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Single-cell multi-omics reveal
stage of differentiation and
trajectory-dependent immunity-
related gene expression patterns
in human erythroid cells
Roman Perik-Zavodskii 1, Olga Perik-Zavodskaia1,
Saleh Alrhmoun1, Marina Volynets1, Julia Shevchenko1,
Kirill Nazarov1, Vera Denisova2 and Sergey Sennikov1*

1Laboratory of molecular immunology, Federal State Budgetary Scientific Institution Research Institute
of Fundamental and Clinical Immunology, Novosibirsk, Russia, 2Clinic of immunopathology, Federal
State Budgetary Scientific Institution Research Institute of Fundamental and Clinical Immunology,
Novosibirsk, Russia
The role of Erythroid cells in immune regulation and immunosuppression is one

of the emerging topics in modern immunology that still requires further

clarification as Erythroid cells from different tissues and different species

express different immunoregulatory molecules. In this study, we performed a

thorough investigation of human bone marrow Erythroid cells from adult healthy

donors and adult acute lymphoblastic leukemia patients using the state-of-the-

art single-cell targeted proteomics and transcriptomics via BD Rhapsody and

cancer-related gene copy number variation analysis via NanoString Sprint

Profiler. We found that human bone marrow Erythroid cells express the ARG1,

LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) immunosuppressive genes,

CXCL5, CXCL8, and VEGFA cytokine genes, as well as the genes involved in

antimicrobial immunity and MHC Class II antigen presentation. We also found

that ARG1 gene expression was restricted to the single erythroid cell cluster that

we termed ARG1-positive Orthochromatic erythroblasts and that late Erythroid

cells lose S100A9 and gainMZB1 gene expression in case of acute lymphoblastic

leukemia. These findings show that steady-state erythropoiesis bone marrow

Erythroid cells express myeloid signature genes even without any

transdifferentiating stimulus like cancer.
KEYWORDS

erythroid cells, CD71+ erythroid cells, CECs, acute lymphoblastic leukemia, ALL, CITE-
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1 Introduction

Erythroid cells go through a unique path, in the process of

which transiently existing (for just two weeks) (1) nucleated

precursor cells of human bone marrow erythrocytes provide local

immunoregulation by expressing cytokines, chemokines (2–5) and

immunosuppressive enzyme Arginase-1 (6–8), after which they lose

the ir nucleus , and with i t the abi l i ty to synthes ize

immunoregulatory molecules. This circumstance makes erythroid

cells a unique immunoregulatory population, that is destined to

terminally differentiate and that only exists exclusively in the bone

marrow in normal condition.

The erythron is represented by 6 successive stages of

differentiation: Burst-forming unit-Erythroid (BFU-E), Colony-

forming unit-Erythroid (CFU-E), Proerythroblasts (Pro Eb),

Basophilic erythroblasts (Baso Eb), Polychromatophilic

erythroblasts (Poly Eb), Orthochromatophilic erythroblasts

(Ortho Eb) (9 , 10) , dur ing which a change in the

immunoregulatory potential of erythroid cells was observed (6, 11).

Human erythroid cells can be identified by their expression of

the genes GYPA, GYPB, GYPC and their respective proteins

CD235a, CD235b, and CD235c that can be observed from the

Proerythroblast stage and onward (12–14); as well as ALAS2 gene,

expression of which can be detected even at the BFU-E stage and

onward (15, 16).

Erythroid cells normally make up to 30% of bone marrow

mononuclear cells (17), which makes them one of the key

populations that take part in the regulation of the bone marrow

microenvironment. However, there are conditions that can disrupt

erythropoiesis, such as lympho- (18) and myeloproliferative (19–

21) diseases that, especially in the blaster crisis phase, lead to the

physical displacement of erythron cells by tumor clone cells (22,

23). The occurrence of lympho- and myeloproliferative diseases is

caused by chromosomal rearrangements, such as translocations and

changes in the set of chromosomes. One such example is the

Philadelphia chromosome (Ph) [a product of mutual

translocation between chromosomes 9 and 22, t (9, 22)] which is

present in 90–95% of cases of chronic myeloid leukemia (24). A

change in the set of chromosomes (ploidy) is also often

accompanies acute lymphoblastic leukemia (25, 26), and changes

in the ploidy of chromosome 21 are especially common (27), as well

as genomic changes, such as mutations and changes in the number

of copies of proto-oncogenes, cell cycle genes, surveillance of DNA

damage and apoptosis (28–32), however, it is usually clonal and

does not extend to other bone marrow cells.

It can be assumed that the very fact of the presence of a tumor

clone in the bone marrow will lead to modulation of the

immunoregulation provided by erythroid cells in the form of the

pressure exerted on them by the tumor cell mass and tumor-

expressed cytokines and other immunoregulatory molecules. To

test the above-mentioned hypothesis, in this study we performed a

multi-omic analysis of bone marrow mononuclear cells from

healthy adult donors and mononuclear cells from acute

lymphoblastic leukemia using simultaneous single-cell immune

transcriptome (397 genes) and surface protein (28 proteins)

expression profiling on the BD Rhapsody platform using the
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Cellular Indexing of Transcriptomes and Epitopes using Next

Generation Sequencing (CITE-seq) method, as well as bulk

profiling of the number of copies of genes associated with

carcinogenesis of the investigated acute lymphoblastic leukemias,

using the NanoString Copy Number technology on the Sprint

platform (Figure 1).
2 Materials and methods

2.1 Human bone marrow sample collection
and processing

We obtained bone marrow samples from both male and female

healthy controls (n = 4) and male acute lymphoblastic leukemia

patients (ICD code C91) (n = 3). The healthy study subjects were

between the ages of 27 and 48 without any underlying conditions

and no clinical evidence of anemia. Acute lymphoblastic leukemia

samples were collected during the diagnostic bone marrow biopsy

and pre-clinical treatment of the patients.

Acute lymphoblastic leukemia (ALL) patient status at the

moment of diagnostic bone marrow biopsy was: ALL patient 1 -

42 years old, first relapse of leukemia, was initially diagnosed with

CD19+ ALL and received successful Blinatumomab (clinical-grade

anti-CD19 Ab) treatment a year prior; ALL patient 2 - 47 years old,

newly-discovered ALL; ALL patient 3 - 27 years old, first relapse of

leukemia, was initially diagnosed with CD19+ ALL and received

successful Blinatumomab treatment 2 years prior. Patient status one

year after the diagnostic bone marrow biopsy: ALL patient 1 - alive,

in remission after another round of Blinatumomab treatment; ALL

patient 2 - alive; ALL patient 3 - dead, died 4 months after the

biopsy procedure due to heart failure.

