

a critical role in disease pathogenesis (21). In synucleinopathies,

activation of CNS-resident microglia and astrocytes leads to the

expression of pro-inflammatory cytokines, which can directly

induce neurotoxicity, disrupt the blood-brain barrier (BBB) (22),

or recruit immune cells from the periphery to the CNS through the

secretion of chemokines (23). Chronic inflammatory responses,

characteristic of neurodegenerative diseases like synucleinopathies,

exacerbate neuronal loss, leading to further neuroinflammation in a

vicious cycle (21). The emerging gut-brain theory invokes a

peripheral origin of inflammation, with intestinal dysbiosis

initiating early a-syn aggregation and inflammation in the gut

before spreading to the brain in PD (24).

Mediated by both CNS-resident cells and the periphery,

inflammation appears to be a key process in the onset and

progression of neurodegeneration in synucleinopathies.

Understanding how inflammatory responses are induced within

the CNS and how these responses contribute to neurodegeneration

will aid in developing new therapies targeting inflammation to

reverse or slow disease progression.
2 Etiology of synucleinopathies

Although a comprehensive understanding of the onset of

synucleinopathies remains elusive, accumulating evidence

indicates the existence of at least two disease subtypes based on

the site of a-syn aggregation initiation: brain-first or body-first. In

both subtypes, misfolded a-syn propagates from cell to cell in a

prion-like manner (25), facilitating disease progression (26). Thus,

a-syn aggregation represents a hallmark of synucleinopathies

depending on where inclusions are found. In PD and DLB, a-syn
spreads from neuron to neuron (i.e., Lewy bodies and Lewy

neurites) and also involves astroglial cells (27) whereas in MSA,

a-syn primarily accumulates in oligodendrocytes (i.e., glial

cytoplasmic inclusions) (5). Inflammation has been found mainly

in PD, with fewer studies in MSA and DLB (20). It could suggest a

role of the immune system in the initiation of the disease, although

it can be a consequence as well. The differences in initiation sites

and underlying mechanisms contribute to variations in the kinetics

of symptom development, emphasizing the importance of

distinguishing between these subtypes to gain deeper insights into

the underlying biology and to develop targeted therapies.
2.1 Body-first

Neurodegenerative diseases have traditionally been investigated

within the CNS, but there is mounting evidence suggesting the
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involvement of the enteric nervous system (ENS) as the initiator of

CNS diseases, particularly in the body-first subtype. Braak et al.

proposed that a-syn diseases could originate in the periphery,

spreading from the gut to the brain via the vagus nerve in a

prion-like fashion (28), through a disease progression pattern of

several stages of increasing severity. During the early prodromal

phase, the vagus nerve and the olfactory bulb are affected,

correlating with the early presence of gastrointestinal disturbances

such as constipation and olfactory loss. The body-first disease

subtype is strongly associated with RBD, with studies showing

that almost all RBD patients develop synucleinopathies (PD, DLB,

or MSA) (17, 29, 30). The progression to later stages affects

dopaminergic neurons of the substantia nigra, correlating with

motor symptoms, and further spread of pathology affects cortical

structures, leading to dementia.

The hypothesis is that abnormal microbiota results in increased

gut permeability and accumulation of aggregated a-syn in the gut,

which then spreads through the vagus nerve to the brain. Increasing

data support this gut-brain theory; a-syn aggregates are detected

early in the ENS of PD patients (31), and inoculation of a-syn fibrils

into the gut of aged mice induces CNS pathology (32). Intestinal a-
syn aggregation is attributed to changes in gut microbial

composition, particularly microbial dysbiosis associated with

aging or a poor diet (33). Most PD patients exhibit altered

microbiota, characterized by decreased anti-inflammatory short-

chain fatty acid (SCFA)-producing bacteria and increased gut layer-

degrading bacteria (34, 35). A meta-analysis confirmed gut

microbiome alterations in PD, potentially leading to increased

pro-inflammatory status and gastrointestinal symptoms (36). This

results in local inflammatory reactions and increased intestinal

permeability, exposing the intestinal neural plexus to toxins like

pesticides or lipopolysaccharide (LPS), which promote abnormal a-
syn aggregation. In the presence of LPS, a-syn accumulates in a

specific fibrillar form that can self-propagate and spread between

interconnected neurons of the vagus nerve in a prion-like manner

(26). Increased intestinal permeability also leads to leakage of

inflammatory factors from the gut , causing systemic

inflammatory responses that impair the BBB and facilitate

inflammatory mediator uptake into the brain. Consequently, a-
syn accumulation in the gut may trigger pro-inflammatory glial

responses and CNS neuroinflammation.

