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Introduction: Data overlapping of different biological conditions prevents

personalized medical decision-making. For example, when the neutrophil

percentages of surviving septic patients overlap with those of non-survivors,

no individualized assessment is possible. To ameliorate this problem, an

immunological method was explored in the context of sepsis.

Methods: Blood leukocyte counts and relative percentages as well as the serum

concentration of several proteins were investigated with 4072 longitudinal

samples collected from 331 hospitalized patients classified as septic (n=286),

non-septic (n=43), or not assigned (n=2). Two methodological approaches were

evaluated: (i) a reductionist alternative, which analyzed variables in isolation; and

(ii) a non-reductionist version, which examined interactions among six

(leukocyte-, bacterial-, temporal-, personalized-, population-, and outcome-

related) dimensions.

Results: The reductionist approach did not distinguish outcomes: the leukocyte

and serum protein data of survivors and non-survivors overlapped. In contrast,

the non-reductionist alternative differentiated several data groups, of which at

least one was only composed of survivors (a finding observable since

hospitalization day 1). Hence, the non-reductionist approach promoted

personalized medical practices: every patient classified within a subset

associated with 100% survival subset was likely to survive. The non-

reductionist method also revealed five inflammatory or disease-related stages

(provisionally named ‘early inflammation, early immunocompetence,

intermediary immuno-suppression, late immuno-suppression, or other’).

Mortality data validated these labels: both ‘suppression’ subsets revealed 100%

mortality, the ‘immunocompetence’ group exhibited 100% survival, while the

remaining sets reported two-digit mortality percentages. While the ‘intermediary’

suppression expressed an impaired monocyte-related function, the ‘late’

suppression displayed renal-related dysfunctions, as indicated by high

concentrations of urea and creatinine.
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Discussion: The data-driven differentiation of five data groups may foster early

and non-overlapping biomedical decision-making, both upon admission and

throughout their hospitalization. This approach could evaluate therapies, at

personalized level, earlier. To ascertain repeatability and investigate the

dynamics of the ‘other’ group, additional studies are recommended.
KEYWORDS
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1 Introduction

Sepsis affects global health: worldwide, it causes, approximately,

11 million annual deaths (1). Early diagnosis is critical for sepsis

management (2). To improve research and clinical practice,

personalized assessments are essential (3). Although large

research efforts have characterized this field, progress remains

elusive (4–6). The accuracy of earlier definitions has been

questioned because approximately half of the cases suspected to

be septic do not yield positive culture results (7–10). Given the

reported paucity of longitudinal studies, there have been calls for

personalized methods that measure biological complexity and

dynamics (5, 11–15).

New methods may focus on immunology. The immune system

is the one that connects with and informs on most (if not all)

biological functions and structures (16, 17). Such methods may

consider: (i) the combinatorial nature of the immune system, (ii) the

limitations of earlier methods, and (iii) the apparent lack of tests

that rapidly distinguish immuno-suppressed patients.

‘Combinatorial’ are cognitive or communication systems in

which meaning emerges afte the elementary units are structured

into several levels of increasing complexity, e.g., human language.

While individual letters lack meaning, information emerges after

they are combined as words, sentences, paragraphs, and so on

(16, 17). While there are only 26 letters in the English alphabet,

the number of words is very high and the number of sentences is,

apparently, infinite. Similarly, in immunology, at least 30,000 data

combinations can be conceived and tested (18).

The process that generates meaning is likely to be influenced by

properties and/or structures. While, in human language, it is well

understood that data alone do not induce meaning and,

consequently, information is needed (which should then be

structured as knowledge and, finally, converted into decisions or

wisdom, i.e., the ‘D-I-K-W pyramid’); the properties and structures

of the immunological combinatorial system are poorly known (19).

Synergy and pleiotropy are exceptions to the previous

statement. They illustrate the relevance of immunological

combinations (20, 21). While the use of two words may suggest

separate concepts, they are just two expressions of the same process.
02
That is so because the same elements that, combined, can generate

more or larger effects than the sum of their individual actions

(synergy), when they act alone, they can perform multiple

functions (pleiotropy).