We collected the bone marrow aspirates (up to 5 mL in volume)

into tubes containing EDTA. We isolated bone marrow

mononuclear cells using density gradient centrifugation (Ficoll-

Paque™, Thermo Fisher Scientific, Waltham, USA) with a density

of 1.077 g/mL) at 266 RCF for 30 min in order to remove RBCs.
2.2 Single-cell multi-omic analysis

2.2.1 Sample tag and AbSeq cell staining
and counting

We incubated mononuclear cells with Sample Tag antibodies to

barcode individual samples and 28 AbSeq (CD3:SK7 | CD3E |

AHS0033 | Cat#940000, CD4:SK3 | CD4 | AHS0032 | Cat#940001,

CD8:SK1 | CD8A | AHS0228 | Cat#940305, CD14:MPHIP9 | CD14

| AHS0037 | Cat#940005, CD15 | FUT4 | AHS0196 | Cat#940274,

CD16:B73.1 | FCGR3A_FCGR3B | AHS0242 | Cat#940314, CD19:

HIB19 | CD19 | AHS0161 | Cat#940247, CD1a | CD1A | AHS0067 |

Cat#940063, CD30 | TNFRSF8 | AHS0114 | Cat#940103, CD33:

WM53 | CD33 | AHS0044 | Cat#940031, CD34:563 | CD34 |

AHS0191 | Cat#940367, CD36 | CD36 | AHS0135 | Cat#940224,

CD38:HIT2 | CD38 | AHS0022 | Cat#940013, CD40 | CD40 |

AHS0117 | Cat#940049, CD44:L178 | CD44 | AHS0167 |

Cat#940251, CD45RA: HI100 | PTPRC | AHS0009 | Cat#940011,
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CD45RO | PTPRC | AHS0036 | Cat#940022, CD49d | ITGA4 |

AHS0063 | Cat#940059, CD56:NCAM16.2 | NCAM1 | AHS0019 |

Cat#940007, CD64:MD22 | FCGR1A | AHS0180 | Cat#940262,

CD71 | TFRC | AHS0197 | Cat#940275, CD79b:CB3-1 | CD79B |

AHS0153 | Cat#940239, CD86:BU63.224 | CD86 | AHS0245 |

Cat#940315, CD95 | FAS | AHS0023 | Cat#940037, CD117:

YB5.B8 | KIT | AHS0064 | Cat#940051, CD235a_b |

GYPA_GYPB | AHS0048 | Cat#940040, CCR7 | CCR7 | AHS0273

| Cat#940394, HLA-DR | CD74 | AHS0035 | Cat#940010, BD

Biosciences) antibodies for surface protein expression profiling for

30 minutes at room temperature according to the manufacturer’s

recommendations (“Single Cell Labelling with BD AbSeq Ab-Oligos

(1 to 40 plex)”).

After three washing cycles, cells were stained with Calcein

according to the BD Rhapsody Single-Cell Analysis System User

Guide. Calcein-positive cells were counted using the Attune NxT

flow cytometer as events/uL. Cells were then pooled together in

equal proportions and resuspended in a cold sample buffer to a final
Frontiers in Immunology 03
concentration of 15 cells/µl for loading onto a BD Rhapsody

Cartridge. The number of cells loading into the cartridge was

visually validated using the In Cell Analyzer 6000 as mean

Calcein-positive cells in 5 fields of view (FOV)/175 (microwells

per FOV) * 200000 (total number of microwells per cartridge).

2.2.2 CITE-seq library preparation
and sequencing

We performed single-cell capture and cDNA library

preparation using the BD Rhapsody Express Single-Cell Analysis

System (BD Biosciences), according to the manufacturer’s

instructions (mRNA Targeted, Sample Tag, and BD AbSeq

Library Preparation Protocol). Briefly, we captured single cells in

the BD Rhapsody cartridge, added magnetic beads for poly-A based

mRNA capture, lysed the cells, performed reverse transcription of

the poly-A captured mRNA, AbSeq and Sample Tag on the

magnetic beads, denaturated the Sample Tag and AbSeq from the

beads, performed Sample Tag and AbSeq PCR 1, treated the beads
FIGURE 1

Overview of the experiment, this figure was created via BioRender.
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with Exonuclease I, amplified the on-bead cDNA using the Human

Immune Response Primer Panel (mRNA for short) (#633750, BD

Biosciences), containing 399 primer pairs, targeting 397 different

genes, collected the mRNA panel PCR1 products.

We purified the resulting mRNA, AbSeq, and Sample Tag PCR1

products using AMPure XP magnetic beads (A63880, Beckman

Coulter, Brea, California, United States) and separated the

respective mRNA panel, AbSeq, and Sample Tag products based

on the amplicon size. We further amplified the purified mRNA and

Sample Tag PCR1 products in a semi-nested PCR2 for an increase in

specificity of the transcript detection and purified the resulting PCR2

products using AMPure XP magnetic beads. We assessed the PCR2

product concentrations by Qubit 4 (High-Sensitivity dsDNA Kit,

Thermo Fisher) and normalized the final products to 4.5 ng/mL for

the mRNA panel library and 1.0 ng/mL for the AbSeq and Sample Tag

library and performed a final round of amplification using indexes for

Illumina sequencer to prepare the final libraries. We quantified the

final libraries using Qubit 4 and pooled them (~40/57/3% mRNA/

AbSeq/Sample Tag ratio, estimated read/cell: 20000 (mRNA, deep

sequencing read count quantity), 28000 (AbSeq, 1000 reads per

AbSeq) and 1200 (Sample Tag)) to the final concentration of 5 nM.

The final pooled libraries were sequenced (R1 = 71, R2 = 51, 1300

million clusters, S1 flow cell) on a NovaSeq 6000 sequencer (Illumina,

San Diego, California, United States).

2.3.3 Raw data processing
We processed the FASTQ files obtained from sequencing using

the BD Rhapsody pipeline v1.10 (BD Biosciences). The pipeline

removed read pairs with low quality based on their read length,

mean base quality score, and highest single-nucleotide frequency,

analyzed remaining high-quality R1 reads to identify cell label and

unique molecular identifier (UMI) sequences, aligned the remaining

high-quality R2 reads to the reference mRNA and AbSeq panel

sequences using Bowtie2, collapsed reads with the same cell label, the

same UMI sequence and the same gene into a single molecule,

adjusted the obtained counts by error correction algorithms, namely,

recursive substitution error correction (RSEC) and distribution-based

error correction (DBEC) to correct for sequencing and PCR errors,

estimated cell counts using the second derivative analysis to filter out

noise cell labels, observed one inflection point, and considered cell

labels after that point to be noise labels. Then, the pipeline used

molecular barcoded oligo-conjugated Sample Tag antibodies (single-

cell multiplexing kit, BD Biosciences) to demultiplex the samples and

filter out the cell multiplets. The pipeline called 10536 single cells

(~1500 cells per sample, n = 7) and output combined gene and

surface protein expression matrices for each sample. Sequencing

metrics showed sequencing saturation of 98% and adjusted DBEC

sequencing depth of 8.1, which is considered deep sequencing for BD

Rhapsody libraries.

2.2.4 Multi-omic data analysis via Seurat WNN
We manually split the combined gene and surface protein

expression matrices for each sample into gene and surface protein

expression matrices respectively and analyzed them using Seurat

WNN (Weighted Nearest Neighbors) (33). We imported gene
Frontiers in Immunology 04
expression matrices, created Seurat objects for each sample, added

AbSeq surface protein expression data to each object as ADT

(antibody-derived tag) data, merged the individual objects, and

subjected them to a quality control procedure (nCount_RNA <

3200, nCount_ADT < 65000). Then, we found the most variable

genes in expression for the merged object (we used all 397 genes).