Recently, the functional link between gut microbiota and

neuroinflammation was demonstrated in a murine model of PD

overexpressing a-syn. Colonization of these mice with microbiota

from PD patients induced a-syn aggregation, microglial activation,

and motor deficits, unlike in germ-free mice (37). In line with those

results, a prebiotic treatment in a murine model of PD reduces the

severity of the disease (38). A study by Garretti et al. demonstrated that

immunization with a specific ⍺-syn epitope (31–45) in a transgenic

mice model carrying the HLA allele DRB1*15:01 can trigger gut

inflammation in a CD4 T cell-dependent manner (39). Overall, this

data supports the notion that microbial dysbiosis in PDmay initiate the

inflammatory process and underlying neurodegeneration.

Several lines of evidence suggest that the body-first model might

be applicable to MSA as well. Studies have linked pro-inflammatory

microbiota to increased gut permeability in MSA patients,
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supporting a gut-brain interaction (40, 41). However, it remains

uncertain whether this model might apply to DLB, as dementia

precedes motor symptoms, contradicting the Braak model.
2.2 Brain-first

The concept of a brain-first subtype emerged from several

studies highlighting neuropathological events not conforming to

the proposed Braak staging (42–44). It has been proposed that a-
syn pathology might primarily originate within the CNS, likely

rostral to the substantia nigra pars compacta, before spreading to

affect the autonomic nervous system (45). Moreover, RBD in PD

patients has been suggested as a discriminative marker between

body-first and brain-first. A comprehensive study employing

multimodal imaging revealed distinct patterns: PD patients with

RBD initially exhibit cardiac 123I-metaiodobenzylguanidine (MIBG;

measuring cardiac innervation), and 11C-colonic donepezil

(measuring colon innervation) signal loss, followed by a decrease

in putaminal FDOPA (measuring nigrostriatal dopamine storage

capacity) uptake, indicative of a body-first subtype. Conversely, PD

patients without RBD display a different sequence: primary

putaminal FDOPA uptake loss followed by secondary cardiac

MIBG and 11C-donepezil signal loss, suggesting a brain-first

subtype (46). Other differences associated with the presence of

RBD include varied motor symptom patterns, more frequent and

severe constipation, potential urinary symptom increases, and

heightened olfactory dysfunction (47). These findings confirm the

existence of at least two PD subtypes and underscore the potential

utility of pre-motor RBD as a diagnostic marker.

Interestingly, genetic variants may be associated with either

brain- or body-first trajectories. The LRRK2 variant, for instance, is

associated with lower RBD prevalence across studies and nearly

normal cardiac MIBG signal, resembling the brain-first subtype.

Conversely, the SNCA variant exhibits a slightly higher RBD

incidence, indicative of a body-first subtype similar to the

pathogenic GBA variant (47). It is now widely recognized that PD

patients constitute a highly heterogeneous population, and

identifying different synucleinopathy initiation sites can aid in

subtype discrimination.
3 Resident cells of the CNS as players
of the inflammation

3.1 Complex role of microglia

Microglia are the most abundant cells involved in innate

immune responses within the CNS. Recent advancements from

transcriptomic, morphological, metabolomic, epigenetic, and

proteomic studies have revealed the heterogeneity of microglia

under steady-state conditions and in disease states (48). Microglia

serve as critical sensors in the CNS, responding to various stimuli

such as presence of apoptotic cells, debris, and toxic proteins.

Extensive microgliosis, characterized by highly activated

microglia, has been observed in post-mortem brains in regions
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containing a-syn Lewy bodies in PD (49) and regions with a-syn
glial cytoplasmic inclusions in MSA (50). While initially beneficial

for phagocytosing a-syn aggregates, microglia-mediated

inflammatory responses have also been shown to contribute to

neurodegeneration. Aggregated a-syn activates toll-like receptors

(TLRs) TLR2 and TLR4 on microglia, triggering a pro-

inflammatory signaling cascade mediated by NFkB and p38

MAPK pathways. This cascade leads to the secretion of pro-

inflammatory cytokines TNF-a, b, IL-1b, IL-6, and IL-1a, known
to exert neurotoxic effects (51, 52). Additionally, TLR activation by

a-syn induces the release of reactive oxygen species (ROS) and

nitric oxide (NO), causing neuronal mitochondrial dysfunction,

DNA damage, and subsequent neurotoxicity (53). Thus, a-syn
acts as a pathogen-associated molecular pattern (PAMP) or a

damage-associated molecular pattern (DAMP), promoting

microglia-mediated inflammation that chronically supports

neurodegeneration. Furthermore, activated microglia contribute

to increased BBB permeability by releasing cytokines,

upregulating adhesion molecules, and phagocytizing astrocyte

end-feet, which normally maintain BBB integrity. This facilitates

the invasion of peripheral immune cells into the CNS, amplifying

neuroinflammation (54). Additionally, as antigen-presenting cells

(APCs), activated microglia play a pivotal role in initiating T cell-

mediated immune responses.