Cytokines and leukocytes also possess combinatorial functions

(22). A single cell type can induce not only different but even

opposite functions. For example, monocytes can foster or destroy

neutrophil function. To decipher which alternative applies to a

specific case, the temporal phase (early vs. resolution) of the

inflammatory process should be estimated –a question that, to be

answered, requires bio-temporal knowledge (23).

Therefore, to obtain meaning in immunology, combinatorial

perspectives should be examined over time. While they have been

estimated in several diseases, including COVID-19 and hantavirus

(24, 25), sepsis-related inflammatory stages have not yet

been explored.

New methods should also prevent the limitations of earlier

approaches. Because biological effects may not be predicted from

their apparent causes (14, 15), prognosis is problematic. For example,

virulence (a system-level property) cannot be predicted from data on

isolated variables, such as virulence factors (26). Hence, the properties

of complex biological systems are not reducible to putative causes

(17). To address such issues, biomedical data analysis should

consider, at least: (i) the compositional nature of immunological

data, (ii) non-normality, (iii) data overlapping, and (iv) the

limitations of artificial intelligence.

Compositional data are those in which relationships among two

or more variables are key (and, therefore, should be analyzed with

ratios), while counts lack meaning. Numerous biological

subsystems are compositional, including the microbiome (27).

Because immunology is also compositional, standard statistical

tests cannot analyze immunology-related correlations (28).

Because immunological data may exhibit non-normality (29),

classical statistical methods do not always apply. In addition,

methods that emphasize populations −where n>1, which are

described with averages or intervals− do not apply to personalized

medicine –where n=1 (30).

One major example of the problem generated when population-

oriented approaches are used to analyze individuals is what here is
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named data overlapping. That phrase refers to overlapping intervals

of different biomedical conditions (e.g., survival and non-survival).

In such situations, no personalized medical inference –no

individualized discrimination– is possible even when population-

related averages reach statistically significant differences (31).

Recently, artificial intelligence (AI) has been applied in sepsis

(32). AI methods are classified into two (‘white box’ and ‘black box’)

varieties (33, 34). While ‘white box’ approaches are transparent,

‘black box’ ones are not. These two varieties also differ in their

sequences: ‘white box’ approaches are bottom-up (they start

identifying the variables to be investigated), while ‘black box’

perspectives are top-down (they are data-driven, lacking a pre-

established theory on what they may find, why or how (35). Hence,

a conundrum: while ‘white box’ approaches may fail to informmore

or better, ‘black box’ alternatives may be invalid (36).

New methods should also focus on immuno-suppression −a

condition probably reversed if treated with immuno-modulators

(37, 38). Unfortunately, immuno-suppressed patients are not

rapidly detected (39, 40). For such a task, reductionist (self-limited)

tests are not indicated when three or more alternatives exist. One

example of a reductionist approach is to equal immuno-suppression

with lymphopenia. While lymphopenia and low monocyte human

leukocyte antigen-DR can identify immunosuppression, data

overlapping prevents differentiating survivors from non-survivors in

the first two hospitalization days (41). While monocyte-mediated

suppression is detectable with single-cell RNA sequencing, this is a

three-day long test (42).

Yet, combinatorial, immunology-centered methods offer a

remedy to address the challenges listed above. They could start

with a top-down approach and, after distinct data patterns are

found, validate the findings with interpretable biomedical variables

(43, 44).

Accordingly, a method that includes six (personalized-,

population-, immunological-, bacterial-, temporal- and outcome-

related) dimensions is here evaluated. It informs both on the

temporal sequence of inflammatory phases and the outcomes

(survival vs. non-survival) they are associated with. Because sepsis

may include three or more immunological stages (such as no

inflammation, excessive inflammation, and immuno-suppression),

the new method handles non-binary (unlimited) and dynamic

situations (11, 17). To prevent confounding, the novel approach

is visually observable (45–47). It is also designed to capture

personalized dimensions (19) which, to be unambiguously

detected, require comparisons against populations. It addresses

the bottom-up−top-down controversy as well as the ‘white box’/

’black box’ AI problem (35, 36). Because it recognizes patterns after

data collection, it prevents the bias and self-limited consequences of

approaches that define research questions before data collection. To

use available resources, the method under study operates with CBC

data and is meant to conclude before culture results become

available (48). This study was meant to elucidate whether an

immunological method applicable in hematology can provide

timely information on the possible outcome of the septic disorder

so treatments, if needed, can be adjusted for the benefit of

the patient.
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2 Materials and methods

