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Introduction: There are no reports in LATAM related to longitudinal humoral and

cellular response to adenovirus based COVID-19 vaccines in people with Multiple

Sclerosis (pwMS) under different disease modifying therapies (DMTs) and

neutralization of the Omicron and Wuhan variants of SARS-COV-2.
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Methods: IgG anti- SARS-COV-2 spike titer were measured in a cohort of 101

pwMS under fingolimod, dimethyl fumarate, cladribine and antiCD20, as well as

28 healthy controls (HC) were measured 6 weeks after vaccination with 2nd dose

(Sputnik V or AZD1222) and 3nd dose (homologous or heterologous schedule).

Neutralizing capacity was against Omicron (BA.1) and Wuhan (D614G) variants

and pseudotyped particles and Cellular response were analyzed.

Results: Multivariate regression analysis showed anti-cd20 (b= -,349, 95% CI:

-3655.6 - -369.01, p=0.017) and fingolimod (b=-,399, 95% CI: -3363.8 - -250.9,

p=0.023) treatments as an independent factor associated with low antibody

response (r2 adjusted=0.157). After the 2nd dose we found a correlation between

total and neutralizing titers against D614G (rho=0.6; p<0.001; slope 0.8, 95%

CI:0.4-1.3), with no differences between DMTs. Neutralization capacity was lower

for BA.1 (slope 0.3, 95%CI:0.1-0.4). After the 3rd dose, neutralization of BA.1

improved (slope: 0.9 95%CI:0.6-1.2), without differences between DMTs. A

fraction of pwMS generated anti-Spike CD4+ and CD8+ T cell response. In

contrast, pwMS under antiCD20 generated CD8+TNF+IL2+ response without

differences with HC, even in the absence of humoral response. The 3rd dose

significantly increased the neutralization against the Omicron, as observed in the

immunocompetent population.

Discussion: Findings regarding humoral and cellular response are consistent with

previous reports.
KEYWORDS

multiple sclerosis, vaccine, immune response, COVID - 19, cell response, Omicron (BA.1)
1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),

the virus that causes coronavirus disease 2019 (COVID-19), has led

to a serious global health crisis, resulting in high rates of illness and

death (1). Vaccination is seen as the most effective and safest way to

protect people against this disease with several vaccines available in

Argentina. People with multiple sclerosis (pwMS) are considered

high risk and should be particularly prioritized for vaccination (2).

However, certain disease-modifying therapies (DMTs) for MS like

immunomodulators and immunosuppressants can cause T- and/or

B-cell depletion and may reduce immune responses to COVID-19

(3, 4), especially in the case of anti-CD20 therapies (ocrelizumab and

rituximab) and fingolimod, which can cause lymphopenia (5–9).

To date, there is a significant amount of data from Europe and

the USA regarding the immune response to COVID-19 vaccines in

pwMS who are undergoing specific treatments. Most studies focus

on RNA-based or inactivated virus vaccines, revealing that

approximately 50% of patients on fingolimod and approximately

80% of patients on anti-CD20 treatment do not produce significant

immune responses in their initial vaccination (10–20).

This has raised questions for neurologists worldwide including

whether pwMS with lower antibody production should receive
02
additional booster shots and if treatment should be adjusted

based on the vaccine type. Limited information exists on the

immune response in Latin American patients with MS who

predominantly received adenovirus-based vaccines. Notably,

Sputnik V has been applied in few countries in the world,

including Argentina.

Therefore, our study aims to investigate the immune response

to these vaccines in pwMS undergoing anti-CD20 (ocrelizumab and

rituximab), fingolimod, cladribine, and dimethyl fumarate

treatments compared to the general population. Additionally, we

will assess the safety of these vaccines.
2 Methods

2.1 Human subjects and study design

A multicenter prospective/longitudinal study was conducted

from the Multiple Sclerosis University Center (CUEM) of the JM

Ramos Mejıá Hospital in Buenos Aires. Peripheral blood was

collected from all the participants at the hospital 6–8 weeks after

the second and third doses of the COVID-19 vaccine. The study

involved healthy controls (HC) and pwMS according to the
frontiersin.org
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McDonald 2017 criteria (21) from nine specialized MS centers.

Inclusion criteria were adults over 18 years old who received the

first two doses of the Sputnik V and/or Oxford-AstraZeneca

(AZD1222) vaccines against COVID-19, and/or combinations of

both, with an interval of more than 1 month between doses. It

should be noted that, in our country, owing to the lack of vaccines,

vaccination schemes were carried out with time intervals between

doses greater than the 21-day minimum indicated in the

vaccine insert.