Accumulating evidence suggests that microglia play a crucial

role in disease initiation: a-syn aggregation induces reactive

microgliosis months before neuronal cell death in PD, implying

that microglia may not only exacerbate but also initiate

neurodegeneration (55). In contrast, there is no substantial

evidence supporting significant microglial activation in DLB:

post-mortem brain analyses have failed to demonstrate

microgliosis, suggesting that inflammation may be limited, at least

at the end-stage of the disease (56, 57).
3.2 Emerging inflammatory role
of astrocytes

Astrocytes, the most abundant resident glial cells in the CNS,

perform crucial homeostatic functions including synaptic and BBB

maintenance, elimination of excess synaptic connections, and

supplying neurons with vital metabolites (58). While microglia have

long been considered the primary immune effector cells of the CNS, it

is now recognized that astrocytes also play crucial roles in innate

immunity, and are implicated in neuroinflammation associated with

neurodegenerative processes (59). Elevated astrogliosis, characterized

by the activation and accumulation of astrocytes, is observed in

response to neurodegeneration in the CNS (50).

Reactive astrocytes encompass two distinct types, termed A1

and A2 (60). A1 astrocytes lose typical astrocyte functions and

acquire neurotoxic properties, while A2 astrocytes express

neurotrophic factors and confer neuroprotection (61). In

synucleinopathies, a-syn aggregates trigger astrocyte activation

and differentiation into an A1 phenotype. Indeed, postmortem

brains from human neurodegenerative diseases, including PD,

exhibit A1 astrocytes expressing Glial Fibrillary Acidic Protein
Frontiers in Immunology 04
(GFAP+) (62). Additionally, GFAP+ astrocytes colocalize with

GCIs in models of MSA (63), although their presence in DLB has

been reported in only one study to date (64).

The a-syn-mediated activation of astrocytes, akin to microglia,

is facilitated by TLR2 and TLR4 (52, 65). This activation initiates

downstream signaling cascades, resulting in the release of pro-

inflammatory cytokines (IL-1b, IL-1a, TNF-a) and NO,

contributing to neurotoxicity (60). The classical complement

component C1q enhances synaptic degeneration, while CCL5/

CX3CL1 chemokines recruit reactive microglia (65). It has been

demonstrated that microglia can induce A1 neurotoxic reactive

astrocytes, and blocking this microglial-mediated conversion is

neuroprotective. Furthermore, A1 astrocytes may secrete soluble

neurotoxins such as D-serine, which rapidly kills neurons (66).

Although controversial, recent studies suggest that astrocytes may

act as APCs, implicating them in initiating adaptive T cell immunity

(67). Normally, astrocytes contribute to BBB integrity through their

end-feet and production of supportive molecules for endothelial

cells (68). However, microglial phagocytosis of end-feet and the

presence of a-syn aggregates impair astrocyte functions,

contributing to BBB leakage and facilitating immune cell

infiltration and inflammatory molecule entry from the periphery,

further amplifying neuroinflammation (68, 69).

In summary, CNS-resident cells, microglia and astrocytes, play

critical roles in initiating and amplifying the inflammatory process

in synucleinopathies. This leads to the production of neurotoxic

mediators, neuronal degeneration, recruitment of peripheral

immune cells , and potentiation of CNS inflammation,

contributing to disease progression (Figure 1).
4 Involvement of peripheral immune
cells in synucleinopathies

The debate surrounding whether immune cells from the

periphery can traverse the BBB has persisted for years.

Traditionally, the brain was viewed as an immunologically

privileged organ. However, recent insights into the breakdown of

the BBB during acute or chronic inflammation, which permits

peripheral molecules and immune cells to access the CNS (22),

along with the discovery of a lymphatic system within the CNS (70),

have nuanced this perspective. Consequently, while studies have

primarily focused on inflammation mediated by CNS-resident cells,

emerging research highlights the crucial roles of inflammation

mediated by T and B cells (Figure 2), and myeloid cells

in synucleinopathies.
4.1 T cells

The first indications of T cell involvement in synucleinopathies

stem from the high expression of major histocompatibility complex II

(MHC-II) in the CNS on microglia and astrocytes, and cytokine

production by CNS-resident cells implicated in T cell differentiation

and recruitment (67, 71, 72). MHC-II, a cell surface protein on APCs,

binds peptides derived from antigens like abnormal ⍺-syn and presents
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them to CD4 T cells, facilitating their differentiation and infiltration to

the CNS. Notably, elevated MHC-II expression has been observed on

CNSmicroglia and astrocytes in postmortem brains of individuals with

PD andMSA, which may provide a link with adaptive T cell immunity

(67, 71). Elevated levels of IL-6—a pivotal cytokine involved in CD4 T
Frontiers in Immunology 05
cell differentiation into pro-inflammatory Th17 effector cells—have