2.1 Individuals

A random sample of 331 patients admitted to three Greek

hospitals between 2018 and 2022 (n=4072 temporal observations)

was analyzed. Inclusion criteria involved meeting at least two of the

systemic inflammatory response syndrome criteria: (i) body

temperature >38°C, (ii) heart rate >90 beats/minute, (iii)

tachypnea or hyperventilation (>20 breaths/minute or PACO2 < 32

mm Hg at sea level), and (iv) a white blood cell count ≥12,000 or

≤4000/ml (49). Patients meeting these criteria and yielding at least

one positive culture were viewed as “septic with positive blood

culture” (i.e., septic). Patients meeting the same criteria and one or

more negative culture(s) were regarded as “septic with a negative

blood culture” (i.e., non-septic). The number of investigated patients

was selected not according to statistical assumptions but

demonstration of contents that could measure dynamic cell-cell

interactions, e.g., at least 80% of the tested patients provided ≥ 5

temporal data points. Patients were excluded if they had a history of

chronic diseases and/or did not meet two of the criteria mentioned

above. Patients with zero percentage of any cell type were excluded.

Blood samples were taken at admission from 31- to 87-year-old

patients. Records were de-identified before analysis and 30-day in-

hospital mortality was assessed. Conceived after patients died or

were discharged, this study met the Declaration of Helsinki and was

approved by the Scientific Committee of the Deanery of the Faculty

of Human Sciences of Movement and Quality of Life of the

University of Peloponnese (protocol 376/23.01.2018).
2.2 Laboratory methods

Human white blood cell counts and percentages, C-reactive

protein (CPR), urea, creatinine and conventional blood cultures

were analyzed. General blood examination utilized an automated

hematology analyzer (Coulter LH 780 Analyzer, Beckman Coulter

International SA, Nyon, Switzerland). Serum CPR concentration

(mg/L) was measured with an automated system (BN ProSpec

System, Siemens AG, Erlangen, Germany). Blood cultures were

performed with the automated Bactec 9249 instrument (Becton

Dickinson, NJ, USA). Blood pathogens were identified with the

automated microbiology Phoenix 100 system (Becton Dickinson,

NJ, USA).
2.3 Assessment and validation of dynamic
complexity based on structured data

As described elsewhere (37), leukocyte data were partitioned

into subsets with a three-step method, which consists of (i) data

expansion −a step that increases the number of variables available

for analysis, so that hidden patterns, if present, may be detected; (ii)

pattern recognition−when, based on distinct patterns, the data are

divided into subsets (immune profiles); and (iii) statistical analysis
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(a step that determines whether biological variables differ among

immune profiles). In the first step, new metrics (combinations of

leukocyte data) are created. They are dimensionless indicators (DIs)

used as temporary guides that help detect data patterns. DIs have no

biological definition and are reported with identifiers expressed in

italics (e.g., AAA). This method was performed with a proprietary

algorithm (US patent 10,429,389 B2).
2.4 Statistical analysis

Medians (Mann–Whitney test) and associations (chi-square

test), as well as 3D plots were analyzed or created with a

commercial package (Minitab Inc., State College, PA, USA).
3 Results

3.1 Preliminary validation

When all longitudinal data points were analyzed (n=4072), the

mortality of patients presumed septic was statistically significantly

greater than the mortality of non-septic individuals (DOI:10.6084/

m9.figshare.25533595): 30.2% (or 1090/3605) vs. 10.1% (or 46/

466), respectively (p<0.01, chi-square test). Hospitalization day-1

data (n=329) revealed a similar finding: a 4:1 septic/non-septic

mortality ratio derived from a 28.3% mortality in septic patients

(81/286), and 7.0% (3/43) in non-septic patients (2 non-septic

patients were not tested on day 1, Supplementary Table 1). Thus,

the validity of the criteria followed to recruit participants (which

assumed greater mortality among septic than non-septic patients)

