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The International Patient Organisation for Primary Immunodeficiencies (IPOPI)

held its second Global Multi-Stakeholders’ Summit, an annual stimulating and

forward-thinking meeting uniting experts to anticipate pivotal upcoming

challenges and opportunities in the field of primary immunodeficiency (PID).

The 2023 summit focused on three key identified discussion points: (i) How can

immunoglobulin (Ig) therapy meet future personalized patient needs? (ii)

Pandemic preparedness: what’s next for public health and potential challenges

for the PID community? (iii) Diagnosing PIDs in 2030: what needs to happen to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2024.1430678/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1430678/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1430678/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1430678/full
https://www.frontiersin.org/articles/10.3389/fimmu.2024.1430678/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2024.1430678&domain=pdf&date_stamp=2024-06-27
mailto:nizar.mahlaoui@aphp.fr
https://doi.org/10.3389/fimmu.2024.1430678
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2024.1430678
https://www.frontiersin.org/journals/immunology


Van Coillie et al. 10.3389/fimmu.2024.1430678

Frontiers in Immunology
diagnose better and to diagnose more? Clinician-Scientists, patient

representatives and other stakeholders explored avenues to improve Ig therapy

through mechanistic insights and tailored Ig preparations/products according to

patient-specific needs and local exposure to infectious agents, amongst others.

Urgency for pandemic preparedness was discussed, as was the threat of shortage

of antibiotics and increasing antimicrobial resistance, emphasizing the need for

representation of PID patients and other vulnerable populations throughout crisis

and care management. Discussion also covered the complexities of PID

diagnosis, addressing issues such as global diagnostic disparities, the

integration of patient-reported outcome measures, and the potential of

artificial intelligence to increase PID diagnosis rates and to enhance diagnostic

precision. These proceedings outline the outcomes and recommendations

arising from the 2023 IPOPI Global Multi-Stakeholders’ Summit, offering

valuable insights to inform future strategies in PID management and care.

Integral to this initiative is its role in fostering collaborative efforts among

stakeholders to prepare for the multiple challenges facing the global

PID community.
KEYWORDS

primary immunodeficiencies (PID), rare diseases (RD), immunoglobulin replacement
therapy (IGRT), targeted therapies, pandemic preparedness, antimicrobial resistance
(AMR), patient-reported outcome measures (PROMs), artificial intelligence (AI)
Introduction

The primary immunodeficiency (PID) field has evolved over the

last decade owing to considerable advances in the identification of

novel PID gene variants and their diagnosis, improved knowledge

and understanding of the often-complex pathogenesis involved, and

increased availability and optimization of treatment modalities.

PIDs, also referred to as “Inborn Errors of Immunity” (IEI) are a

heterogeneous group of disorders including infectious,

autoimmune, autoinflammatory and allergic phenotypes as well.

To navigate the everchanging PID landscape and identify key

priorities for the PID community, the International Patient

Organisation for Primary Immunodeficiencies (IPOPI)

introduced a yearly expert review meeting, the IPOPI Global

Multi-Stakeholders’ Summit, during which a select group of PID

stakeholders and key opinion leaders join to reflect on current and

future challenges and explore (new) opportunities for the entire

PID field.

A successful first IPOPI Global Multi-Stakeholders’ Summit

held in 2022 was followed by the publication of a set of

recommendations concerning; (i) the therapeutic evolution of

immunoglobulins (Ig), (ii) personalized management of PIDs, (iii)

targeted and curative treatment options, (iv) PID-tailored quality of

life (QoL) measures and (v) the known and unknown facets of a

constantly evolving PID field and its terminology (1). In line with

these recommendations, (i) IPOPI actively engages to improve

global Ig availabil i ty and access through stakeholder
02
collaboration. This is exemplified, amongst others, by its leading

role in the Platform of Plasma Protein Users (PLUS) consortium

and the recently produced Memorandum of Understanding

between IPOPI and the United Nations Institute for Training and

Research (UNITAR), representing a strong shared commitment

towards increased access of plasma-derived therapies. Similarly, (ii)