been detected in DLB patients (73). These clues pointing to T cell

involvement in synucleinopathies are further supported by the

presence of T cell infiltrates surrounding a-synuclein LBs or GCIs in

the substantia nigra of postmortem PD and MSA tissues (71, 74), as
FIGURE 1

Brain resident cells in synucleinopathies and neuroinflammation. In synucleinopathies, a-syn abnormally accumulates in Lewy bodies (LBs) or Lewy
neurites (LNs) for Lewy body diseases DLB and PD or in glial cytoplasmic inclusions (GCIs) for MSA. a-syn aggregates are released by damaged
neurons and oligodendrocytes and recognized by resident astrocytes and microglia via Toll-like receptor 2 (TLR2) and Toll-like receptor 4 (TLR4).
Activation of TLRs by a-syn leads to the differentiation of activated pro-inflammatory A1 astrocytes and activated microglia. Through a pro-
inflammatory signaling cascade mediated by NFkB and p38 MAPK, A1 astrocytes and activated microglia express several chemokines, cytokines,
neurotoxins, reactive oxygen species (ROS), and nitric oxide (NO). This pro-inflammatory milieu contributes to neuronal loss. Additionally, with the
action of activated microglia phagocytizing astrocytes, the integrity of the blood-brain barrier (BBB) is compromised, allowing the invasion of
peripheral mediators and immune cells. Among them, T cells can be activated via the recognition of a specific major histocompatibility complex
(MHC)-peptide presented by astrocytes, microglia, or infiltrating monocytes, ultimately leading to neuronal loss. a-syn, a-synuclein; DLB, dementia
with Lewy bodies; PD, Parkinson’s disease; MSA, multiple sclerosis atrophy; LBs, Lewy bodies; LNs, Lewy neurites; GCIs, Glial cytoplasmic inclusions;
TLRs (2-4), toll-like receptors; ROS, reactive oxygen species; NO, nitric oxide; BBB, blood-brain-barrier.
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well as in cortical areas surrounding LBs in postmortem DLB tissues

(57). Studies have demonstrated that T cells can recognize a specific set

of peptides derived from ⍺-syn, driving helper CD4 and cytotoxic CD8
T cell responses in PD patients (75–79). Consequently, CD4 T cells

recognize a-syn antigens presented byMHC-II on APCs, while CD8 T

cells recognize a-syn derived peptides presented byMHC-I, potentially

by neurons (80) which remains to be proven. This T cell activationmay

mediate both direct and indirect neuronal damage (81).

The involvement of CD4 T cells in neurodegeneration is

supported by both in vivo studies and in vitro culture systems.
Frontiers in Immunology 06
Deficiency in CD4 T cells results in a significant attenuation of

neurodegeneration (74). Pro-inflammatory Th1/Th2 CD4 T cells

may contribute to neuronal loss by secreting cytokines such as IFNg
and IL-5, activating CNS resident cells, and mediating

neuroinflammation and tissue damage (71, 76, 82). Moreover,

Th17 CD4 T cells can directly damage neurons by secreting IL-

17, which is neurotoxic when recognized by IL-17R on neurons

(83). At the level of alterations in CD4 T cell subpopulations (84),

some studies pointed out a decreased frequency of CD4 T cells (85),

Th2 or Th17 (86) in PD treated compared to healthy controls (HC),
FIGURE 2

Adaptative immune cells contribute to neurodegeneration in synucleinopathies. Pathogenic a-syn aggregates in neurons (PD, DLB) or in oligodendrocytes
(MSA) are released and captured by antigen-presenting cells (APCs) such as microglia, astrocytes, and infiltrating monocytes. These APCs process and
present a-syn peptides on their major histocompatibility complex (MHC) molecules. Alternatively, neurons can directly present a-syn peptides on their MHC
class I molecule. Upon TCR triggering, CD8+ T cells secrete IFNg or cytotoxic granules (Granzymes, perforin), inducing neuronal death. B cells recognize a-
syn through their BCR and, with the aid of T helper cells, mature into plasma cells producing a-syn autoantibodies, potentially contributing to neuronal
damage. B cells also release pro-inflammatory cytokines such as TNFa and IL-6, promoting T cell differentiation into Th1 and Th17 cells, thereby contributing
to T cell-mediated inflammation. Following MHC-II/TCR interaction, CD4+ T cells further differentiate into Th17 cells, producing IL-17 that directly promotes
neuronal loss via neuronal IL-17 receptors. CD4+ T cells can also differentiate into Th1 or Th2 cells, secreting IFN-g and IL-5, respectively, further activating
CNS-resident microglia and astrocytes, thereby promoting a deleterious inflammatory environment. Regulatory T cells in synucleinopathies exhibit impaired
suppressive functions, failing to counteract T cell-mediated inflammation. Lastly, the BBB is compromised in patients, allowing the migration of immune cells
and mediators into the brain, perpetuating the pro-inflammatory loop. a-syn, a-synuclein; DLB, dementia with Lewy bodies; PD, Parkinson’s disease; MSA,
multiple sclerosis atrophy; MHCI-II, major histocompatibility complexes I-II; TCR, T-cell receptor; APCs, antigen-presenting cells; BCR, B-cell receptor; BBB,
Blood brain barrier; CNS, central nervous system.
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others an increase (87, 88) or no difference (89, 90). Looking at

antigen-specific T cells, we have shown the existence of ⍺-syn
reactive T cells in the blood, which exhibit a higher magnitude of

response in PD than HC (75, 76). Additionally, we demonstrated a

higher T cell reactivity to ⍺-syn within 10 years since diagnosis (76),

demonstrating that antigen-specific T cells can be used as a

biomarker in PD.