was supported.
3.2 Unstructured data

While unstructured data (the counts or percentages of

lymphocytes [L], neutrophils [N], or monocytes [M]) differed at

statistically significant levels among patients who presented with

opposing outcomes, data overlapping was observed: survivors could

not be distinguished from non-survivors because the leukocyte

percentages or counts of most survivors overlapped with those of

most non-survivors (rectangles, Figures 1A–D). Even when

statistically significant differences were found, data overlapping

prevented medical personalized differentiations. For instance, the

blood concentration of C-Reactive Protein (CRP) and the serum

concentration of urea revealed overlapping intervals between

survivors and non-survivors even when medians exhibited a

statistically significant difference (p ≤0.01, Mann-Whitney test,

Figures 1E, F).

Data overlapping remained when four classes (septic non-

survivors, septic survivors, non-septic non-survivors and non-

septic survivors) were considered. Despite clinical differences,

cellular and non-cellular data exhibited partially similar data

intervals (rectangles, Figures 2A, B).
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3.3 Structured data

In contrast, when outcomes were explored with structured and

temporal data (n=4087), distinct patterns differentiated two groups

of patients, which markedly differed in mortality.

One data subset revealed no mortality (horizontal oval,

Figure 3) while the other group expressed 38.5% mortality

(vertical rectangle, Figure 3).

To assess repeatability, additional data structures were

investigated. Redundant analyses (conducted with different data

structures) distinguished two or three non-overlapping data

subsets, of which one was only occupied by survivors (blue oval

or rectangle, Figures 4A–D), and one of the remaining subsets

expressed up to 37.7% mortality (red vertical oval or rectangle,

Figures 4A–D). Septic patients represented 99.7% of the

observations located within one subset (red rectangle,

Figures 4C, D).

`Other data structures explored immunological-bacterial

relationships. They involved methicillin-resistant and methicillin-

sensitive Staphylococcus aureus (MRSA, MSSA) as well as extended-

spectrum beta-lactamase (ESBL) and metallo beta-lactamase (MBL)

pathogens. The ESBL/MBL subgroup was composed by

Acinetobacter baumannii, Escherichia coli, and Klebsiella

pneumoniae. These five bacterial species were associated with a

small data range, which predominantly included non-survivor

septic cases (red rectangle, Figures 5A, B). Similar patterns were

also observed when hospitalization day 1 data were analyzed

(Figures 5C, D).
3.4 Early prognosis

To elucidate whether immuno-bacterial data patterns were

prognostic, hospitalization day-1 data were assessed (n=329;

Supplementary Table 1). Day-1 patterns corroborated earlier

patterns: at least two non-overlapping data subsets were

discriminated and at least one subset reported 100% survivors

(Figures 6A–D). With one exception (the upper vertical subset

where, after day 1, some non-survivors were reported (Figures 6C,

D), all other subsets reporting 0% mortality on day 1 provided

prognostic information.
3.5 First biological validations and
prognostic impact of leukocyte-
bacterial patterns

To assess the reproducibility of the previous findings as well as

their biological validity and medical (prognostic) applicability, a

different set of structured data was investigated. Both the

longitudinal and day-1 analyses revealed similar patterns: they

showed one data point-wide lines of observations that exhibited

two perpendicular data inflections in three-dimensional (3D) space

(Figures 7A, B). Such spatial patterns were validated with a

biological interpretable variable –survival. Three different levels of
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mortality were observed, with 100% survival on one end of the data

interval (group ‘A’), between 10 and 15% mortality in the

intermediate data subset (‘B”), and more than 22% fatalities in

the remaining subset (‘C’, Figures 7A, B). A second biomedical

validation was based on leukocyte data. At least the lymphocyte

percentage showed non-overlapping data intervals between the

subset that reported 100% survival and the remaining subsets

(Figures 7C, D). Therefore, validity was shown (twice) as well as

prognostic applications.
3.6 Non-binary (outcome-related,
leukocyte, bacterial, temporal)
data partitioning

The simultaneous assessment of outcomes and multi-

dimensional inputs detected five data groups, here provisionally

named (a) early inflammation, (b) early immuno-competence, (c)
Frontiers in Immunology 05
intermediary suppression, (d) late suppression, or (e) other. These

groups differed markedly in terms of mortality: while both

‘suppression’ subsets were associated with a 100% mortality,

the ‘immuno-competence’ group displayed 100% survival

(Figures 8A, B).