The exclusion criteria included HC/pwMS who did not wish to

participate in the study, HC/pwMS under 18 years old, HC/pwMS

vaccinated with the first two doses of the Sputnik V and Oxford-

AstraZeneca vaccines with a 21-day interval, recipients of Sinopharm

vaccine, and those with a history of COVID-19 disease. No baseline

antibody titers were measured before vaccination.

The data collected from both pwMS/HC included age, sex, type of

vaccine, and date of vaccination. For pwMS, additional information

included age at MS symptom onset, age at MS diagnosis, years of

disease evolution, DMT used, lymphocyte count at vaccination, current

Expanded Disability Status Scale (EDSS), and vaccine-related adverse

events. Symptoms post-vaccination, as per Achiron et al. (2021), were

recorded following a predefined list including pain at injection site,

fever, muscle/joint pain, flu-like symptoms, fatigue/weakness,

headache, dizziness, gastrointestinal issues (nausea, vomiting, and

diarrhea), face tingling, facial weakness, acute MS relapse, and

worsening of MS symptoms. For patients on anti-CD20 treatment,

the date of last infusion before vaccination was noted, and for those

receiving cladribine, the date of the last treatment cycle before

vaccination was recorded.
2.2 Humoral and cellular response

Serum samples were obtained 6–8 weeks after receiving the

vaccine in all participants. They were processed at the Fundación

Instituto Leloir, where the titers of IgG antibodies against the spike

protein were evaluated by ELISA, the COVIDAR IgG kit, created in

our country by colleagues (“COVIDAR” Platform) (22).

A Pseudo Virus Based Neutralization Assay was performed in

order to assess the ability of the sera to neutralize different SARS-CoV-

2 variants of concern. Basically, pseudo viral particles (PVs) containing

SARS-CoV-2 Spike-D614G or SARS-CoV-2 Spike-BA.1 (Omicron)

protein were generated as previously described (23). We generated a

replication defective vesicular stomatitis virus (VSV) PV in which the

backbone was provided by a pseudo-typed DG-luciferase (G*DG-
luciferase) rVSV (Kerafast, Boston, MA, USA) that packages the

expression cassette for firefly luciferase instead of VSV-G in the VSV

genome. The 50% tissue culture infectious dose (TCID50) of SARS-

CoV-2 PV was determined in sextuplicates and calculated using the

Reed–Muench method as previously described (24).

The neutralization assays were performed as previously

described (23). Briefly, 50 µl of serially diluted sera was combined

with 65 TCID50 PVs in 50 µl of complete medium (DMEM

supplemented with 10% FBS and non-essential amino acids) in

96-well plates (Greiner Bio-One, Germany) and incubated at 37°C,

5% CO2 for 1 h. Next, 100 µl of 5 × 105/mL HEK293T-ACE2 cells
Frontiers in Immunology 03
were added to the pseudo virus–serummixture and incubated at 37°

C, 5% CO2 for 20–24 h. Conditions were tested in duplicate wells on

each plate, and a virus control (VC = no sera) and cell control (CC =

no PV) were included on each plate in six wells each to determine

the value for 0% and 100% neutralization, respectively. Media was

then aspirated from cells and Firefly luciferase activity was

determined with the Luciferase Assay System (Promega) as

recommended by the manufacturer. The percentage of inhibition

of infection for each dilution of the sample is calculated according

to the RLU values as follows: % inhibition = [1 – (average RLU of

sample – average RLU of CC)/(average RLU of VC – average RLU

of CC)] × 100%. On the basis of these results, the ID50 of each

sample was calculated by the Reed–Muench method.

In order to analyze cellular immune response by flow cytometry,

cryopreserved PBMCs (−80°C) were thawed, washed in RPMI 1640

(Serendipia, Buenos Aires, Argentina) supplemented with 10% FBS

(Sigma, St. Louis, MO, USA) (complete RPMI), resuspended in PBS,

and incubated for 10 min in the presence of 0.1 mg/mL of DNase I

(Roche, Basel, Switzerland). Cells were plated in each well of a P96-

well plate, incubated in 100 µl of complete RPMI overnight at 37°C,

5% CO2, and then cultured in the presence of 1 µg/mL SARS-CoV-2-

specific peptides pools (Miltenyi, Bergisch Gladbach, Germany) for 6

h. Negative controls (cultures in the absence of peptides) were

included as well as a positive control stimulated with phorbol-12-

myristate-13-acetate (PMA) and ionomycin. In all treatments,

Brefeldin A and Monensin (BioLegend, San Diego, CA, USA) were

added to cultures for the last 4 h.