through the collaborative initiative “Screen4Rare” IPOPI promotes

the widespread implementation of neonatal screening or newborn

screening (NBS) to help ensure timely diagnosis and optimized

care for rare treatable diseases, including PIDs. In addition,

(iii) IPOPI is an active member of the academia-driven “Access to

Gene Therapies for Rare Disease” or AGORA group, which sets

out to facilitate sustainable access to gene therapies for treatment

of patients with ultra-rare diseases by providing centres of

excellence with a data repository to support regulatory

submissions as well as tailored advice regarding the licensing

process (2). Finally, (iv) IPOPI performs research on patient-

reported outcomes and experiences in which QoL measures play

a central role and (v) IPOPI is assessing the feasibility of a stepwise

inclusion of specific actions on secondary immunodeficiencies

within the scope of its activities, reflecting the expansion of the

immunodeficiency landscape.

The second edition of the IPOPI Global Multi-Stakeholders’

Summit was held on 7 and 8 September 2023 in Cascais, Portugal.

Building on the previous discussions regarding sustained access and

supply of Ig replacement therapy (IgRT) and its possible

alternatives, the first theme of the 2023 summit considered (i) the
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unmet patient needs towards a more personalized IgRT approach,

and the subsequent sessions explored (ii) pandemic preparedness

for the PID community and (iii) upcoming tools for improved

diagnosis of PIDs. This proceedings’ paper describes the 2023

summit’s outcomes and recommendations.
Part 1: how can Ig therapy meet
future personalized patient needs?

Enhanced understanding of the
mechanism of action of Ig therapy

Plasma-derived IgRT is one of the cornerstones of PID patient

management. Despite its widespread use in primary and secondary

immunodeficiencies, and the use of Ig therapies for other

immunomodulatory indications (e.g., autoimmune and

inflammatory disorders) (3), relatively few adaptations have been

made to Ig products in the last 50 years (4). While IgRT is marketed

under varying formulations, allowing it to be administered via

different routes (e.g., intravenous [IV], subcutaneous [SC] and

facilitated SC [fSC]), there has been little therapeutic evolution of

the immunoglobulin fraction itself (4, 5).

Immunoglobulin products are complex biologically active

pharmaceuticals derived primarily from the pooled IgG fractions of

thousands of donors, for which no generic counterpart is available. In

patients with altered humoral immunity, these polyclonal IgG

preparations serve as a mainstay replacement therapy, while their

effect on inflammatory and autoimmune disorders is attributed to

immunomodulatory and anti-inflammatory properties (6). However,

knowledge is still limited on which components of the Ig product are

responsible for these multiple immunomodulatory effects, with

several specific antibody subfractions having been proposed to

modulate different components of the immune system (6, 7). This

presents a clear opportunity for more efficacious and efficient product

development, which is especially relevant given the high doses of Ig

therapy typically needed for treatment of autoimmune and

inflammatory disorders (1–2 g/kg of body weight/month)

compared to the doses used in replacement therapy for PID and

SID (0.4–0.6 g/kg/month) (8). The key issues of plasma shortages,

geographical imbalances and dependency in the diverse indications

were previously reviewed (1).

While treatment of haemophilia, a rare blood clotting disorder,

initially relied heavily on plasma-derived clotting factor

replacement therapy, recombinant factor VIII and IX are now

commonly used as prophylactic treatment (9, 10). Similarly,

experimental results obtained with a modified recombinant IgG

crystallizable fragment (Fc) domain in in vivo and ex vivomodels of

arthritis (11) and immune-mediated demyelination respectively

(12) confirm the potential to create biomimetics with improved

effectiveness over classical Ig. Nonetheless, conflicting findings from

other studies and human data underscore the need for a better

understanding of the mechanism of action of Ig in auto-immune

and inflammatory diseases (13–17).
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A subpopulation of persons living with antibody deficiencies

continues to experience recurrent or persistent airway infections

despite appropriate management (18). These patients could

potentially benefit from a more targeted administration of Ig

products via inhalation. Encouraging results have been achieved

in an experimental setting with nebulized immunoglobulins

delivered directly to rats’ and non-human primates’ airways (19).

This approach is currently under phase I clinical evaluation (20).