The merged gene expression matrix was normalized using the

SCTransform v2 (SCT) package (34) of the R programming

language taking into account the selected variable genes. For the

SCT-normalized gene expression matrix, we performed PCA

(principal component analysis) dimensionality reduction and

corrected the batch effect using the Harmony package (35) of the

R programming language. The merged ADTmatrix was normalized

using the Centered Log-ratio (CLR) normalization method taking

into account all 28 surface proteins. For the CLR-normalized ADT

matrix, we performed PCA dimensionality reduction and corrected

the batch effect using the Harmony package of the R programming

language. We then performed Weighted Nearest Neighbors

Uniform Manifold Approximation and Projection (WNN UMAP)

multi-omic dimensionality reduction using 22 Harmony-corrected

gene expression principal components and 18 Harmony-corrected

ADT principal components, found multi-omic neighbors and

clusters (resolution = 1.5).

We manually annotated the resulting clusters using their

surface protein and gene expression data: Activated DP (double

positive) T−cells: CD4+ CD8+ CD71+; DP T−cells: CD4+ CD8+;

CD4 Memory T−Cells: CD4+ CCR7−; CD4 Naïve T−Cells: CD4+

CCR7+; CD8 Naïve T−Cells: CD8+ CCR7+; NKT−Cells: CD8+

CD56+ NKG7+; NK−cells: CD16+ CD56+ NKG7+; Non−classical

Monocytes: CD16+; Intermediate Monocytes: CD14dim CD64dim;

Classical Monocytes: CD14+ CD64+; Neutrophils: AZU1+; Plasma

Cells: CD19+ JCHAIN+; Mature B−cells: CD19+ IGHM+;

Immature B−cells: CD19+ CD38+; Pro B−cells: CD19+ CD34+;

Nucleated Erythroid cells: ALAS2+ SNCA+ SLC25A37+. We then

created the DimPlot of the clusters colored by the bio-group (ALL 1,

ALL2, ALL 3, Normal BM (bone marrow)) via Seurat.

Leukemia clusters for each ALL sample were found as mostly

(>90%) represented by a single sample and were identified as

follows: ALL 1 – Pro B-cells; ALL 2 – Double Positive (DP) T-

cells, and Activated DP T−cells; ALL 3 – Pre-B-cells. We then

exported CLR-normalized surface protein expression values for the

ALL clusters as.csv via the AverageExpression function and created

the heat map of the averaged log2-transformed expression values

via bioinfokit (36).

2.2.4 Erythroid cell sub-clustering
To study human bone marrow Erythroid cells with greater

precision, we subclustered the “Nucleated Erythroid cells” cluster

from the total mononuclear cells using the subset function. Then,

we found the most variable genes in expression for the Erythroid

cells (we used all 397 genes). The Erythroid cell gene expression

matrix was normalized using the SCTransform v2 (SCT) package of

the R programming language taking into account the selected

variable genes. For the SCT-normalized gene expression matrix,

we performed PCA dimensionality reduction and corrected the
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https://doi.org/10.3389/fimmu.2024.1431303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Perik-Zavodskii et al. 10.3389/fimmu.2024.1431303
batch effect using the Harmony package of the R programming

language. The Erythroid cell ADT matrix was normalized using the

Centered Log-ratio (CLR) normalization method taking into

account all 28 surface proteins. For the CLR-normalized ADT

matrix, we performed PCA dimensionality reduction and

corrected the batch effect using the Harmony package of the R

programming language. We then performed Weighted Nearest

Neighbors Uniform Manifold Approximation and Projection

(WNN UMAP) multi-omic dimensionality reduction using 26

Harmony-corrected gene expression principal components and 9

Harmony-corrected ADT principal components, found multi-omic

nucleated erythroid cell neighbors and clusters (resolution = 0.6),

and created a DimPlot of the clusters.

We manually identified Erythroid cell clusters using their

surface protein and gene expression as follows: Burst-forming

unit–erythroid (BFU–E): CD71+ CD235− CD34+ CD38+ CD36−

CD49d+ CD44+ ITGA4+ CD36− CD44+ CD34+ CD38+; Colony-

forming unit–erythroid (CFU−E): CD71+ CD235− CD34− CD38+

CD36+ CD49d+ CD44+ ITGA4+ CD36+ CD44+ CD34− CD38+;

Proerythroblast (Pro Eb): CD71+ CD235+ CD36+ CD49d+ CD44+

ITGA4+ CD36+ CD44+; Basophilic erythroblast (Baso Eb): CD71+

CD235+ CD36+ CD49d+ CD44− ITGA4+ CD36+ CD44−;

Polychromatophilic erythroblast (Poly Eb): CD71+ CD235+

CD36+ CD49d− ITGA4− CD36− ; Orthochromatophilic

erythroblast (Ortho Eb): CD71+ CD235+ CD36− CD49d− ITGA4

− CD36−; and a newly-found ARG1+ Orthochromatophilic

erythroblast (ARG1+ Ortho Eb): ARG1+ CD71+ CD235+ CD36−

ITGA4− CD36−. We then created the DotPlot of the Erythroid cell

marker genes and surface proteins via Seurat and created the

Stacked bar plot of the Erythroid cell cluster percentages

via ggplot2.

We replaced the original metadata of the “Nucleated Erythroid

Cell” cluster with the Erythroid cell sub-clustering metadata using

the paste(Idents()) function and created the DimPlot of all bone

marrow cell clusters via Seurat and the Stacked bar plot of the cell

percentage per cluster via ggplot2.

2.2.5 Erythroid cell trajectory analysis via
Slingshot and TradeSeq

Next, we employed the Slingshot (37) and TradeSeq (38)

libraries for the R programming language to infer the Erythroid

cell differentiation trajectory. We used multi-omic WNN UMAP

embeddings and WNN-multi-omic clusters to infer cell lineages via

the getLineages function, performed the getCurves function on the

lineages, and performed the fitGAM function on the lineages using

SCT-normalized gene expression values. We observed two lineages

that were split at the Poly Eb stage. We then used the Wald test to

test for the genes that drove the branch division and observed that

the ARG1 gene was solely responsible for the division. We then

created gene expression and curve plots to depict the branch

division driving gene ARG1 via ggplot2.

2.2.6 Erythroid cell gene expression analysis
Then, we performed Erythroid cell gene expression hierarchical

clustering for the WNN-multi-omic clusters. We exported the SCT-
Frontiers in Immunology 05
normalized gene expression values for the Erythroid cell clusters

as.csv via the AverageExpression function and then performed the

Z-score data standardization and hierarchical clustering via

bioinfokit (36). We observed the stage of differentiation-defined

gene expression clusters, recreated their hierarchical clustering-

defined order of the immunoregulatory genes in Seurat, and

created a DotPlot of the genes via Seurat.

We tested the stage of differentiation-defined gene expression

cluster genes along with the universally expressed erythroid cell

ALAS2, SNCA, GAPDH, SLC25A37, HLA-A, TFRC (CD71), and

GYPA (CD235a) genes for overrepresentation in the Gene Ontology

Biological Process terms via GSEApy (39), and we considered q-

values < 0.01 significant. We created a DimPlot of the Erythroid cell

immunoregulatory genes in the context of all bone marrow cell

populations via DotPlot.