Cells were washed, incubated with Zombie Violet viability probe

(BioLegend, San Diego, CA, USA), surface stained (CD3-BV510 Clone:

OKT3, CD4-APCCy7 Clone: OKT4, CD8-PE Clone: RPA-T8,

CD45RO-BV785 Clone: UCHL1), fixed with 1% paraformaldehyde

(Sigma, St. Louis, MO, USA), then permeabilized and intracellularly

stained (CD154-FITC Clone: 24-31, IFN-g-PerCP-Cy5.5 Clone: 4S.B3,
TNF-a-PECy7 Clone: MAb11, and IL-2-APC Clone: MQ1-17H12) in

perm wash solution (BioLegend, San Diego, CA, USA). Each

incubation step was performed at room temperature for 25 min in

darkness. Fluorescent monoclonal antibodies were all purchased from

BioLegend (San Diego, CA, USA). Samples were acquired on a BD LSR

Fortessa™ X-20 Flow Cytometer and analyzed with FlowJo software

(BD, USA). CD4+ and CD8+ lymphocyte cells were analyzed

separately after excluding doublets and death cells. TNF and IL-2

parameters and TNF, CD154, IL-2, and IFN-gwere analyzed for CD8+
and CD4+ cells, respectively. Percentage of double positives and simple

positives were considered to assess T-cell response. Samples with a very

low number of CD4+ and CD8+ cells were excluded from analysis as

well as samples that were non-reactive to PMA/ionomycin.

The methods are summarized in Figure 1.
2.3 Ethical aspects

This protocol was approved by the Ethics Committee of the

participating centers. All HC and pwMS who were involved were

invited to take part in the study and signed the corresponding

informed consent if they chose to participate. All samples were

properly anonymized.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1431403
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Silva et al. 10.3389/fimmu.2024.1431403
2.4 Statistical analysis

Data were analyzed using the GraphPad Prism 8 statistical

package. A descriptive analysis of all the variables included was

conducted. Pearson and Spearman correlation tests were employed

to analyze the correlation between numerical variables, based on the

normality of the distribution of the population. The Student’s t-test was

utilized for assessing heterogeneity between independent groups as a

parametric test, while the Mann–Whitney U-test served as the non-

parametric test, or ANOVA test was used depending on the number of

categorical variables. Significance was defined as a probability of less

than or equal to 5% (p < 0.05). The effect of the treatments on antibody

response was evaluated using the Kruskal–Wallis test and its post-hoc

test, incorporating HC in this analysis. Additionally, a multivariate

analysis was carried out with the antibody titer as the dependent

variable and demographic/clinical variables as independent variables.

The comparison of different treatments and dose effect ofWuhan/BA.1

variant neutralization was adjusted using linear regression with the

correlation calculated through Spearman’s non-parametric test.
3 Results

3.1 Antibody-mediated immune responses
to the first two vaccine doses (primary
regimen) in patients with pwMS and HC

A total of 101 pwMS and 28 HC were included. Among them,

35.7% (n = 46) were vaccinated with Sputnik V, 51.9% (n = 67) were

vaccinated with AZD1222, and 12.4% (n = 16) were vaccinated with

a combination of both vaccines. The interval between doses was

60.1 ± 6.3 days for the AZD1222 vaccine, 102.2 ± 8.5 days for

Sputnik V, and 99.8 ± 10.4 for the combined schedule. None of the

participants, whether pwMS or HC, had COVID-19 before

vaccination. The baseline characteristics of the included

population are summarized in Table 1.

Both pwMS and HC were similar in terms of sex, age, vaccine

type, and interval between doses. In terms of anti-Spike antibody

response, all HC produced antibodies compared to 32.7% (n = 33)
Frontiers in Immunology 04
of pwMS who did not seroconvert. In the pwMS group, there was no

association between absence of seroconversion and the type of

vaccine received (chi-square = 0.3, p = 0.8). The influence of DMTs

was also examined, revealing that 100% of pwMS treated with
TABLE 1 Demographic and clinical characteristics of people with
Multiple Sclerosis and healthy controls included in the study.