Aligned with the gut-brain theory in PD, it has been proposed

that the development of a-syn-specific T cell responses initially

occurs in the gut before extending to the brain. Local antigen-

presenting cells, such as mucosal dendritic cells, recognize a-syn
aggregates, migrate to the mesenteric lymph node, and present a-syn
antigens to CD4 T cells via MHC-II, triggering differentiation into pro-

inflammatory a-syn-specific CD4 T cells Th1 and Th17. Subsequently,

these pro-inflammatory T cells migrate to the brain, promoting

neuroinflammation, years after a-syn has reached the brain (91).

Discordant results regarding regulatory T cells (Tregs)

frequency compared to healthy controls are found in the

literature. Some studies report an increase, decrease, or no change

in Treg frequency (72, 92). As Tregs primarily suppress T cell

proliferation and cytokine production, impaired function leads to

immune system dysregulation and inflammation (93, 94). Tregs

from PD patients exhibit decreased suppressive ability over T cell

proliferation, and CD4 T cells from patients produce heightened

levels of IFNg and TNF in response to polyclonal stimulation

compared to HC, complicating immune response regulation (86).

Other regulatory cell populations, such as Tr1 cells, IL-10-

producing CD8 Tregs, and tolerogenic dendritic cells, show

decreased frequency in PD patients (90). Overall, the regulatory

compartment in PD patients appears altered, suggesting the

potential development of therapies focusing on restoring

regulatory functions. Indeed, ex vivo expansion of Tregs from PD

patients enhances suppressive function and demonstrates a stronger

Treg gene signature (94), while intra-striatal co-transplantation of

Treg cells with human-induced pluripotent stem cell-derived

midbrain dopaminergic neurons protects grafted cells and

improves therapeutic outcomes in rodent PD models (95).

The role of CD8 T cells remains unclear, with studies showing

their potential to induce neuronal death in an IFNg-dependent
manner (96) or via cytotoxic functions (77, 97), yet genetic

knockout of CD8 does not impact CNS myeloid activation (98).

Conflicting results regarding their frequency in peripheral blood

from PD have also been reported (72, 84). A neuropathological

study on PD and DLB post-mortem brains demonstrated an early

infiltration of CD8 T cells, but not CD4 T cells, in the SNpc.

Interestingly, the recruitment of CD8 T cells precedes ⍺-syn
aggregation (96), which is in contrast to what was observed in

multiple sclerosis (99) or Type 1 diabetes (100). Further work is

thus needed to better characterize CD8 T cells to understand their

part in synucleinopathies.
4.2 B cells

Cell-mediated immunity orchestrated by T cells has been

extensively studied in synucleinopathies, less attention has been
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given to humoral immunity mediated by B cells. However, B cells

play crucial roles beyond antibody production, including antigen

presentation to T cells and cytokine secretion, contributing

significantly to neuroinflammation.

Upon antigen recognition by their B-cell receptor (BCR), B cells

differentiate into plasma cells and secrete specific antibodies, which

have been detected in the serum and CSF of patients with

synucleinopathies (101). Notably, a-syn-specific autoantibodies

are localized in Lewy bodies in postmortem analyses of PD

patients, underscoring their specificity for a-syn (102). Moreover,

microglia in PD patients exhibit abnormally high expression of Fc

gamma receptors (FcgRs) (101), suggesting that the infiltration of

these autoantibodies into the CNS contributes significantly to

neuroinflammation, although the exact roles of a-syn-specific
autoantibodies remain to be fully elucidated (101).

In addition to antibody production, B cells modulate immune

responses through antibody-independent functions, such as

cytokine secretion. Recent evidence indicates that pro-

inflammatory B cells producing TNFa and IL-6 are increased,

while anti-inflammatory IL-10-producing B cells are decreased in

PD patients, reflecting a pro-inflammatory shift in B-cell cytokine

responses (103). These pro-inflammatory B cells can activate Th1

and Th17 cells, further contributing to T-cell-mediated

inflammation (104) Moreover, B cells can act as APCs to CD4 T

cells via MHC-II, enhancing T cell activation. Consistent with this,

up-regulation of MHC-II genes has been observed in B cells of PD

patients, indicating enhanced antigen presentation capacity (105).