The non-reductionist method did not detect such groups.

Regardless of the angle or spatial perspective considered,

overlapping intervals of different inflammatory stages were

observed when either cellular or non-cellular variables were

evaluated in isolation (Figures 8C, D).
3.7 Second statistical and biological
validation of non-binary data classes

While data overlapping was found when the method was

limited to two outcomes (Figure 1), non-overlapping data

intervals characterized the method designed to express any
FIGURE 1

Assessment of the classic (reductionist) method (I). Overlapping cell-related and serological variables prevented outcome differentiation:
unstructured data of separate cell types did not discriminate outcomes. Lack of differentiation was due to data overlapping: the leukocyte
percentages or counts of most survivors were within the range reported by non-survivors (rectangles, A–D). Lack of differentiation also involved the
blood concentration of C-Reactive Protein (CRP) and urea, which revealed overlapping distributions even when medians differed at statistically
significant levels among outcomes (p ≤0.01, Mann-Whitney test, E, F).
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number of findings. For instance, non-overlapping monocyte

percentage intervals distinguished the early immunocompetence

from the early inflammation subsets (Figure 9).

Documenting that statistical significance is not equal to

biomedical discrimination, the non-reductionist method was

associated with more statistically significant inferences than the

reductionist alternative. For example, all inflammatory phase-

related analyses that reached statistical significance also exhibited

overlapping data intervals when the reductionist method was used.

In contrast, all comparisons based on BAR (a dimensionless

indicator) showed both statistically significant differences and

non-overlapping data intervals (Supplementary Table 2).

An additional example of the same concept involved the

neutrophil/lymphocyte (N/L) ratio. Even when the median N/L

differed significantly between survivors and non-survivors (6.28

vs. 8.78, respectively, p<0.01, Mann-Whitney test, Figure 10A),

data overlapping inhibited clinicians to separate survivors from

non-survivors. However, when integrated with other metrics,

the N/L distinguished subsets that differed in mortality

(Figures 10B, C).

The analysis of kurtosis (a measure of peakedness) added usable

information.While septic cases showed kurtosis when leukocytes were

measured in isolation, when inflammatory stages were considered,

kurtosis was only reported in week 1 (Supplementary Table 3).
Frontiers in Immunology 06
3.8 A third biological validation and
additional possible clinical applications

To enhance discrimination, time and two more data structures

were examined. They showed data inflections that separated two

subsets (immunocompetence and early inflammation) from the
FIGURE 2

Assessment of the classic (reductionist) method (II). Discrimination did not improve when four classes of patients were considered (septic non-
survivors, septic survivors, non-septic non-survivors and non-septic survivors). Overlapping data distributions are indicated by rectangles (A, B).
FIGURE 3

Distinct patterns of structured data. Structured data revealed non-
random patterns, including data subsets perpendicular to one another.
Non-overlapping data subsets differed markedly in outcomes: mortality
was 0% in the horizontal subset and 38.5% in the vertical one.
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remaining groups (Figures 11A, B). While immuno-suppression

was not detected in hospitalization week 1, immuno-competence

was only observed in the first week (Figures 11C, D).

Biomedically interpretable variables validated the inflammatory

phases identified above (1): early immuno-competence revealed
Frontiers in Immunology 07
urea concentrations and N/L ratio values approaching zero; (2) the

‘intermediary’ suppression (observed at or after the early

inflammation but before the late suppression) expressed both

increased N/L and increased [N/L]/[M/N] ratio values, i.e., a

monocyte-mediated immuno-suppression; (3) the late
FIGURE 4

Redundant analysis: structured data reveal patterns that distinguish mortality-related groups. Four partially redundant analyses of structured data
distinguished mortality-related groups. Two or more groups of patients were differentiated, who differed markedly in terms of in-hospital survival (A–D).
These analyses included all longitudinal observations (n=4072).
FIGURE 5

Structured data reveal patterns that distinguish bacteriological groups. Two data structures were used to analyze longitudinal bacteriological results
and explore temporal findings (n=4072, A, B). The patient subgroups that experienced the highest mortality were infected by the ESBL, MBL, MRSA
and MSSA bacterial species. Similar patterns were found when day-1 data were analyzed (n=329, C, D).
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FIGURE 6