Variable PwMS
(n = 101)

HC (n = 28) p

Sex (%, n) p = 0.3

Female
Male

61.4% (62)
28.6% (39)

57.1% (16)
42.9% (12)

Age
(mean, SD)

36.9 (± 11.4) 35% (± 7.9) p = 0.7

MS phenotype
(%, n)

RR 93.06% (94)
PP 6.93% (7)

NA

EDSS
(mean, SD)

2.4 (± 1.5) NA

MS evolution,
years (mean, SD)

7.6 (± 5.1) NA

Vaccine type
(%, n)

p = 0.42

Sputnik V
AZD1222
Combined
schedule

37.6% (38)
50.5% (51)
11.9% (12)

28.6% (8)
57.1%(16)
14.3% (4)

Interval between
doses (mean, SD)

81 (± 24.1) 81.07 (± 22.2) p = 0.8

DMT
(%, n)

Dimethylfumarate
22.7% (23)
Fingolimod
44.5%(45)
Cladribine
13.8% (14)
Anti-CD20*
18.8% (19)

NA
PwMS, people with multiple sclerosis; HC, healthy controls; SD, standard deviation; EDSS,
Expanded Disability Status Scale; DMT, disease-modifying therapy; *includes ocrelizumab
and rituximab.
FIGURE 1

Methods. IgG anti-SARS-COV-2 spike titers and Wuhan and Omicron neutralization assays were performed in serum samples of a cohort of people
with Multiple Sclerosis (pwMS) under immunosuppressive treatment and healthy controls (HC) between 68 weeks after second and third dose of
Sputnik V and AZD 122 vaccines. Furthermore, leukocyte isolation and flow cytometry were carry out in order to assessed cellular immune response
post-vaccine.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1431403
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Silva et al. 10.3389/fimmu.2024.1431403
dimethylfumarate and cladribine were able to produce a detectable

humoral immune response, while 42.2% (n = 19) of pwMS under

fingolimod treatment and 73.6% (n = 14) with anti-CD20 did not

elicit detectable anti-Spike antibodies. A statistically significant

association between treatment type and antibody response was

observed (chi-square = 34.3, p = 0.04) (Table 2).

Furthermore, a significant decrease in anti-Spike IgG antibody

titers was observed in pwMS undergoing treatment with fingolimod

and anti-CD20, compared to HC or other patients with MS

undergoing DMT (p < 0.0001, one-way ANOVA) (Figure 2).

Additionally, we analyzed the effect of the DMT on the antibody

response. Statistically significant differences in antibody titers were

found between groups [H (4) = 60.8, p < 0.01] (Kruskal–Wallis).

Post-hoc analyses showed significant differences between treatment

pairs involving fingolimod or anti-CD20: p < 0.0001 for all of

them (Figure 3).

The impact of fingolimod or anti-CD20 treatment on the

antibody response did not vary based on the vaccination schedule

used (chi-square = 0.65, p = 0.7; chi-square = 0.8, p = 0.6,

respectively) (Sputnik V, AZD1222, or a combination of

both) (Table 3).

Given that reports from other countries have shown a positive

correlation between lower antibody response and lower lymphocyte

levels at the time of receiving RNA-based vaccines, we decided to

investigate this relationship in our study. Initially, we observed a

significantly reduced absolute lymphocyte count in pwMS treated

with fingolimod and anti-CD20, compared to other treatments (p <

0.0001, one-way ANOVA) (data not shown). Subsequently, a

positive correlation was identified between lower lymphocyte

count and reduced antibody levels in pwMS receiving fingolimod

(r = 0.67, 95% CI: 0.46–0.81, p ≤ 0.0001) (Figure 4A). For those

under treatment with anti-CD20, although not statistically

significant, there was a trend towards a similar correlation (r =

0.39, 95% CI: −0.08–0.7, p = 0.09) (Figure 4B). Moreover, in these

patients, the antibody titer was lower when vaccination and anti-

CD20 infusion were administered closely together (r = 0.49, 95% CI:

0.03–0.7, p = 0.03) (Figure 4C).

Regarding MS clinical variables, in the overall population of

patients with MS (n = 101), no statistically significant differences in
Frontiers in Immunology 05
the EDSS were found between individuals who showed an antibody

response (EDSS: 2.2 ± 1.54) and those who did not (EDSS: 2.94 ±

1.55) (p = 0.06). Similarly, there were no disparities in the disease

evolution among pwMS who developed an antibody response

versus those who did not (p = 0.1). Upon examination within the

group that elicited an antibody response (n = 68), no correlations

were discovered between antibody levels and age (rho = 0.1 p = 0.9),

the interval between vaccine doses (rho = 0.03, p = 0.7), years with

MS (rho = 0.09 p = 0.4), or EDSS scores (rho = 0.08 p = 0.4), nor

were there significant differences in antibody levels based on the

specific vaccination regimens received (p = 0.4) (data not shown).