Then, we performed inter-cluster differential gene expression

using the Wilcoxon test with biological and statistical significance

criteria of log2(Fold Change) > 1.0 or log2(Fold Change) < −1.0 and

q-value < 0.005 via the FindMarkers function. We only considered

genes to be differentially expressed in ALL if they were up- or down-

regulated in every single pairwise comparison: ALL 1 vs Normal

BM, ALL 2 vs Normal BM, ALL 3 vs Normal BM. We created the

DotPlot of the differentially expressed genes in Seurat and created

the Stacked bar plot of the log2(Fold Change) values per pairwise

comparison in GraphPad Prism 10.2.3.
2.3 Copy number variation analysis

2.3.1 Magnetic separation
We performed magnetic separation of the bone marrow

mononuclear cells using a magnetic stand, a magnet (Miltenyi

Biotec, 130-042-102, Bergisch Gladbach, Cologne, Germany),

and either CD8 MicroBeads (130-045-201, Miltenyi Biotec,

Bergisch Gladbach, Cologne, Germany) for ALL 2 or CD19

MicroBeads (130-050-301, Miltenyi Biotec, Bergisch Gladbach,

Cologne, Germany) for ALL 1 and ALL 3 according to the

manufacturer’s protocols.

2.3.2 Genomic DNA extraction
We isolated total DNA from the enriched ALL cells after their

magnetic separation and normal bone marrow mononuclear cells

using a Genomic DNA Purification Kit (24700, Norgen Biotek,

Thorold, Canada), measured the concentration of the DNA on a

Qubit 4 using the High Sensitivity dsDNA kit (Q32851, Thermo

Fisher Scientific, Waltham, USA).

2.3.3 Alu1 restriction digest of the genomic DNA
We performed a 2h restriction digest of the 500 ng of the

isolated DNA for each sample using the Alu1 restriction enzyme

supplied with the nCounter v2 Cancer CN Assay at 37°C, measured

the concentration of the digested DNA on a Qubit 4, and diluted the

digested DNA to a concentration of 40 ng/mL using nuclease-free

water. We froze the diluted total DNA at −80°C until the cancer-

related gene CNV profiling.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1431303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Perik-Zavodskii et al. 10.3389/fimmu.2024.1431303
2.3.4 NanoString v2 cancer CNV assay
We performed cancer-related gene CNV profiling with the help

of the Nanostring nCounter SPRINT Profiler analytical system using

200 ng of the restricted DNA. We used an nCounter v2 Cancer CN

Assay panel (CNV-CAN2-24, NanoString) to analyze the restricted

DNA. The nCounter v2 Cancer CN Assay consists of 87 target

cancer-related genes, 54 invariant DNA segments spanning multiple

chromosomes for data normalization, and 8 negative and 6 positive

controls, each DNA segment was profiled using 3 distinct probes. The

samples were subjected to a 20h hybridization reaction at 65°C, where

5 mL of the restricted DNA was combined with 3 mL of nCounter

Reporter probes, 7 mL of DEPC-treated water, 10 mL of hybridization

buffer, and with 5 mL of nCounter capture probes (total reaction

volume = 30 mL). After the hybridization of the probes, we added 10

uL of the hybridization buffer and counted the number of target

molecules on the Nanostring nCounter SPRINT Profiler analytical

system. We then extracted the data from the SPRINT Profiler,

performed data QC and normalization in nSolver 4, and exported

the normalized data as a.tsv file.

We then performed CNV analysis according to the

manufacturer’s guidelines (CNV Hybridization Protocol, MAN-

10093-01, NanoString). In brief, we assessed the assay linearity for

all samples using the Coefficient of Determination (r2 was > 0.994

for all samples), calculated median counts for the invariant

DNA segments, calculated the normalization factor, normalized

all samples using the normalization factor, averaged the probe

count for each gene, and divided each gene average probe count

by the normal bone marrow (control sample) counts. As

chromosome counts were required for the next step of the

analysis, karyotype analysis of the ALL samples was conducted by

the “Regional Center of High Medical Technologies” (Novosibirsk,

Russia). We then multiplied the division product of the average

probe counts by the number of chromosomes present in the

genome and rounded up the product to obtain the gene

copy numbers.
3 Results

3.1 Multi-omic characteristic of ALLs

We performed a multi-omic analysis of bone marrow

mononuclear cells from healthy donors (n = 4) and patients with

ALL (n = 3) using the BD Rhapsody single-cell multi-omic analysis

method (379 genes of the immune transcriptome and 28 surface

proteins) and the Copy Number Variation NanoString analysis

method Sprint (nCounter v2 Cancer CN panel) to comprehensively

understand the phenotype of the studied ALLs and their influence

on erythroid cells of the human bone marrow. We conducted an

unbiased clustering analysis of bone marrow mononuclear cells and

found 22 clusters (Figure 2A), corresponding to normal and ALL

cell populations. Clusters for each ALL sample were detected when

analyzing the proportions of cells in the bone marrow: ALL 1 – Pro

B-cells, ALL 2 – Double Positive (DP) T-cells and Activated DP T

−cells, ALL 3 – Pre-B-cells, which was in accordance with the initial

clinical assessment (Figure 2B).
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Before the direct analysis of the influence of ALL on the

erythroid cells of the bone marrow, we conducted a multi-omic

characterization of the studied ALLs (analysis of the surface

proteome, karyotyping, copy number variation) (Figure 2C).

ALL 1 expressed surface proteins CD19, CD34, CD33, CD36,

CD44, CD45RA, CD49d, CD95, and HLA-DR; had a normal set of

chromosomes, had a changed karyotype 46,XY,der(4)?t(4;15),del

(11)(p11),der(15)der(19)der(20); had an increased number of

copies of the MAGI3, JUN, ITGB4, ERBB2, TP73, TERT,

RPS6KB1, and TP53 genes, and also had a decreased number of

copies of the CCND1, EEF1A2, NKX2-1, and NKX2-8 genes.

ALL 2 expressed surface proteins CD4, CD8, CD1a, CD38,

CD44, CD45RA, CD49d, CD79b, CD95, CCR7, HLA-DR, and

additionally expressed CD71 in a cluster of activated tumor T-

cells; had an uneven tetraploid set of chromosomes, had a changed

karyotype XXYY,+Y,-10,-14,-17,+20,+21,+mar1,+mar2; had an

increased number of copies of almost all studied genes, except for

CCND1, EEF1A2, NKX2-1, and NKX2-8.

ALL 3 expressed surface proteins CD19, CD38, CD44,

CD45RA, CD49d, CD95, and HLA-DR; had an incomplete

diploid set of chromosomes, had an altered karyotype 45,XY,der

(3),?i(9)(q10),der(9),-10,der(14),der(15); had an increased number

of copies of the CDKN1A gene, and also had a decreased number of

copies of the CDKN2C, PIK3CA, DCUN1D1, PTPRD, AKT3,

CCND1, EEF1A2, NKX2-1, and NKX2-8 genes. Reduction in the

number of copies of CCND1, EEF1A2, NKX2-1, and NKX2-8 genes

was conservative for all examined ALLs.