Conversely, a decrease in MHC-II expression on B cells has been

reported in DLB, suggesting reduced B cell activation and

potentially diminished humoral adaptive immunity in this disease

(73). Despite the need for further clarification regarding the diverse

roles of B cells, their involvement in inflammation and

neurodegeneration in synucleinopathies is evident.
4.3 Myeloid cells

The investigation of myeloid cells (except for microglia) in

synucleinopathies has been mainly focused in PD. However, in a

MSA mice model, the depletion of myeloid cells using CSF1R

inhibitor (PLX5622) surprisingly improved overall survival with a

delayed onset and reduced inflammation, but animals presented

severe impaired motor functions, synaptic signaling, and neuronal

circuitries (106). In a follow-up investigation, it has been shown that

the PLX5622-induced impaired motor functions were potentially

linked to a shift in the neuronal balance with an increased inhibitory

connectivity (107). As PLX5622 acts on all CSF1R expressing cells,

its action is not restricted to microglia, thus the dual result can be

due to the depletion of monocytes or Border Associated

Macrophages (BAM).

Monocytes can in the context of PD enter the CNS through the

expression of CCR2 (108), differentiate into macrophages with

different functions from microglia (109, 110). A study has shown

the ability of mouse CD11c+ cells activated by ⍺-syn to circulate

from the brain to the gut providing new insight on the disease

propagation (111). The entry of monocytes into the CNS in a mice
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mode l o f PD is a s soc i a t ed wi th inflammat ion and

neurodegeneration (108) showing the promise of therapeutic

target. In addition, myeloid cells can act as APC and activate T

cells, further participating in the disease progression. In this

context, Schonhoff et al. have demonstrated that BAM are

increased by ⍺-syn in a mice model. Furthermore, BAM, but not

microglia as initially thought, are responsible for CD3+ T cells

activation with evidence of interactions in the perivascular space of

PD brains (112). At the transcriptome level, blood monocytes from

early diagnosed PD have specific signatures compared to HC.

Interestingly, differences were stronger when focusing on females

with genes enriched in pro-inflammatory pathways such as Natural

killer cell cytotoxic and Antigen processing and presentation (113).

This was confirmed in a study part of The Myeloid cells in

Neurodegenerative Diseases (MyND) initiative. BulkRNA-seq and

Single-cell RNAseq on CD14+ monocytes from PD blood supported

transcriptomic alterations, specifically in the mitochondrial and

proteasome with a higher pro-inflammatory signature in

CD14+CD16+ intermediate monocytes (110).

CD163, restricted to the monocytes and macrophages lineage,

has been investigated in several studies as its expression has been

found in PD brains (114), on peripheral blood monocytes of early

diagnosed PD (115) as well as RBD patients (prodromal patients)

(116). Its expression is sought to be protective especially in women.

Indeed, female CD163KO mice present increased dopaminergic

neuronal loss, whereas in male mice, its deletion leads to similar T

cell activation without SN loss (117). Similarly, investigation of

soluble CD163 (sCD163) highlighted a sex specific difference in

females compared to males. Serum levels were only higher in PD

females compared to HC, and in CSF sCD163 levels correlated with
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immune system activation markers and inversely with cognitive

scores. The authors stated that ⍺-syn activates macrophages which

induces CD163 shedding and increases ⍺-syn clearance (118). Thus,
sCD163 represents a potential biomarker of PD in females.

Altogether, the diverse functions, heterogeneity, and complexity

of myeloid cells in synucleinopathies represent a challenge currently

being tackled, but holds the promise of effective therapies to limit

the disease progression and T cell activation.
5 Sex-based differences further
stratify synucleinopathies

The focus on sex-based differences in diseases, especially those

with an autoimmune component, has intensified in recent years. Sex

differences are evident in synucleinopathies (Table 1), particularly in

PD, where men show a higher prevalence and incidence, while women

experience greater mortality and require earlier professional help (119,

120). In PD, the phenotype, including the onset of symptoms, type of

motor and non-motor symptoms, and levodopa bioavailability, differs

between males and females. For instance, motor symptoms, kinetics,

and severity follow distinct patterns. In comparison to men, women

typically exhibit delayed clinical signs, less rigidity, and tremor as the

initial symptom. They are more prone to postural instability and

motor complications induced by levodopa medication. Non-motor

symptoms are also more severe in women, encompassing fatigue,

depression, restless legs, constipation, pain, loss of taste or smell,

weight changes, and excessive sweating (121–125). Various factors

such as socioeconomic status, genetics, environment, or gender bias

may contribute to these sex-based differences.
TABLE 1 Sex-based differences in synucleinopathies.