Multivariate regression analysis adjusting for all the clinical

variables revealed that the anti-CD20 (b = −0.349, 95% CI: −3,655.6

to −369.01, p = 0.017) and fingolimod (b = −0.399, 95% CI: −3,363.8

to −250.9, p = 0.023) groups were independent factors associated

with low antibody response (r2 adjusted = 0.157).
3.2 Humoral immune response to the third
vaccine dose

In Argentina, pwMS received a third dose at least 1 month after

the second dose, known as “additional dose” of primary schedule.

Of the total pwMS (n = 101) who participated in the study, only 57

patients received the third dose and decided to undergo blood

extraction for the determination of anti-Spike antibodies 6 to 8

weeks after this vaccination. Table 4 shows the characteristics of the

recruited population for the third vaccine dose. PwMS received

either a homologous schedule (adenovirus-based vaccine as a third

dose) or a heterologous schedule (RNA-based vaccine as a third

dose). As previously described, 61.5% received a homologous

schedule and 38.5% received a heterologous schedule.

Of the total pwMS under fingolimod (n = 24), 25% (n = 6) still

had undetectable anti-Spike antibodies, after receiving a
TABLE 2 Humoral immune response to adenovirus-based COVID-19
vaccines according to disease-modifying treatment received.

DMT PwMS
without
antibody
response,

n (%)

PwMS with
antibody
response,

n (%)

Total
number

Fingolimod 19 (42.2) 26 (57.8) 45 (100)

Cladribine 0 (0) 14 (100) 14 (100)

Anti-CD20* 14 (73.6) 5 (26.4) 19 (100)

Dimethylfumarate 0 (0) 23 (100) 23 (100)
We found a statistically significant association between the treatment received and the
generation of the antibody response (chi square = 34.3, p = 0.04) (contingency table).
PwMS, people with multiple sclerosis; DMT, disease-modifying therapy, *includes
ocrelizumab and rituximab.
FIGURE 2

Antibody titers obtained by disease modifying therapy. We found a
significantly decreased in the antibody titers in the pwMS under
fingolimod and antiCD20 treatments, compared to the control
group and the other treatments (p <0.0001, one-way ANOVA).
***p < 0.0001-0.001, ****p < 0.0001. HC, healthy controls;
SD, standard deviation; pwMS, people with Multiple Sclerosis.
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homologous schedule. However, six patients who were non-reactive

after the second dose managed to produce antibodies after the third

dose, all of them under a homologous schedule. In addition, of the

10 anti-CD20 pwMS recruited, 7 (70%) patients still had no

antibody response. However, a pwMS who was non-reactive after
Frontiers in Immunology 06
the second dose managed to produce antibodies after the third dose,

receiving a heterologous regimen. Patients treated with dimethyl

fumarate and cladribine showed detectable titers and generated a

statistically significant increase after the third dose (p = 0.03).
3.3 Neutralization analysis

We further evaluated the neutralizing capacity of sera for which

a humoral response could be detected, regardless of their treatment

status. After the second vaccine dose, anti-Spike IgG titers and

neutralizing ID50 titers against D614G VOC showed a strong

correlation (Spearman r = 0.6182; p < 0.001). Upon stratifying the

correlation analysis by treatment, a significant correlation was

observed in the sera of patients treated with dimethyl fumarate

(Spearman r = 0.8857; p < 0.05), whereas no statistically significant

correlation was observed for other treatments or controls, likely due

to the limited sample size.

However, when analyzing the linear regression coefficients

among treatments, the slopes of the regression lines are not

significantly different from each other, indicating that none of the

treatments significantly alter the overall correlation between the two

variables [for each correlation, the slope (95% confidence interval)

is as follows: IgG second dose vs. D614G ID50 = 0.8635 (0.4223 to

1.305); IgG second dose vs. BA.1 ID50 = 0.3404 (0.1901 to 0.4908);

IgG third dose vs. BA.1 ID50 = 0.9682 (0.6622 to 1.274)]. Patients

with anti-CD20 were not included in this analysis as there were too

few patients with an antibody response to analyze and could not

yield significant results (Figure 5A).