The heterogeneity of the studied ALLs made it possible to

analyze ALL as a pathological process affecting Erythroid cells: the

diagnosis of C91 “Acute Lymphoblastic Leukemia” was an

invariable common factor of the studied samples, and the

multiple differences in the nature of the studied ALLs covered

most of the possible variations in ALL: T- and B-cell ALL with

different phenotypes, the presence or absence of chromosome

ploidy changes, as well as the presence of CNVs of different

genes. Then, from all clusters (Figure 2D), we sub-clustered

Erythroid cells for their detailed analysis.
3.2 Multi-omic analysis of human bone
marrow erythroid cells

Next, we performed an analysis of the subclustered Erythroid

cells. We first performed WNN UMAP dimensionality reduction

and clustering of Erythroid cells, inferred and found two Erythroid

cell differentiation trajectories splitting at the polychromatophilic

erythroblasts stage using Slingshot (Figure 3A), found trajectory

driving-genes (Figure 3B) and identified the clusters using their

gene and surface protein expression (Figures 3C, D). During our

clustering analysis, we found all stages of erythroid cell

differentiation: burst-forming units (BFU-E), colony-forming

units (CFU-E), proerythroblasts (Pro Eb), basophilic erythroblasts

(Baso Eb), polychromatophilic erythroblasts (Poly Eb),

orthochromatophilic erythroblasts (Ortho Eb), as well as the

newly-found ARG1 gene expressing orthochromatophilic

erythroblasts (ARG1+ Ortho Eb) (Figures 3C, D).
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Immunosuppressive enzyme Arginase 1-encoding gene ARG1

was almost uniquely expressed in ARG1+ Ortho Eb cluster among

both normal and ALL human bone marrow Erythroid cells

(Figure 3D). Moreover, ARG1 was the sole trajectory-driving gene

that split the Poly Eb into either ARG1-negative Ortho Eb or ARG1-

positive ARG1+ Ortho Eb (Figure 3B). We also observed that ALL

erythroid cell cluster proportions were similar to those of the

normal bone marrow erythroid cell cluster percentages – i.e., no

block of Erythroid cells differentiation was observed in any of the

studied ALL samples (Figure 3). We also performed differential

regulon activity analysis by pySCENIC between the Ortho Eb and

ARG1+ Ortho Eb but found no significantly differentially-activated

transcription factors (See Supplementary Figure 1).

Then, we carried out hierarchical clustering of the averaged

gene expression values per normal Erythroid cell cluster and
Frontiers in Immunology 07
observed stage-of-differentiation-dependent immunity-related

gene expression patterns (Figure 4A). We observed 4 main gene

expression clusters: BFU-E gene cluster, CFU-E gene cluster, early

Erythroid cell gene cluster, and late Erythroid cell gene cluster.

The BFU-E gene cluster included HLA-DMA, HLA-DPA1,

IL18, IFNGR1, SELPLG, HLA-DQB1, FCER1A, IFITM2, IFITM3,

IL1B, and FAS genes that were overrepresented in the “Antigen

Processing And Presentation Of Exogenous Peptide Antigen”,

“Peptide Antigen Assembly With MHC Class Il Protein

Complex” and “MHC Class Il Protein Complex Assembly” GO

BP terms (Figure 4B, Table 1).

The CFU-E gene cluster was in fact a truncated BFU-E gene

cluster that included SELPLG, HLA-DQB1, FCER1A, IFITM2,

IFITM3, IL1B, and FAS genes that were also overrepresented in

the “Antigen Processing And Presentation Of Exogenous Peptide
FIGURE 2

Integrated analysis of the normal (n = 4) and acute lymphoblastic leukemia (n = 3) bone marrow mononuclear cell single-cell immune transcriptome
and surface protein data. (A) UMAP plot of the clusters; (B) Stacked bar plot of the percentages of cells per cluster per bio-group, clusters are color-
labeled in accord with the subFig A; (C) multi-omic characterization of ALL samples - CLR-normalized surface protein expression, chromosome and
gene copy numbers; (D) UMAP plot of the bone marrow mononuclear cell clusters, clusters are color-labeled in accord with the bio-groups (ALL 1,
ALL 2, ALL 3, Normal BM.
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Antigen”, “Peptide Antigen Assembly With MHC Class Il Protein

Complex” and “MHC Class Il Protein Complex Assembly” GO BP

terms (Figure 4C, Table 2).

The early Erythroid cell gene cluster spanned BFU-E, CFU-E,

Pro Eb, and Baso Eb, and included IL23R, CXCL5, IGBP1, VEGFA,

IL15RA, and LGALS9 genes that were overrepresented in the

“Response To Type II Interferon” and “Response To

Lipopolysaccharide” GO BP terms (Figure 4D, Table 3).

The late Erythroid cell gene cluster spanned Poly Eb, Ortho Eb,

and ARG1+ Ortho Eb, and included LGALS3, LGALS1, S100A9,

FCN1, CXCR4, and CXCL8 genes that were overrepresented in the
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“Ant imic rob i a l Humora l Re sponse ” , “Response To

Lipopolysaccharide”, and “Response To Molecule Of Bacterial

Origin” GO BP terms (Figure 4E, Table 4).

We also observed gene expression of other important

immunosuppressive gene, that was only expressed at a single

stage of differentiation - C10orf54 gene [encodes for the VISTA

protein - an inhibitory immune checkpoint molecule for human T-

cells (40)] was expressed at a high level in Baso Eb (Figure 4A).

We then decided to compare the immunity-related gene

expression in normal human bone marrow Erythroid cells with

that of the other normal human bone marrow mononuclear cells:
FIGURE 3

Analysis of normal (n = 4) and ALL (n = 3) Bone Marrow Erythroid cell immune transcriptome and surface protein expression data. (A) UMAP plot of
the clusters with the differentiation trajectories overlaid on top; (B) Scatter plot of the pseudotime-driving gene ARG1; (C) UMAP plot of the Erythroid
cell clusters/stages of differentiation; (D) Dot plot of the cluster-specific gene and protein expression signatures, adt_ - AbSeq antibody-derived tag,
mean marker expression values were Z-score transformed, the deep purple color represents the lowest marker expression whereas the yellow color
represents the maximum marker expression, dot size represents the percentage of Erythroid cells positive for the marker, clusters are color-labeled
in accord with the subFig C; (E) Stacked bar plot of the percentages of Erythroid cells per cluster per bio-group, clusters are color-labeled in accord
with the subFig C.
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ARG1 gene expression was unique to the ARG1+ Ortho Eb and

CXCL5 gene expression was unique to the early Erythroid cells

(BFU-E, CFU-E, Pro Eb, Baso Eb) among the normal human bone

marrow mononuclear cells. IL18 gene expression in BFU-E was not

statistically different from Neutrophils (Figure 5A).

We also observed that Erythroid cells bear some resemblance

with Classical Monocytes in the composition of the expressed

immunity-related genes, albeit at different levels: C10orf54,

LGALS1, S100A9, CXCL8, IL1B gene expression was significantly

higher in Classical Monocytes, whereas LGALS3, LGALS9, and

VEGFA gene expression was significantly higher in Erythroid cells.

C10orf54 gene expression in Erythroid cells was also significantly

lower than in T-cells (See Supplementary Data Sheet 2 for the whole

set of differentially-expressed genes).

The expression of the CD274 (PD-L1), IL10, and PDCD1 (PD-

1) genes was not detected in the human adult bone marrow
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Erythroid cells. Only a minuscule TGFB1 gene expression was

detected in BFU-E and CFU-E, but not in the proper Erythroid

cells, i.e., Pro Eb, Baso Eb, Poly Eb, Ortho Eb, ARG1+ Ortho Eb

(Figure 5A). The ARG2 gene, another popular target in erythroid

cell studies, was not included in the “Immune Response” panel.