Synucleinopathy Female Male Comments

Epidemiology
PD

Higher mortality
Earlier professional help

Higher prevalence
Higher incidence

Socioeconomic status,
Genetics,

Gender bias not studiedMSA/DLB Conflicting results

Motor
symptoms

PD
Higher pain

More prone to postural instability
More complications by levodopa medication

Earlier clinical signal
More prone to rigidity
More prone to tremor

MSA
More prone to present motor symptoms

at onset
More prone to orthostatic intolerance
More prone to early catheterization Not fully overviewed

DLB Not thoroughly studied

Non-
motor

symptoms

PD

More severe: fatigue, depression, restless legs,
constipation, pain, loss of taste or smell,
weight changes, and excessive sweating
Protective role of estrogens in the brain

More severe cognition impairment
Higher expression of PINK1, SNCA in SNc

neurons Slightly higher rates of RBD

DLB
More prone to hallucinations

Higher neuropsychiatric inventory
More prone to severe dementia Higher

rates of antipsychotic use

Inflammation
PD

Regulated microglia
Anti-inflammatory astrocytes

Pro-inflammatory astrocytes
Sex-specific T cell reactivity

not studied

MSA/DLB Not thoroughly studied
Summary of sex-based differences in Parkinson's disease (PD), Multiple system atrophy (MSA) and Dementia with Lewy bodies (DLB) divided by epidemiology, motor and non-motor symptoms
and inflammation. RBD, REM sleep behavior disorder; PINK1, PTEN-induced kinase 1; SCNA, Synuclein Alpha; SNc, Substantia nigra compacta.
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Sex differences have been less explored in DLB and MSA, where

the prevalence and incidence in men have shown conflicting results

across studies. However, a few studies have identified different

symptoms between males and females. For example, hallucinations

are more prevalent in women with DLB, associated with older age

and high neuropsychiatric inventory, whereas men present more

severe dementia and higher rates of antipsychotic use (13, 126).

InMSA, women are more likely to present motor symptoms at onset,

while men exhibit a higher likelihood of orthostatic intolerance and

early catheterization, contributing to a poorer survival rate (120).

Further research focusing on sex differences in DLB and MSA is

necessary to clearly define each subtype and identify biomarkers.

From a biological standpoint, early analyses have shown a

correlation between the age of PD onset and the duration of fertile

life, implicating a potential hormonal influence (127, 128). Estrogens

play a protective role in PD, as the incidence in men and post-

menopausal women is similar (129). The brain itself is influenced by

biological sex, with anatomopathological differences observed

between males and females with PD. Additionally, PD males tend

to perform worse than females in global cognition, immediate verbal

recall, and mental processing speed, while females exhibit less

visuospatial function (130). The transcriptome of SNc dopamine

neurons from males is associated with PD pathogenesis (SNCA and

PINK1), whereas females show upregulation of genes involved in

signal transduction and neuronal maturation (12, 131, 132).

Neuroinflammation is a significant component in synucleinopathies.

Sex differences in the innate and adaptive responses in the periphery have

been reviewed elsewhere (11). In the brain, estrogens play a protective

role by modulating microglia responses to proinflammatory stimuli,

while astrocytes from men upregulate proinflammatory cytokines

compared to those from women, who express more anti-inflammatory

cytokines (133, 134). Few studies focused on sex-based differences in

inflammation in synucleinopathies. Among them, Mitra et al. observed

in a rotenone-induced PD mouse model that males and females have

different resident cell proportions in the SN. Males showed a decreased

level of microglia and increased level of astrocytes compared to females

(135). More recently, it has been shown that peripheral bloodmonocytes

are differently activated in men and women PD patients, with a higher

inflammatory profile and gene enrichment associated to IFNg

stimulation in females (113). In addition, sCD163 serum and CSF

levels is also specific to PD female (117, 118). Thus, segregating

women and men when studying immune response to ⍺-syn remains

to be investigated in PD.

A recent systematic review highlighting sex-based differences in

synucleinopathies emphasized the necessity of designing future studies

that subdivide males and females (120). Altogether, biological sex is an

important factor to consider in stratifying synucleinopathies, offering

new insights and potentially leading to more effective treatments.
6 Therapeutic perspectives to
treat inflammation

It is now recognized that synucleinopathies are associated with an

inflammatory component, prompting significant efforts towards

developing inflammation-targeting strategies spanning from diagnosis
Frontiers in Immunology 09
to disease-modifying therapies. Postmortem analysis of brains from PD

patients reveals a substantial decrease in SN neurons within the initial

four years post-diagnosis (50-90% decrease), rendering symptomatic

treatments less effective at the diagnosed disease stage (136). The

identification of immunologic biomarkers holds promise for early

disease detection and thus, enabling earlier and presumably more

effective interventions. An interesting epidemiological study revealed

that individuals with pre-existing Inflammatory Bowel Disease (IBD)

have a higher risk of developing PD. However, exposure to anti-TNF

therapy conferred protection against PD (137), providing further proof

of an immune component in PD, and strongly suggest possibilities to

identify and treat high-risk patients very early. Additionally, we recently

demonstrated in a longitudinal case study that a-syn specific T cells

were present more than a decade before the occurrence of PD

symptoms, suggesting avenues in potential early diagnosis (76). Early

diagnosis could also be based on the identification of markers of disease-

associated gut dysbiosis. In fact, gut dysbiosis may occur years before

motor symptoms in PD and MSA, suggesting that specific microbiota

signatures may yield predictive biomarkers for early diagnosis (41). An

important consideration to identify robust marker(s) is to take into

account the biological sex, as we have reviewed here, many differences

are specific to males or females.