Additionally, we carried out the PBNA to determine the

neutralization capacity of sera after the second and third doses

against Omicron BA.1. When we analyzed the correlation between

the antibody titers as determined by ELISA and their neutralization
FIGURE 3

Effect of multiple sclerosis treatments on antibody response analyzing by Kruskal-Wallis test. We found statistically significant differences in antibody
titers between the different treatment groups (H(4) = 60.8, p < 0.01) In the post hoc comparisons, statistically significant differences were observed
between the treatment pairs analyzed in which one of them was fingolimod or antiCD20 ( p < 0.0001 in all pairs, indicated in the table and in the
graph in yellow), SD, standard deviation; HC, healthy controls; sig, significance.
TABLE 3 Humoral immune response to adenovirus-based COVID-19
vaccines according to the vaccination schedule received.

A. Fingolimod

Schedule Without
antibody
response,
n (%)

With
antibody
response,
n (%)

Total

Sputnik V 6 (35.2) 11 (64.8) 17 (100)

AZD1222 11 (47.8) 12 (52.2) 23 (100)

Combined
schedule

2 (40) 3 (60) 5 (100)

Total 19 26 45

B. Anti CD20

Schedule Without
antibody
response, n (%)

With antibody
response,
n (%)

Total

Sputnik V 6 (85.7) 1 (14.3) 7 (100)

AZD1222 6 (66.6) 3 (33.4) 9 (100)

Combined
schedule

2 (66.6) 1 (33.4) 3 (100)

Total 14 5 19
We found no association between the lack of response to antibodies for fingolimod (Chi
Square 0.65, p=0.7) (A) or for antiCD20 (Chi Square 0.8, p=0.6) (B) with any particular
vaccination scheme (Contingency tables).
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capacity against BA.1, we found lower anti-BA.1 ID50s, as compared

to the Wuhan variant. When we analyzed the neutralization ability

to neutralize Omicron in sera from the same group of patients after

receiving the third dose, a significant increase in the neutralizing/

total Ab ratio was observed (Figure 5B).
3.4 Cellular immune response

Regarding T cell-mediated immune responses, we analyzed the

proportion of CD8+TNF+IL-2+ T cells in a subgroup of pwMS,

since it is one of the most relevant populations presenting a
T
re

P
E
an
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considerable immune response to vaccines. We found a

significantly decreased response in patients treated with

fingolimod, compared to those treated with anti-CD20 and HC.

However, no statistically significant differences were found between

HC and patients receiving anti-CD20 (Kruskal–Wallis test p = 0.01,

Dunn’s post hoc, *p = 0.01–0.05, n = 10–14/group) (Figure 6).

Interestingly, CD8+ T-cell responses were stronger and clearer

compared to CD4+ T-cell responses, which did not show

statistical significance among all groups analyzed (data not shown).
3.5 Safety

In this study, we also assessed the safety of the adenovirus-based

vaccines. Our results showed that patients with MS had similar rates

of adverse reactions to what has been reported in the general

population following Sputnik V and AZD1222, suggesting that

patients with MS do not show higher risk for vaccine-induced

adverse events. Furthermore, the reported adverse events were

similar for the three vaccine doses. The most common adverse

events were flu-like illness (77.2%, n = 78), injection site reactions

(76.2%, n = 77), headache (75.2%, n = 7), and asthenia or fatigue

(72.2%, n = 73). No patient had an MS relapse. Ten pwMS (9.9%)

showed worsening of MS symptomatology that did not even meet

criteria for a disease relapse, which was transient in all cases. We

found no significant differences in the frequency of adverse events

between the two vaccines (Sputnik V versus AZD1222) (data

not shown).
4 Discussion

Given the limited data on the immunogenicity of adenovirus-

based COVID-19 vaccines in LATAM, which were the main

vaccines applied in the region, our study aimed to analyze the

immune response in this setting. Notably, in the case of Sputnik V,

there were no available data on MS.

We found that all HC seroconverted after the second dose of

vaccine, while 32.7% of the pwMS did not elicit an antibody

response. These results are consistent with findings from RNA-
FIGURE 4

Correlation between absolute lymphocyte count, time of last infusion and antibody titers. We found a correlation between a lower lymphocyte
count and a lower antibody titer in patients receiving fingolimod treatment (A) (r: 0.67, 95% CI: 0.46- 0.81, p=0.0001). In the case of Anti CD20 (B)
we did not find a statistically significant correlation, but rather a trend (r.0.39, 95% CI -0.08-0.7, p = 0.09). The antibody titer was lower when
vaccination and last AntiCD20 infusion were closer (r: 0.49, 95% CI: 0.03- 0.7, p = 0.03) (C).
ABLE 4 Demographic and clinical characteristics of pwMS who
ceived a third dose of COVID-19 vaccine.