We also performed differential gene expression analysis

between the adult human ALL Erythroid cells and the adult

normal Bone Marrow Erythroid cells and observed the significant

down-regulation of the S100A9 antibacterial immunity gene

expression in the late Erythroid cells (Poly Eb, Ortho Eb, ARG1+

Ortho Eb); and the significant up-regulation of the MZB1

gene expression in the Ortho Eb (Figures 5B, C). We

performed differential gene expression analysis between other

normal and ALL bone marrow cell populations but found no

ALL-common differentially expressed genes (See Supplementary

Data Sheet 2).
FIGURE 4

Analysis of healthy human adult bone marrow Erythroid Cells’ (n = 4) immunity-related gene clusters. (A) Dot plot of the cluster-forming genes,
mean marker expression values were Z-score transformed, the deep purple color represents the lowest marker expression whereas the yellow color
represents the maximum marker expression, dot size represents the percentage of Erythroid cells positive for the marker, clusters are color-labeled
in accord with the Figure 3C, clusters are split into early and late by a vertical dotted line, genes are split into clusters by horizontal dotted lines;
(B–E) Gene Ontology Biological Process overrepresentation analysis of the genes with the detected expression in healthy human adult bone marrow
Erythroid Cells. Yellow color corresponds to the lowest q-value, purple color corresponds to the highest q-value, and the dot size reflects the
percentage of genes in the analysis from the full set of genes in the Gene Ontology Biological Process database, each GO BP overrepresentation
analysis is color-labeled in accord with the subFig A.
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4 Discussion

In this study, we performed a multi-omic analysis of adult

human bone marrow Erythroid cells in normal conditions and

during acute lymphoblastic leukemia. We have observed the

presence of a plethora of immunoregulatory genes in human

Erythroid cells, that were overrepresented in MHC Class II

antigen presentation and antimicrobial immunity biological

process gene signatures, as well as genes that were shown to drive

immunosuppression, such as C10orf54 (VISTA) and ARG1

(Arginase 1).
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We only found MHC Class II antigen presentation genes in

early erythroid progenitors, such as BFU-E and CFU-E, but we did

not detect any valid MHC Class II alpha and beta chains at these

stages of differentiation, thus rendering the exogenous antigen

presentation pathway defective in adult human bone marrow

Erythroid cells, thus no exogenous antigen presentation is

expected by Erythroid cells. The observed antimicrobial gene

signature spanned both early Erythroid cells (BFU-E, CFU-E, Pro

Eb, Baso Eb) and late Erythroid cells (Poly Eb, Ortho Eb, ARG1+

Ortho Eb) and formed a bipartite complex, thus predicting a

possible role for Erythroid cells in innate antimicrobial immunity.
TABLE 1 Gene Ontology Biological Process overrepresentation analysis of the immunity-related genes with the detected expression in human adult
bone marrow BFU-E.

Gene Ontology Biological Process Term Overlap Q-value Score Genes

Response To Type II Interferon 6/80 0,000000 2875 IFITM3, CD74, IFITM2, GAPDH, HLA-DPA1, SNCA

Positive Regulation Of T Cell Activation 6/107 0,000000 1942 HLA-DMA, TFRC, IL1B, HLA-DRA, HLA-A, HLA-DPA1

Positive Regulation Of Lymphocyte Proliferation 5/74 0,000001 1939 CD74, TFRC, IL1B, IL18, HLA-DPA1

Immunoglobulin Mediated Immune Response 4/30 0,000002 3678 CD74, HLA-DMA, HLA-DRA, HLA-DPA1

Antigen Processing And Presentation Of Exogenous Peptide Antigen 4/31 0,000002 3514 HLA-DMA, HLA-DRA, HLA-A, HLA-DPA1

Response To Cytokine 5/125 0,000009 IFITM3, CD74, IFITM2, IL1B, SNCA

Positive Regulation Of Type II Interferon Production 4/58 0,000017 1500 IL1B, IL18, HLA-A, HLA-DPA1

MHC Class II Protein Complex Assembly 3/14 0,000017 7988 HLA-DMA, HLA-DRA, HLA-DPA1

Peptide Antigen Assembly With MHC Class II Protein Complex 3/14 0,000017 7988 HLA-DMA, HLA-DRA, HLA-DPA1

Positive Regulation Of Cytokine Production 6/320 0,000020 429 CD74, IL1B, IL18, HLA-A, GAPDH, HLA-DPA1

Positive Regulation Of T Cell Proliferation 4/65 0,000020 1287 TFRC, IL1B, IL18, HLA-DPA1

Peptide Antigen Assembly With MHC Protein Complex 3/18 0,000028 3581 HLA-DMA, HLA-DRA, HLA-DPA1
TABLE 2 Gene Ontology Biological Process overrepresentation analysis of the immunity-related genes with the detected expression in human adult
bone marrow CFU-E.

Gene Ontology Biological Process Term Overlap Q-value Score Genes

Immunoglobulin Mediated Immune Response 4/30 0,000001 5932 CD74, HLA-DMA, HLA-DRA, HLA-DPA1

Antigen Processing And Presentation Of Exogenous Peptide Antigen 4/31 0,000001 5672 HLA-DMA, HLA-DRA, HLA-A, HLA-DPA1

Positive Regulation Of T Cell Activation (GO:0050870) 5/107 0,000001 2024 HLA-DMA, TFRC, HLA-DRA, HLA-A, HLA-DPA1

MHC Class II Protein Complex Assembly 3/14 0,000008 7988 HLA-DMA, HLA-DRA, HLA-DPA1

Peptide Antigen Assembly With MHC Class II Protein Complex 3/14 0,000008 7988 HLA-DMA, HLA-DRA, HLA-DPA1

Positive Regulation Of Lymphocyte Proliferation 4/74 0,000012 1775 CD74, TFRC, IL18, HLA-DPA1

Peptide Antigen Assembly With MHC Protein Complex 3/18 0,000012 5564 HLA-DMA, HLA-DRA, HLA-DPA1

Response To Type II Interferon 4/80 0,000012 1602 CD74, GAPDH, HLA-DPA1, SNCA

Immunoglobulin Production Involved In Immunoglobulin-Mediated
Immune Response 3/19 0,000012 5158 HLA-DMA, HLA-DRA, HLA-DPA1

Antigen Processing And Presentation Of Exogenous Peptide Antigen
Via MHC Class II 3/26 0,000030 3354 HLA-DMA, HLA-DRA, HLA-DPA1

Antigen Processing And Presentation Of Peptide Antigen Via MHC
Class II 3/28 0,000034 3035 HLA-DMA, HLA-DRA, HLA-DPA1

Positive Regulation Of Cytokine Production 5/320 0,000064 459 CD74, IL18, HLA-A, GAPDH, HLA-DPA1
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We were also able to narrow down the spectrum of cytokines,

expressed by the human bone marrow Erythroid cells: CXCL5,

CXCL8, IL1B, IL18, and VEGFA - two chemokines, two

proinflammatory, and a single angiogenic cytokine. We have also

previously found MIF chemokine gene expression using bulk RNA

profiling (41). As IL1B, IL18, and VEGFA were mainly expressed in

BFU-E and CFU-E, which comprised 3.5-12.7% of the studied

Erythroid cells, their absolute protein expression is expected to be

low and chemokines might be the main cytokine product of human

bone marrow Erythroid cells as they are expressed at every stage of

differentiation. Hypothetically, Erythroid cells could restrict

granulocytes to the bone marrow via secretion of the CXCL5 (42)

and CXCL8 (IL-8) (43) chemokines.
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We can also predict that late Erythroid cells can potentially

combat pathogens via Calprotectin. We have previously

observed Calprotectin (S100A8 and S100A9) gene expression

in Erythroid cells via the bulk RNA profiling of both human

(41) and murine erythroid cells (44), and the data in this

manuscript allows us to map the Calprotectin gene to the late

Erythroid cells, as only they have S100A9 gene expression among all

Erythroid cells.