Alternatively, more personalized Ig therapy in terms of Ig isotype

diversity may help address this issue. Currently, most

immunoglobulin preparations consist of more than 95% IgG,

with only trace amounts of IgA and IgM fractions (21). However,

recent studies show that alternative Ig preparations enriched for IgA

and/or IgM could be more appropriate and effective for this specific

subset of patients (21, 22).
Emerging infectious diseases and Ig
therapy advances

Enrichment of Ig products may also be achieved by the presence

of high titres of pathogen-specific antibodies, creating so-called

hyperimmune globulins (hIg). Treatment with hIg can significantly

reduce the risk or severity of a specific infection, which is

particularly relevant in the context of emerging infectious diseases

warranting a rapid, targeted approach (23). Typically, hIg are

plasma-derived products sourced from selected donors with high

Ig titres specific for the pathogen of interest due to natural

immunity or immunization (e.g., convalescent plasma from

coronavirus disease 2019 (COVID-19) infected individuals) (24).

However, efforts are being made in (pre)clinical research towards

the development of polyclonal recombinant hIg products (25), as

well as monoclonal recombinant therapeutic antibodies derived

from human antibody repertoires (26). Recombinant hIg

production would help address not only the limitation of plasma

availability, but it would also provide a consistent and reproducible

product that can be modified for increased efficacy and

specificity (27).

Highly specific Ig products would particularly help in the event

of local infectious disease outbreaks or for vaccinated individuals

experiencing breakthrough infection. Furthermore, due to the

geographic variation in endemicity of certain pathogens, persons

living with a PID may benefit from receiving IgRT that is sourced

from plasma donors living in the same geographical area. Tick-

borne encephalitis virus (TBEV) for example is endemic to Central

Europe but not the US, resulting in EU-sourced IgRT products

having a high TBEV neutralizing capacity while US-sourced IgRT

products show no neutralization (28). Currently, however, Europe,

like many other regions, is dependent on US-sourced plasma for

manufacture of its IgRT products. If limitations in supply and

regional legalities would not be a barrier, an even more personalized

approach to IgRT could be envisioned based on the individual’s

travel plans by administration of products sourced in the region to

be visited, prior to travel.
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Additional avenues to explore

Unmet needs and potential for more personalized Ig therapy

lies in improved characterization of the relative potency of

individual Ig product formulations and their change over time

(e.g., due to viral emergence, eradication, vaccination) (29).

Similarly, enhanced data collection in the form of registries and

other data platforms has the potential to better inform clinicians on

a patient’s individual needs. As such, medical monitoring devices

and wearables have revolutionized modern healthcare and might be

explored to measure overall health status or even specialized

parameters (e.g., Ig blood levels, subclinical infections) relevant

to PID.

In autoimmunity, alternatives to Ig providing targeted

treatment should be considered. As such, the neonatal Fc receptor

(FcRn) is now understood to be a crucial potentiator of

autoantibody-mediated immune responses, with the first

commercial FcRn inhibitor to treat autoimmune diseases such as

myasthenia gravis recently having come to market (30, 31).

In addition, curative treatment options such as hematopoietic

stem cell transplantation (HSCT) and gene therapy (GT) are

increasingly becoming available for PID patients (32–34). Also

here, a more personalized approach is recommended to improve

HSCT, with the joint Inborn Errors Working Party (IEWP) of the

European Society for Blood and Marrow Transplantation (EBMT)

and the European Society for Immunodeficiencies (ESID) having

developed HSCT guidelines encompassing six different

conditioning protocols, tailored to the type of donor and the

specific disease background (35). In fact, advances in selected cell

depletion (T, B, Naïve T cells…) and graft manipulations now allow

for successful allogeneic HSCT even in patients lacking a human

leukocyte antigen (HLA)-matched donor (36). Efforts should

additionally be focused on advancement of GT approaches,

with those in preclinical development exploring in vivo –

meaning direct in-patient – delivery warranting special attention

(37). Critical for the implementation of any GT or other advanced

therapy medicinal product (ATMP) will be the creation of an

economically sustainable model facilitating development and

access, as addressed in the previous IPOPI Global Multi-

Stakeholders’ Summit (1).

See Table 1 for the summary on the prospective (Where do we

want to be? And how are we going to get there)?
Part 2: pandemic preparedness:
what’s next for public health and
potential challenges for the
PID community?