Variable People with multiple
sclerosis (n = 57)

Sex (%, n)

Male
Female

64.9% (37)
45.1% (20)

Age
(mean, SD)

36.9 (± 11.4)

MS phenotype
(%, n)

RR 96.5% (55)
PP 3.5% (2)

EDSS
(mean, SD)

2.9 (± 1.3)

MS evolution in years (mean, SD) 7.3 (± 5.8)

Vaccine schedule (%, n)

Homologous
Heterologous

61.5% (35)
38.5% (22)

Days between second and third doses
(mean, SD)

81 (± 24.1)

DMT
(%, n)

Dimethylfumarate 21.05% (12)
Fingolimod 42.1% (24)
Cladribine 19.29% (11)
Anti-CD20* 17.4% (10)
wMS, people with multiple sclerosis; HC, healthy controls; SD, standard deviation; EDSS,
xpanded Disability Status Scale, DMT: disease-modifying therapy, *includes ocrelizumab
d rituximab.
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based and inactivated virus vaccines (2, 10, 19, 20, 25). One study

compared the antibody response between RNA and adenoviral

vaccines (Johnson & Johnson) in pwMS under fingolimod,

finding a higher proportion of patients that generated antibodies

in those who received the adenoviral vaccine: 55.6% of patients

seroconverted with RNA vaccines compared to 83% of patients with

the Johnson & Johnson vaccine (26).

When we analyzed the influence of DMT on the antibody

response, we found that all pwMS treated with dimethylfumarate

and cladribine could generate a humoral immune response. These

findings are in line with all the reports performed for these therapies

with RNA and inactivated virus vaccines, although there were no

reports to this date on adenovirus-based vaccines (2, 10, 16, 25–29).

Additionally, no association was found between the absence of

seroconversion and the vaccination schedule. Furthermore, we

found a lower seroconversion in pwMS under fingolimod and

anti-CD20 (ocrelizumab and rituximab) treatments, according to
Frontiers in Immunology 08
reports from the rest of the world with RNA, inactivated, and

adenoviral Johnson & Johnson/ADZ1222 vaccines, although with

the latter two mentioned vaccines, the reports are scarce (2, 10, 16,

19, 20, 25, 30–34).

No association was found between seroconversion and the

vaccination schedule. However, lower seroconversion rates were

observed in patients under fingolimod and anti-CD20 treatments,

consistent with global reports on RNA, inactivated virus, and

adenoviral vaccines, particularly Johnson & Johnson/ADZ1222.

Given the previously reported low immunogenicity of different

vaccines in pwMS, and the high rate of severe COVID-19 in pwMS

treated with anti-CD20 mAb (35–37), several studies have analyzed

the cellular immune response in these populations, particularly

those receiving RNA-based vaccines. Most studies found preserved

CD4 and CD8 T-cell immune responses (19, 31, 32, 34, 38–40),

despite low seroconversion, and even greater than the T-cell

response of HC (40). Further studies are needed to determine

whether T-cell responses induced by SARS-CoV-2 vaccination in

pwMS receiving anti-CD20 mAb will be sufficient to prevent

infection or to reduce the severity of COVID-19 in patients who

did not produce anti-SARS-CoV-2 antibodies. Our study is the first

to analyze the cellular response against adenovirus-based vaccines

in pwMS and demonstrated a preserved CD8+ T-cell response.

Based on these results, two hypotheses were proposed. First, in the

absence of anti-SARS-CoV-2 antibodies, a significant amount of

antigen might drive CD8 T-cell activation and proliferation due to

absence of antigen removal by vaccine-induced antibodies.

Alternatively, regulatory B cells may directly contribute to

reducing CD8 T-cell responses (40).

Regarding fingolimod treatment, no studies have found a

preserved cellular immune response to RNA-based vaccines,

despite no increased incidence of severe COVID-19 as observed

in the anti-CD20 mAb population (16, 19, 30, 35–37).