We also observed that S100A9 gene expression was down-

regulated in the ALL-bone marrow Erythroid cells compared with

normal bone marrow Erythroid cells, which could indicate a

potential loss of Calprotectin production by bone marrow

Erythroid cells at the state of ALL by Erythroid cells.
TABLE 3 Gene Ontology Biological Process overrepresentation analysis of the immunity-related genes with the detected expression in human adult
bone marrow early Erythroid cells.

Gene Ontology Biological Process Term Overlap Q-value Score Genes

Response To Type II Interferon 4/80 0,000090 2875 IL23R, LGALS9, GAPDH, SNCA

Positive Regulation Of T Cell Activation 4/107 0,000145 1942 TFRC, IL23R, HLA-A, LGALS9

Response To Cytokine 4/125 0,000180 1939 IGBP1, IL23R, LGALS9, SNCA

Response To Lipopolysaccharide 4/159 0,000354 3678 IL23R, LGALS9, CXCL5, SNCA

Negative Regulation Of Cysteine-Type Endopeptidase Activity Involved In
Apoptotic Process 3/49 0,000423 3514 IGBP1, VEGFA, SNCA

Negative Regulation Of Cysteine-Type Endopeptidase Activity 3/53 0,000447 956 IGBP1, VEGFA, SNCA

Positive Regulation Of Type II Interferon Production 3/58 0,000504 1500 IL23R, HLA-A, LGALS9

Response To Molecule Of Bacterial Origin 3/69 0,000746 5158 IL23R, LGALS9, SNCA

Regulation Of Cysteine-Type Endopeptidase Activity Involved In Apoptotic Process 3/84 0,001069 5158 IGBP1, VEGFA, SNCA

Response To Interleukin-1 3/85 0,001069 429 IGBP1, LGALS9, SNCA

Regulation Of Type II Interferon Production 3/87 0,001069 1287 IL23R, HLA-A, LGALS9

Positive Regulation Of Peptidyl-Serine Phosphorylation 3/89 0,001069 3581 TFRC, VEGFA, SNCA
TABLE 4 Gene Ontology Biological Process overrepresentation analysis of the immunity-related genes with the detected expression in human adult
bone marrow late Erythroid cells.

Gene Ontology Biological Process Term Overlap Q-value Score Genes

Response To Molecule Of Bacterial Origin 4/69 0,000043 2209 CXCL8, LGALS9, S100A9, SNCA

Antimicrobial Humoral Response 4/100 0,000096 1355 CXCL8, HLA-A, GAPDH, S100A9

Response To Lipopolysaccharide 4/159 0,000408 731 CXCL8, LGALS9, S100A9, SNCA

Receptor Internalization 3/51 0,000413 1537 CXCL8, TFRC, SNCA

Antimicrobial Humoral Immune Response Mediated By Antimicrobial Peptide 3/65 0,000612 1118 CXCL8, GAPDH, S100A9

Neutrophil Chemotaxis 3/70 0,000612 1015 LGALS3, CXCL8, S100A9

Inflammatory Response 4/236 0,000612 427 CXCL8, CXCR4, LGALS9, S100A9

Granulocyte Chemotaxis 3/73 0,000612 960 LGALS3, CXCL8, S100A9

Neutrophil Migration 3/77 0,000634 895 LGALS3, CXCL8, S100A9

Response To Type II Interferon 3/80 0,000634 851 LGALS9, GAPDH, SNCA

Regulation Of Dendritic Cell Differentiation 2/10 0,000634 4974 LGALS3, LGALS9

Response To Interleukin-1 3/85 0,000691 786 CXCL8, LGALS9, SNCA
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Another gene that was differentially expressed in the Acute

Lymphoblastic Leukemia late Erythroid cells was MZB1. As no

expression of this gene was detected in normal BM Erythroid cells,

detected MZB1 in late (CD36-negative, CD235-positive) bone

marrow Erythroid cells could be potentially indicative of an

ongoing ALL.

In the context of all bone marrow mononuclear cells, erythroid

cells had the most resemblance in their immune transcriptome with

the classical monocytes due to the expression of the antimicrobial and

immunoregulatory genes, which means that Erythroid cells express

myeloid genes even in the case of the steady-state erythropoiesis.
Frontiers in Immunology 12
We detected gene expression of immunosuppressive genes

ARG1, LGALS1 (45), LGALS3 (46), LGALS9 (47), and C10orf54

(VISTA) in Erythroid cells. Arginase 1 was the main point of

interest in this study, as it formed its own stage of Erythroid cell

differentiation - ARG1+ Ortho Eb, which was separate from the

ARG1-negative classic Ortho Eb. ARG1+ Ortho Eb were also

separate from the main branch of erythroid cell differentiation.

Expression of the ARG1 gene was also the main branching driver

that split Poly Eb into ARG1-negative Ortho Eb and ARG1-positive

ARG1+ Ortho Eb. The molecular basis of this split of Poly Eb in

either ARG1-positive or ARG1-negative Ortho Eb still requires
FIGURE 5

Erythroid cell gene expression in the context of the whole bone marrow and differential gene expression between the ALL Erythroid cells (n = 3) and
normal Erythroid cells (n = 4). (A) Dot plot of the Erythroid cell immunity-related genes in the context of the bone marrow mononuclear cells, mean
marker expression values were Z-score transformed, the deep purple color represents the lowest marker expression whereas the yellow color
represents the maximum marker expression, dot size represents the percentage of Erythroid cells positive for the marker; (B) Dot plot of the
differentially expressed genes in ALL Erythroid cells, mean marker expression values were Z-score transformed, the deep purple color represents the
lowest marker expression whereas the yellow color represents the maximum marker expression, dot size represents the percentage of Erythroid
cells positive for the marker; (C) Stacked bar plots of the log2(Fold Change) values per differentially expressed gene per cluster, horizontal lines
represent log2(Fold Change) thresholds of significance.
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further investigation. Moreover, ARG1+ Ortho Eb was the only cell

population among the normal bone marrow mononuclear cells to

express the ARG1 gene. Other important immunoregulatory genes

LGALS1, LGALS3, LGALS9, and C10orf54 (VISTA) all split among

different stages of Erythroid cell differentiation, which means that

Erythroid cells pose immunosuppressive potential at every stage of

their differentiation.

Unlike the solid tumor-induced Erythroid cells (48, 49), both

normal and ALL bone marrow Erythroid cells did not express either

PDCD1 (PD-1) or CD274 (PD-L1) genes, which indicates a

difference in the gene expression profile of immunoregulatory

molecules between normal bone marrow Erythroid cells and their

solid tumor-induced counterparts. We also did not find any IL10

gene expression in human bone marrow Erythroid cells that was

previously described for human fetal liver Erythroid cells (50),

which can indicate the presence of tissue-dependent cytokine

gene expression profiles for erythroid cells.

As for the TGFB1 gene, its expression was almost undetectable

in the human bone marrow Erythroid cells, which is unlike murine

bone marrow Erythroid cells, where TGFB1 was one the most

expressed genes overall in a similar immune response gene

panel (44).