The risk of emerging infectious diseases (EID) with pandemic

potential is higher than ever despite continuous progress in

infectious disease control measures facilitated by modern

technology (38). Of these emerging pathogens, 60 to 75% are of

zoonotic origin, meaning they can be transmitted from animals to

humans (39, 40). The recent COVID-19 pandemic, caused by the
Frontiers in Immunology 04
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

which is believed to have arisen from at least two separate zoonotic

transmission events (41), clearly demonstrates the significance of

EID as a major threat to global health. The increased emergence and

spread of zoonoses has been attributed to changes in human and

animal interactions, and their surrounding ecosystem.

In particular, global population growth and consequent

urbanization, deforestation, agricultural expansion and

intensification as well as the trafficking and consumption of

wild animals have led to increased interspecies contact and a

higher spillover risk (42, 43). The spread of these pathogens is

greatly facilitated by fast-growing international trade in meat and

other animal products as well as human travel and population

movements (44). This alarming situation is further exacerbated

by direct negative effects of climate change. Higher temperatures

and altered environmental conditions may, amongst others, affect

the geographical range of pathogens and their vectors and

reservoir hosts, alter pathogen transmission patterns, and

contribute to pathogen evolution causing increased virulence

(45). Climatic hazards may also render humans more

vulnerable to EID by inducing increased bodily stress (e.g., air

pollution) or by their indirect impact on food and water security

(44, 45). Global efforts to predict, monitor and contain the

emergence of new infectious diseases using an integrative

approach that considers the interrelatedness of humans,

animals and their environment, referred to as “One Health”,

are underway (38, 46). Nevertheless, recent estimates of the

probability of extreme epidemic occurrence reach a threefold

increase in the coming decades (47). Special attention should

thus be given to improve preparedness for immunodeficient

patients and other vulnerable populations. Identification of high

risk PID patients with, for example, additional comorbidities, use

of immunosuppressive drugs and other factors such as immune

ageing is warranted.
TABLE 1 How can Ig therapy meet future personalized patient needs?

Where do we want
to be?

How are we going to get there?

• Tailored treatment options
for autoimmune and
inflammatory disorders to help
balance the growing Ig therapy
demand and consequent
supply tensions.
• Targeted treatment
approaches in emerging
infectious diseases.
• Locally sourced Ig product
formulations providing
appropriate protection for
common infections in different
geographical locations.
• Smart use of individual
patient data in PID care
management.
• Tailored treatment of PID
patients with recurrent
infections and bronchiectasis.

• Increased research efforts towards improved
understanding of the mechanism of action
underlying successful Ig therapy for
autoimmune and inflammatory disorders to
allow the production of effective recombinant
Ig products.
• Development of specific hyperimmune
globulin preparations and other therapies
(e.g., monoclonal antibodies) for passive
immunization.
• Development of best practice
recommendations and guidelines to help
increase regionally balanced plasma collection
in an efficacious manner (e.g., enhanced yield/
plasma volume).
• Personalized data collection through medical
monitoring devices and wearables combined
with increased integration of available (multi-
omics) data into everyday clinical practice.
• Investigate the potential of IgA and/or IgM
enriched Ig preparations.
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Crisis and care management during
COVID-19: lessons learned

While the collective response to the COVID-19 pandemic has

been heavily debated and reviewed, a critical need remains to analyse

the crisis and care management strategies applied specifically to PID

and other immunocompromised patients. Flexible societies and

adaptive governance have proven to be key for efficient viral

control and containment (48, 49). This includes dynamic but

timely, appropriate and coherent communication to the general

public and vulnerable populations (50, 51). Especially the latter

received insufficient information tailored to their specific needs and

concerns, which greatly worsened the existing feelings of fear and

anxiety. Furthermore, current regulations, such as the General Data

Protection Regulation (GDPR), pose challenges in maintaining

patient lists for swift and targeted communication with specific

patient groups. There is limited knowledge and evaluation of

effective public health communication strategies targeting high-risk

populations in any emergency situation (52). Important lessons

should therefore be learned from the recent COVID-19 experience

not only on specific considerations and measures to be implemented

promptly for immunocompromised patients (e.g., home-based

therapy), but also on how to convey such information in an

effective and appropriate manner.