Early prognosis – I, four disease classes and bacteriological groups. When the data structures explored in Figure 4 were re-assessed with
hospitalization day 1 data, similar patterns were exhibited (A–D). Therefore, data patterns that markedly differed in mortality were prognostic as early
as hospitalization day 1.
FIGURE 7

First immunological validation and first assessment of prognostic repeatability. When one data point-wide lines of observations were considered to
explore triple (outcome-microbial-immunological) interactions, both the overall longitudinal dataset (A) and day-1 data (B) differentiated three data
subsets that markedly differed in mortality: [1] on the left side, no mortality was reported (blue symbols, A, B); [2] in the middle, 10.4-15.1% mortality
was found (orange symbols, A, B), and [3] on the right side, 22.2-34.8% fatalities were identified (red symbols, A, B). Such patterns were biologically
validated: when lymphocyte percentages were considered, both the overall longitudinal dataset and day -1 data differentiated the 0% mortality
group from all other groups without overlapping intervals (horizontal line, C, D).
Frontiers in Immunology frontiersin.org08
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suppression was characterized by increased serum concentrations

of urea and creatinine (renal dysfunction); and (4) the early

inflammation displayed high N/L values while the [N/L/[M/M]

ratios approached zero and this group was orthogonal to both types

of suppression (Figures 11E, F). These spatial data patterns

possessed clinical applications: they could distinguish the

intermediary from the late suppression.
Frontiers in Immunology 09
3.9 Personalized assessments

Five dimensions were simultaneously assessed when, in addition to

disease stage, outcomes, and immuno-bacterial profiles, patients were

individually explored. Given the high number of patients included in

this study, the personalized analysis only considered 30 septic patients

who contributed 330 longitudinal observations. They revealed patterns
FIGURE 9

Second validation (first validation of inflammatory stages). The analysis of inflammatory phases or stages led to an increased number of non-
overlapping data intervals. The lymphocyte percentage distinguished early inflammation from early immunocompetence and early
immunocompetence from late suppression (also differentiated by the neutrophil percentage). The monocyte percentage differentiated (i) early
inflammation from early immunocompetence, (ii) early inflammation from intermediary suppression, (iii) early inflammation from late suppression,
and (iv) intermediary from late suppression.
FIGURE 8

Differentiation of inflammatory stages. The simultaneous assessment of temporal-immunological-bacterial-outcome related dimensions
distinguished five inflammatory stages or phases, which differed in mortality (A, B). Such stages were provisionally characterized as
(i) inflammation, (ii) immuno-suppression, or (iii) immunocompetence, and further subdivided into early, intermediary or late expressions.
Such inflammatory stages were not identified by isolated variables: any angle or spatial perspective of the same data would reveal overlapping
observations of different stages (C, D).
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characterized by either mortality or survival (Figure 12A). When the

analysis was focused on specific patients, three profiles (inflammation,

immunocompetence, and immunosuppression) emerged (Figure 12B).

Two patients (#10 and #11) exhibited unaltered profiles over several

consecutive weeks, suggesting immunosuppression (Figure 12B).

Hence, personalized and temporal assessments may provide

additional information, including patterns that resemble long-term

immuno-paralysis.

Adding population-related data to the dimensions previously

evaluated, the last analysis explored six interactions (Figures 13A–F).

One patient (‘patient 2’) showed, on five occasions, that every

observation fell within the data region associated with the highest
Frontiers in Immunology 10
mortality. Thus, this personalized/population pattern predicted non-

survival –an outcome observed in ‘patient 2.’
4 Discussion

4.1 Overview

This study investigated (a) the reductionist method (Figures 1, 2);

(b) the validity of the non-reductionist alternative (Figures 3–7);

and (c) six (personalized-, population- temporal-, bacterial-,

immunological-, and outcome-related) dimensions (Figures 7–13).
FIGURE 10

Further validation of disease stages (assessment of the N/L ratio). The neutrophil/lymphocyte or N/L ratio–a metric regarded in some publications as
a marker of sepsis— was also investigated. The N/L was not informative in this study at day 1: despite statistically significantly different median N/L
ratios (p<0.01, Mann-Whitney test), overlapping data outcomes were not differentiated by this ratio (A). Yet, when combined with other indicators
and explored in 3D space, two subsets that markedly differed in mortality were differentiated (B, C).
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Validated three times with biologically interpretable variables

associated with statistical significance, findings showed that more

information can be extracted from the same data when many

interactions and dimensions are tested. Theoretical considerations

and possible applications are discussed below.
4.2 Theoretical considerations

4.2.1 Validation
Construct, internal, external, and statistical types of validity

were explored (50).