In conclusion, we performed a thorough investigation of steady-

state erythropoiesis/normal adult human bone marrow Erythroid

cells using targeted proteomics and transcriptomics via the CITE-seq

protocol and found that such Erythroid cells express ARG1, LGALS1,

LGALS3, LGALS9 andVISTA immunosuppressive genes, CXCL5 and

CXCL8 chemokines and that such Erythroid cells express

antimicrobial immunity and MHC Class II antigen presentation

genes without any myeloid-transdifferentiating stimulus.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found below: GSE261733 (GEO). The original

codes presented in the study are publicly available. This data can be

found here: https://github.com/Perik-Zavodskii/ALL-BM-

scMultiomics-BD-Rhapsody.
Ethics statement

The studies involving humans were approved bylocal ethics

committee of the Research Institute of Fundamental and Clinical

Immunology. The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Frontiers in Immunology 13
Author contributions

RP-Z: Writing – review & editing, Writing – original draft,

Visualization, Validation, Software, Methodology, Investigation,

Funding acquisit ion, Formal analysis , Data curation,

Conceptualization. OP-Z: Writing – review & editing, Writing –

original draft, Validation, Software, Methodology, Investigation,

Formal analysis, Data curation. SA: Writing – review & editing,

Writing – original draft, Validation, Software, Data curation. MV:

Writing – review & editing, Writing – original draft, Validation,

Software, Methodology, Data curation. JS: Writing – review &

editing, Writing – original draft, Software, Investigation. KN:

Writing – review & editing, Writing – original draft,

Investigation. VD: Writing – review & editing, Writing – original

draft, Resources. SS: Writing – review & editing, Writing – original

draft, Supervision, Resources, Project administration.
Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This

research was funded by the Ministry of Higher Education and

Science, State Assignment No. 0415-2024-0012.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2024.1431303/

full#supplementary-material
frontiersin.org

https://github.com/Perik-Zavodskii/ALL-BM-scMultiomics-BD-Rhapsody
https://github.com/Perik-Zavodskii/ALL-BM-scMultiomics-BD-Rhapsody
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1431303/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1431303/full#supplementary-material
https://doi.org/10.3389/fimmu.2024.1431303
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Perik-Zavodskii et al. 10.3389/fimmu.2024.1431303
References
1. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate
human erythropoiesis. Blood J Am Soc Hematol. (2022) 139:2450–9. doi: 10.1182/
blood.2021011044

2. Sennikov SV, Injelevskaya TV, Krysov SV, Silkov AN, Kovinev IB, Dyachkova NJ,
et al. Production of hemo-and immunoregulatory cytokines by erythroblast antigen+
and glycophorin A+ cells from human bone marrow. BMC Cell Biol. (2004) 5:1–6.
doi: 10.1186/1471-2121-5-39

3. Shevchenko JA, Perik-Zavodskii RY, Nazarov KV, Denisova VV, Perik-
Zavodskaya OY, Philippova YG, et al. Immunoregulatory properties of erythroid
nucleated cells induced from CD34+ progenitors from bone marrow. PloS One.
(2023) 18:e0287793. doi: 10.1371/journal.pone.0287793

4. Seledtsov VI, Seledtsova GV, Samarin DM, Taraban VY, Sennikov SV, Kozlov
VA. Characterization of erythroid cell-derived natural suppressor activity.
Immunobiology. (1998) 198:361–74. doi: 10.1016/S0171-2985(98)80045-4

5. Grzywa TM, Nowis D, Golab J. The role of CD71+ erythroid cells in the
regulation of the immune response. Pharmacol Ther. (2021) 228:107927.
doi: 10.1016/j.pharmthera.2021.107927

6. Perik-Zavodskii R, Perik-Zavodskaia O, Shevchenko J, Denisova V, Alrhmoun S,
Volynets M, et al. Immune transcriptome study of human nucleated erythroid cells
from different tissues by single-cell RNA-sequencing. Cells. (2022) 11:3537.
doi: 10.3390/cells11223537

7. Kim PS, Iyer RK, Lu KV, Yu H, Karimi A, Kern RM, et al. Expression of the liver
form of arginase in erythrocytes. Mol Genet Metab. (2002) 76:100–10. doi: 10.1016/
S1096-7192(02)00034-3

8. Grzywa TM, Sosnowska A, Rydzynska Z, Lazniewski M, Plewczynski D, Klicka K,
et al. Potent but transient immunosuppression of T-cells is a general feature of CD71+
erythroid cells. Commun Biol. (2021) 4:1384. doi: 10.1038/s42003-021-02914-4

9. Yeo JH, Lam YW, Fraser ST. Cellular dynamics of mammalian red blood cell
production in the erythroblastic island niche. Biophys Rev. (2019) 11:873–94.
doi: 10.1007/s12551-019-00579-2

10. Han H, Rim YA, Ju JH. Recent updates of stem cell-based erythropoiesis. Hum
Cell. (2023) 36:894–907. doi: 10.1007/s13577-023-00872-z

11. Gautier EF, Ducamp S, Leduc M, Salnot V, Guillonneau F, Dussiot M, et al.
Comprehensive proteomic analysis of human erythropoiesis. Cell Rep. (2016) 16:1470–
84. doi: 10.1016/j.celrep.2016.06.085

12. Grant SG, Oto SH, Bigbee WL, Jensen RH, Langlois RG, DuPont BR. Molecular
characterization of glycophorin A transcripts in human erythroid cells using RT-PCR,
allele-specific restriction, and sequencing. Vox sanguinis. (1995) 68:121–9.
doi: 10.1159/000462906

13. Baum J, Ward RH, Conway DJ. Natural selection on the erythrocyte surface.Mol
Biol Evol. (2002) 19:223–9. doi: 10.1093/oxfordjournals.molbev.a004075

14. Möller M, Jöud M, Storry JR, Olsson ML. Erythrogene: a database for in-
depth analysis of the extensive variation in 36 blood group systems in the
1000 Genomes Pro jec t . Blood Adv . (2016) 1 :240–9 . do i : 10 .1182/
bloodadvances.2016001867

15. Sadlon TJ, Dell’Oso T, Surinya KH, May BK. Regulation of erythroid 5-
aminolevulinate synthase expression during erythropoiesis. Int J Biochem Cell Biol.
(1999) 31:1153–67. doi: 10.1016/S1357-2725(99)00073-4

16. Harigae H, Nakajima O, Suwabe N, Yokoyama H, Furuyama K, Sasaki T, et al.
Aberrant iron accumulation and oxidized status of erythroid-specific d-
aminolevulinate synthase (ALAS2)–deficient definitive erythroblasts. Blood J Am Soc
Hematol. (2003) 101:1188–93. doi: 10.1182/blood-2002-01-0309

17. Sovani V. Normal bone marrow, its structure and function. Diagn Histopathol.
(2021) 27:349–56. doi: 10.1016/j.mpdhp.2021.06.001

18. Praloran V, KlausmanM, Naud MF, Harousseau JL. Blood erythroid progenitors
(CFU-E and BFU-E) in acute lymphoblastic leukemias. Blut. (1989) 58:75–8.
doi: 10.1007/BF00320652

19. Pulte D, Gondos A, Brenner H. Improvements in survival of adults diagnosed
with acute myeloblastic leukemia in the early 21st century. Haematologica. (2008)
93:594–600. doi: 10.3324/haematol.12304

20. Mosquera Orgueira A, Peleteiro Raıńdo A, Cid López M, Dıáz Arias JÁ,
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