Secondly, a lack in flexibility was also evident from the

organization of clinical trials investigating vaccines or novel

treatment approaches against COVID-19, which did not

sufficiently address immunocompromised populations (53).

Indeed, despite their high susceptibility to infections,

immunocompromised patients were either excluded or poorly

represented in the majority of clinical trials investigating COVID-

19 vaccines and therapeutics (54). Consequently, the current

guidelines for these patients are based mostly on trials conducted

in immunocompetent individuals or on real-world evidence

collected from use in clinical practice. Yet, suboptimal clinical

management of immunocompromised patients infected with

SARS-CoV-2 not only undermines their recovery, but also

increases the risk of viral persistence which is believed to underlie

the emergence of new viral variants which may be less sensitive to

treatment (55). There is thus an urgent need for implementation of

new adaptive clinical trial frameworks that allow the evaluation of

multiple experimental therapies in one or multiple patient

subgroups, under one overarching protocol (56). Such novel

models, called master protocols, are particularly useful for the

study of rare diseases because they typically require only a limited

sample size for effective identification of successful therapies (57).

In addition, specific trials dedicated to the paediatric population

need to be developed as the most severe forms of PID manifest

already in early childhood.
Pandemic control measures for the PID
community: going the extra mile

As discussed above, in the early stages of disease detection it is

critical to provide clear and specific guidelines for high-risk
Frontiers in Immunology 05
populations such as immunocompromised patients concerning

non-pharmaceutical countermeasures including the wearing of

masks and practicing social distancing. Once the disease-causing

pathogen has been identified, immunocompromised patients

should be prioritized for vaccination, if available, according to

medical and scientific up-to-date recommendations. Results from

the recent COVID-19 pandemic have shown that mRNA vaccines

are safe and effective for most PID patients – with increased

immunogenicity compared to classical vaccines – and should

thus, at least for SARS-CoV-2, be considered the strategy of

choice for this population (58). However, enhanced research

efforts are needed to better characterize the induced immune

response and lymphocyte subset involvement specific to different

types of PID and other immunodeficiencies (59, 60).

Both prophylactic and therapeutic use of monoclonal

antibodies and other forms of passive immunization should be

explored and implemented. During the early stages of an epidemic,

immunocompetent (clinical trial) vaccine recipients could for

example be considered as donors for plasma-derived hIg

collection. Additionally, efforts should be made to develop direct

antimicrobial pre-exposure prophylaxis (PrEP) and post-exposure

prophylaxis (PEP) therapy, as is available for human

immunodeficiency virus (HIV) (61). Lastly, given the recent

advances in chimeric antigen receptor (CAR)-T cell therapy by

which genetically modified T cells recognize cell-specific receptors

(e.g., tumour-specific receptors), this approach could potentially be

exploited to target specific pathogens as well. As such, it would

provide an alternative for the management of infections in

immunocompromised individuals, particularly when there are no

or few drug options. While current CAR-T cell therapies require

isolation of autologous T cells, novel strategies using allogeneic T

cells derived from donors are under investigation which could

broaden the scope of application while reducing its costs (62).
Antimicrobial resistance: the next threat
for the world and even more so for the
PID community

Next to the direct challenges related to infectious diseases, a so-

called “silent pandemic” of antimicrobial resistance (AMR) has

emerged that significantly impacts global public health. AMR,

defined as the ability of micro-organisms to survive or grow

despite the presence of a previously effective antimicrobial agent,

can occur in any type of micro-organism but is most critical in

bacteria. It is estimated that in 2019 antibiotic resistance caused 1.27

million deaths worldwide (63). The global economic burden in

healthcare costs caused by AMR is estimated to amount to $300

billion to $1 trillion by 2050 (64). The World Health Organization

(WHO) has declared AMR as one of the top priorities and global

public health threats facing humanity (65), and has recently

published a global research agenda prioritizing 40 research topics

for AMR evidence generation (66). The issue is particularly

concerning to PID patients, of whom a significant proportion is

critically dependent on antibiotics and other antimicrobial agents

for effective infection management.
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Despite this reliance and higher usage of antimicrobials as both