Targeting inflammation to delay, halt or reverse the immune

response represents a promising strategy, drawing from extensive

research in other autoimmune/inflammatory contexts. Clinical trials

testing drugs aimed at reducing microglial activation and inflammation,

such as verdiperstat (BHV-3241), are underway in MSA patients

(NCT04616456). Cell-based approaches, like intravenous allogeneic

bone marrow-derived mesenchymal stem cell (MSC) therapy,

demonstrate neuroprotective effects through anti-inflammatory actions

mediated by microglial activation modulation (138), though long-term

safety and clinical benefits require further investigation.Myeloid cells such

as monocytes, macrophages and BAM can also be targeted. However,

drugs need to be specific as in MSA, the use of an CSF1R inhibitor

showed dual results both beneficial on the lifespan but deleterious on

motor symptoms (106, 107). Blocking the entry of monocytes into the

CNS via targeting CCL2 (113) represents a potential area.

Several clinical trials aim to modulate the immune response

through lymphocytes and their mediators (139). For instance, anti-

CD3 monoclonal antibodies (mAbs) therapies trigger apoptosis in

activated T cells and spares Tregs, thus preventing the exacerbated T-

cell mediated inflammation. However, while some trials have shown

promising results in other diseases, others have raised safety concerns

(140). Another therapeutic strategy could be based on B cell depletion

therapies like rituximab and ocrelizumab, which target CD20-

expressing B cells and have been found to be successful in other

CNS diseases such as multiple sclerosis (141). Therefore, anti-CD20

therapies could offer an interesting therapeutic perspective to prevent

B-cell mediated inflammation in synucleinopathies. However, B cells

depleting therapies are not yet supported by the literature as the role

of B cells in synucleinopathies is still not fully understood.

Furthermore, in view of the emerging gut-brain theory, clinical trials

also try to target inflammation in the gut. Among them, a clinical trial

ongoing assess the efficiency of fecal microbiota transplantation to restore

gut homeostasis and reduce inflammation on PD patients

(NCT03808389), in line with in vivo transplantation experiments (37).
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Additional resources are also available for further information on clinical

trials, including those not specifically targeting inflammation (142).
7 Conclusion

The understanding of synucleinopathies has evolved significantly,

shedding light on the complexities of disease initiation, progression,

and the pivotal role of inflammation in the pathogenesis. The body-first

and brain-first subtypes offer distinct trajectories in disease onset and

progression, emphasizing the need for targeted therapeutic approaches.

The body-first hypothesis implicates the enteric nervous system and

gut-brain axis, highlighting the role of microbial dysbiosis and

inflammatory responses in a-syn aggregation and propagation. The

gut being the largest interface with the environment, it is highly

thought to be the pathway to environmental stressors. Indeed,

numerous by-products of the industrial revolution, including specific

pesticides and heavy metals, have been linked to increased cases of PD

(143). Recent studies showed that adherence to Mediterranean diet was

associated with a lower risk of Alzheimer’s disease and PD

development thanks to a beneficial microbial composition that

reduces the risk of inflammation (144). Conversely, the brain-first

hypothesis suggests a primary CNS origin of pathology, with

differential involvement of resident cells such as microglia and

astrocytes in initiating and perpetuating neuroinflammation.

Microglia and astrocytes, traditionally recognized for their

homeostatic roles, are now acknowledged as key players in

neuroinflammation. Microglia-mediated inflammatory responses,

triggered by a-syn aggregates, contribute to neuronal degeneration,

facilitating peripheral immune cell infiltration. Astrocytes transit into a

neurotoxic A1 phenotype in response to a-syn, exacerbating

inflammation and synaptic degeneration. The involvement of

peripheral immune cells, particularly T and B cells, further complicates

the inflammatory landscape of synucleinopathies, with implications for

both adaptive and innate immunity. Sex-based differences add another

layer of complexity to synucleinopathies, influencing disease prevalence,

phenotype, and immune responses. Biological sex affects

neuroinflammatory pathways and the immune response, suggesting

the need for sex-specific therapeutic strategies and biomarker

identification. However, the involvement of the immune system, the

autoimmune component and sex-based differences provide new

promising therapeutic avenues. Indeed, those strategies and differences

have been more intensively studied and developed in other diseases

(145), eventually helping us to better understand and design therapies.

Unraveling the intricate interplay between inflammation,

immune responses, and disease progression in synucleinopathies
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holds immense promise for developing effective treatments and

advancing personalized medicine approaches tailored to the distinct

subtypes and individual characteristics of patients.
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