According to Achiron and colleagues, in this study, we found a

correlation between antibody titers and lymphocyte count at the

time of vaccination in patients treated with fingolimod, as it was

reported for RNA vaccines (2, 10, 30). Additionally, a tendency in

the anti-CD20 mAb group was found. However, Tortorella and
FIGURE 5

Neutralization tests. (A) After the second vaccine dose, anti-Spike IgG titers and neutralizing ID50 titers against D614G VOC showed a strong
correlation (Spearman r = 0.6182; p < 0.001). Upon stratifying the correlation analysis by treatment, a correlation was observed in patients treated
with DMF (Spearman r = 0.8857; p < 0.05), whereas no statistically significant correlation was observed for other treatments or controls, likely due to
the limited sample size. (B) After the 2nd dose we found a correlation between total and neutralizing titers against D614G (rho = 0.6; p < 0.001 slope
0.8,95%CI:0.4-1.3). Neutralization capacity was lower for BACI:0.1-0.4). After the 3rd dose, neutralization of BA.1 improved (slope: 0.9 95%CI:0.6-
1.2), Ctrl, healthy control; CLA, cladribine; DMF, dimethyl fumarate; FIN, fingolimod.
FIGURE 6

Cellular immune response post 2nd vaccine dose measured by flow
cytometry. We found a significantly decreased response in patients
treated with fingolimod, compared to patients treated with
antiCD20 and healthy controls. We did not find statistically
significant differences between healthy controls and patients
receiving antiCD20. Kruskal-Wallis test p=0.01, Dunn's post hoc, *p
0.01-0.05, n= 10-14/group.
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colleagues did not find this correlation (16). Interestingly, we found

that seroconversion was higher when vaccination was furthest from

infusion, as reported with the RNA vaccines (10, 34). There are still

no reports of this association with adenovector-based vaccines.

Regarding the neutralization capacity of antibodies generated

by COVID-19 vaccines in pwMS on different DMTs, there are few

reports, all focused on RNA vaccines. Our study revealed a strong

correlation between the levels of SARS-CoV-2 specific antibodies

and the neutralization capacity against the Wuhan variant, with no

significant differences across treatments. Despite the impact of some

therapies on antibody-mediated immune response (as evident from

ELISA data, particularly with a higher proportion of non-

responders in patients treated with fingolimod), the levels of anti-

Spike IgG correlate with the neutralizing capacity of sera from those

patients, suggesting that the quality of the generated antibodies

remains unaltered. A study by Tortorella and colleagues analyzed

only patients treated with fingolimod considering the same SARS-

CoV-2 variant; they found that only 16.6% of these patients had

specific neutralizing antibodies and, in these cases, there was a

significant correlation between the neutralizing capacity and

antibody titers (16). On the other hand, studies performed in

patients with MS on anti-CD20 mAb and fingolimod showed

decreased neutralizing capacity of anti-SARS-CoV-2 antibodies

compared with HC and pwMS without DMT (17, 41).

The emergence of the Omicron BA.1 variant of SARS-CoV-2

has presented significant challenges to vaccine effectiveness, leading

to the need for a third dose.

Studies have consistently demonstrated a reduction in vaccine

effectiveness against this variant, emphasizing the importance of a

booster dose to enhance protection against Omicron BA.1 (42).

In the case of pwMS, longitudinal research based on mRNA

platform vaccines showed that the proportion of patients with MS

treated with fingolimod and anti-CD20 mAb therapies achieving

seroconversion increases after the third and fourth dose, whereas

some patients with MS remain seronegative (43–46). Our results

show that, as expected, the neutralization capacity against BA.1 of

sera from patients vaccinated with two vaccine doses was

significantly reduced as compared to the Wuhan variant, and the

neutralizing/total Ab ratio was reduced, which was expected as this

particular ELISA uses Wu.1-Spike and RBD as coating antigens.

However, we can show that DMT-treated patients who

seroconverted reached the same neutralizing/total Ab ratio

against BA.1 as HC, confirming that DMT does not influence the

quality of antibodies.

Finally, regarding the safety of vaccines, the frequency of

adverse events was similar to that reported in the general

population for the phase 2 and phase 3 trials of both vaccines

analyzed in this work (47, 48).
5 Conclusion

Our research provides new data on the immunogenicity of

vaccines used in patients with MS that were not previously reported.

There is limited information in LATAM on the humoral immune

response to COVID-19 vaccines in patients with MS receiving the
Frontiers in Immunology 09
AZD1222 vaccine. However, the are no data available regarding the

Sputnik V vaccine in this population.

Our findings support previous reports on RNA-based vaccines

globally, which can assist in the decision-making of neurologists

regarding COVID-19 vaccination for patients with MS on DMTs.
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