prophylactic therapy and acute treatment in the PID population,

the presence of AMR in PID – or other immunocompromised

patients – is poorly characterized. Recent data show that AMR is

common in antibody deficient patients (67) and higher levels of

AMR were found for bacterial isolates obtained from PID patients

compared to those of immunocompetent individuals, for several

antibiotics across multiple types of bacteria (68). This could be

explained by the higher frequency and longer duration of antibiotic

administration typical for PID patients (68, 69). However, more

research is needed on the risk of resistance for individual antibiotics

commonly used in PID management, as some long-term antibiotic

regimens do not seem to be associated with higher levels of AMR

(70, 71). Direct use of IgRT rather than initial prophylactic

antibiotic therapy has been suggested for certain primary

antibody deficiencies (PAD) (72), as controlled studies showing a

benefit of antibiotic prophylaxis in PAD are scarce (73). Some PID

medical centres follow a rotational protocol in which antibiotics for

prophylactic use are replaced by another agent with equal coverage

every 1–6 months to reduce the development of AMR (68, 69, 73).

There is however no evidence in the literature supporting the

effectiveness of this practice. Similarly, there is a discrepancy in

the prophylactic protocols followed for PID patients in a paediatric

and in an adult care setting, highlighting once again the need for

more streamlined and evidence-based approaches.

Critical to limit the spread of AMR are infection prevention and

control measures including environmental disinfection, hand

hygiene, isolation and transmission-based precautions. Generally,

home-based therapy is preferred for PID patients whenever feasible

to avoid contact with hospital-related resistant pathogens. Overall,

there is a clear need for improved AMR surveillance as well as

increased awareness of infection prevention and control among PID

caregivers and antibiotic stewardship to safeguard the effective use

of existing antibiotics.

See Table 2 for the summary on the prospective (Where do we

want to be? And how are we going to get there)?
Part 3: diagnosing PIDs in 2030: what
needs to happen to diagnose better
and to diagnose more?

Tackling the diverging diagnostic rates
between countries worldwide

The International Union of Immunological Societies (IUIS)

Expert committee’s most recent classification, published in 2022,

includes over 485 IEI (74). Diagnosing these disorders is inherently

challenging due to the diverse set of clinical presentations and

immunological pathways that may be affected. Compounded with

the rarity of individual disorders, this often leads to long diagnostic

delays (75). In low- and middle-income countries (LMICs), the

limited availability of laboratory resources further constraints

diagnostic capacities, hindering optimal patient care and

prognostic counselling (76). However, increased use and
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integration of existing and available non-immunological

laboratory investigations as screening tools may help identify

probable cases for further investigation.

A commonly available and affordable diagnostic test utilized in

evaluating routine liver function is calculated globulin (CG),

derived from the difference between the total serum protein and

the albumin fraction. While abnormally high CG levels may

indicate autoimmune disease, infections or cancers, abnormally

low CG levels may be caused by decreased serum Ig levels

associated with antibody deficiency (77). Importantly, both

primary antibody deficiencies, the most common types of PID,

and secondary antibody deficiency can be detected using this

approach. The test has been validated in multiple centres in both

adult and paediatric patients, showing a high sensitivity and

specificity for detection of low serum IgG levels, and has allowed

identification of patients that were later diagnosed with common

variable immunodeficiency (CVID) (77–80). A predictive screening

model for the likelihood of hypogammaglobulinemia in the

paediatric population has been proposed (81).

These screening tools should therefore be disseminated

universally, accompanied by an automated flagging system for

further referral to a tertiary care hospital. However, caution is

advised in defining clear indicators for referral to prevent

overwhelming the tertiary care system.

Considering the complex immunological pathways affected in

diverse PIDs, achieving a diagnosis based on molecular and/or

functional criteria often demands precise and specific tests.

However, the rarity of these disorders poses a challenge to the

widespread adoption of such testing methods. High development

costs coupled with their limited utilization renders these diagnostic

tests economically unfeasible for private or commercial

applications. Consequently, such tests are predominantly
TABLE 2 Pandemic preparedness: what’s next for public health and
potential challenges for the PID community?

Where do we want
to be?

How are we going to
get there?