Construct validity answers this question: are we testing what we need

to test? A valid construct does not measure anything conveniently

measured (which may be irrelevant) but relevant concept(s). To

demonstrate construct validity, the non-reductionist method should

inform more, better and/or earlier than the alternative. The non-

reductionist approach revealed construct validity in all tested dimensions.

To demonstrate internal validity, a novel method should be

robust (51). This study used numerous and (at least partially)

different data structures that induced similar inferences.
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To document external validity, a new method should apply to

different populations, sites and/or time points (52). Because day-1

data prognosticated, external validity was supported.

Additional evidence of external validity is the fact that this study

corroborated earlier studies on sepsis, which utilized the same

methodology (45).

Findings showed that statistical significance is not always

informative (53). To indicate statistical and biomedical validity,

non-overlapping data distributions should also be documented

(54). The non-reductionist method increased the number of

assessments that revealed both non-overlapping data and

statistically significant differences (Supplementary Table 2).

The non-reductionist approach also diminished the frequency

of kurtosis (Supplementary Table 2). Hence, combining this

method with statistical analyses could improve both.

4.2.2 Reductionist vs. non-
reductionist predictions

While the reductionist method failed to separate outcomes

(Figures 1, 2), the non-reductionist alternative discriminated

outcomes and provided new information (Figures 3–13).
FIGURE 11

Third biological validation and additional clinical applications. Two one data point-wide lines of observations helped distinguishing the inflammatory
phase-related data groups (A, B). When time was considered and biologically interpretable indicators were explored, it was shown that no
immunosuppression took place in the first hospitalization week, when immunocompetence was characterized by increased monocyte/neutrophil
ratios (C). Early immunocompetence was short-lived: it was not documented in weeks 2-4 –when immunosuppression was first detected (D). N/L,
together with the [N/L]/[M/N] ratios and the serum concentration of urea or creatinine helped differentiating the intermediary (earlier) from the late
suppression: the former was associated with increases in both N/L and [N/L]/[M/N] ratios (i.e., a decreased monocyte-related function) while the
latter was characterized by renal dysfunction (increased urea or creatinine concentrations, E, F).
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Multi-dimensional analyses enhanced discrimination even

though the same data did not induce inferences when analyzed

with the reductionist approach (Figures 8C, D, 9).

While reductionist approaches tend to make assumptions

before data collection, non-reductionist alternatives may be

assumption-free, postulating hypotheses only after the data are

collected (31). This difference leads to a major methodological

consequence: the possibility of detecting biologically different

conditions regardless of the shape shown by the data.

One possible reason why non-reductionist methods inform

more and/or better is because they can capture dynamic

interactions occurring between blood cells and the surrounding

endothelium (55, 56). Reductionist methods do not inform on such

a critical relationship and do not consider that temporal

relationships may be asynchronous and complex. While

reductionist methods emphasize entities (e.g., one molecule or

one cell type), non-reductionist alternatives focus on relationships

among entities –not entities themselves (57, 58).
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4.3 Potential applications

4.3.1 Visualizations of critical biological functions
It is suggested that hematological data could be routinely

expressed as 3D visualizations (59, 60). They can reveal patterns

two-dimensional (2D or tabular) data cannot express.

4.3.2 Early patient partitioning
Findings distinguished at least three groups of patients as early

as hospitalization day 1. Such a finding discriminated earlier than

alternative tests (41).

4.3.3 Differentiation of inflammatory stages,
including two types of suppression

To the best of our knowledge, this is the first study that

differentiated two varieties of sepsis-related suppression. While

several tests have explored immunosuppression and differentiated

inflammatory from non-inflammatory (kidney-mediated)
FIGURE 12

Personalized assessments. Additional information emerged when five perspectives were simultaneously investigated (immune-microbial-clinical
[mortality-related]-temporal-personalized interactions). When a subset of observations was evaluated (which included 30 patients who contributed 333
longitudinal observations), three data subsets were differentiated, which are consistent with either inflammation, immuno-competence, or immune-
suppression (A). The last classification was supported by the outcome and the long-term lack of variability exhibited by two patients (#10 and 11, (B).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430972
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Pappa et al. 10.3389/fimmu.2024.1430972
suppression, earlier tests did not distinguish septic from non-septic

patients with non-overlapping data intervals (61–63).

The method under study examined data abundantly available

(the CBC), which were rapidly analyzed with a software package.

Because the one here used is still under evaluation, readers interested

in using this methodology may request assistance from the authors.

New sepsis-related methods may consider the discrimination

documented in Figures 8A–D as well as the ability of the non-

reductionist approach to analyze, later, cell surface-related variables

(64, 65). Furthermore, responses characterized by immuno-

paralysis may consider the personalized and temporal approach

described in Figures 12A, B (66).

4.3.4 Evaluation of previously reported and
new indicators

Findings helped rectify ratio-based inferences. While increased

neutrophil/lymphocyte (N/L) ratios have been reported in sepsis

(67, 68), earlier studies did not focus on longitudinal and
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personalized data. Because this study showed N/L ratio increases in

some but not all early observations (Figures 10A–C), it is suggested

that, to avoid erroneous generalizations, ratio-related inferences should

be grounded on personalized data, not populations.

Some AI-based studies on sepsis have reported poor external

validity (69–73). Given the external validity of this method, future

AI studies could integrate both approaches.

4.3.5 Personalized immuno-modulatory therapies
Immuno-modulation has been proposed to treat sepsis (61, 74)

Such therapies require personalized strategies. While earlier

methods have emphasized pathogens −not individual patients

(75) −, this study pursued both approaches.
4.4 Caveats and future studies

Two limitations are identified: (i) many unclassified observations

(the ‘other’ group), and (ii) relevant dimensions not yet tested. Future
FIGURE 13

Real-time, personalized and population assessments. The last assessment of this study considered six dimensions. In addition to the previously reported
dimensions, the population-related information was used as a reference. This approach detected changes in directionality even in small units of time, i.e., in
real time. When disease trajectory was considered, the simultaneous assessment of immune-microbial-clinical [mortality-related]-temporal-personalized
and population-related interactions provided prognostic information. Detection was not based on numerical (quantitative) but qualitative information:
changes in the directionality of the data (arrows) were considered. This personalized and population-based detection system can express, in real time,
personalized changes in directionality (arrows that point at different directions) and relate such movements to the overall (population-level) data. This system
is illustrated with data pertaining to one specific patient (‘patient #2’), who was tested five times –at days 1, 3, 5, 9 and 18 (A–F). It is shown that, in every
test, ‘patient #2’ remained within the ‘right’ end of the data distribution (the data segment associated with the highest mortality, as shown in Figures 7A, B).
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studies may address these caveats investigating (a) antibiograms, i.e.,

microbial-antibiotic interactions (76); and (b) the dynamics of the

‘other’ group, which may require personalized inquiries on sub-cellular

levels (65).
5 Summary and conclusions

Findings supported the central concept of the new method: a

new description of immuno-suppression. Unlike earlier approaches

(which defined immuno-suppression before data were collected,

e.g., ‘lymphopenia indicates immunosuppression’), the method here

explored was data-driven, visual, and validated with biomedically

relevant, internally homogeneous data subsets, such as those

reporting 100% survival. It can (i) detect suppression even when

lymphopenia is not observed (77), (ii) differentiate inflammatory

from non-inflammatory suppression (78), and (iii) offer

information that may support personalized therapies (79). In

sepsis, such a method may also promote, prevent or evaluate: [1]

early (day-1) patient partitioning; [2] confounding (no data

overlapping); [3] kurtosis-associated errors; [4] alone or together

with other techniques, detection of function(s), e.g., immuno-

competence testing; and [5] personalized immuno-modulation.
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