• Containment and mitigation of
the emergence of infectious
diseases, with a particular focus on
zoonotic diseases.
• Inclusion and consideration of
immunocompromised patients in
crisis and clinical care strategies.
• Effective vaccination and therapy
schemes tailored to the individual
needs of PID and other
immunocompromised patients.
• Evidence-based protocols for
antibiotics and other antimicrobial
agents used in PID patients.
• Comprehensive surveillance data
for infectious pathogens and AMR
and global containment and
reduction of AMR in the
general population.

• Strengthening of the “One Health”
approach, addressing root causes (human-
animal interactions, ecosystem changes),
and improving preparedness for vulnerable
populations.
• Timely, dynamic and transparent
communication tailored to specific high-
risk populations, and their inclusion early
in clinical trial development.
• Increased research efforts exploring the
host-pathogen interaction for specific
patient subgroups and consequent
development of diverse prevention and
treatment approaches.
• Increased research efforts exploring
prophylactic and therapeutic use of
antibiotics and the development of AMR
in PID patients.
• International agreement on data
collection and standardization, and
increased AMR awareness and antibiotic
stewardship as well as improved infection
prevention and control.
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conducted in research settings, limiting their scope and availability

in terms of turnaround time and test variety. Moreover, these

research settings are predominantly found in high-income

countries (HIC), introducing logistical and financial challenges

related to the shipment of viable biological samples from

LMICs (82).

In contrast, the recent advancements in genetic sequencing and

its decreasing cost have made genetic diagnostics a more viable

option for LMIC. While the necessary facilities to perform genetic

testing may not be available directly in the geographic region, the

inherent stability of DNA allows for the use of dried blood spots

collected on filter paper (Guthrie cards) for convenient and cost-

effective storing and shipping of high-quality DNA material

(83, 84). Next generation sequencing (NGS) approaches have not

only facilitated the identification of novel causative variants for

PIDs but have also enhanced diagnostic rates (85). Paired with

continuous improvement in available genomic databases and

bioinformatics, genetic sequencing is therefore envisioned to

significantly improve access to diagnosis and care for PID

patients in resource-limited settings (82). An important

consequence of the enhanced availability and use of genetic

testing, however, is the frequent identification of variants of

uncertain significance (VUS). Validation of the causal relationship

between a new variant and the disease phenotype is often time and

labour-intensive, and currently depends largely on the interests and

priorities of academic research groups in the field. The introduction

of artificial intelligence (AI) and accurate data systems that relate

genotypes (variants) to phenotypes may reduce the number of

VUS’s (further discussed below) and will contribute to better PID

diagnosis. Moreover, AI may be used to study the role of

compensating genes and genes causing an exaggerated phenotype.

The topic of VUS validation and related recommendations were

addressed in greater detail during the previous IPOPI Global Multi-

Stakeholders’ Summit (1).
The role of patient-reported outcome
measures (PROM) in improving diagnosis
and clinical management

In the past, the assessment of a patient’s progress relied heavily

on criteria set by clinicians without substantial consideration for the

patient’s experience. However, a significant shift is underway in

which the patient’s unique insights and perspectives are

increasingly recognized to provide a more comprehensive

understanding of the course of the disease and treatment

outcomes. In response to this, there is a growing interest in the

utilization of Patient-Reported Outcome Measures (PROMs) which

record a patient’s perceived health status and well-being in the form

of questionnaires or interviews (86, 87). The information obtained

through PROMs can serve several purposes at the individual level,

including heightened patient engagement in clinical decision-

making, personalized care, and continuous monitoring of

treatment. Next to their role in clinical management, PROMs are
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frequently consulted as screening and diagnostic tools in primary

care (88). On a broader scale PROMs are valuable tools in the

evaluation of clinical research, healthcare service quality, and

economic benchmarks (89, 90).

Nonetheless, PROMs are not systematically collected and

integrated in healthcare systems. Similarly, despite an increasing

trend over time, only a minority of clinical trials and real-world

evidence studies include PROMs as primary or secondary endpoints

(91, 92). Rare diseases such as PIDs often lack specific and relevant

PROMs (93), and patient-reported outcomes are significantly

overlooked in paediatric populations (94, 95). Commonly

reported barriers to the systematic use of PROMs by clinicians

include: (i) time and resource constraints, (ii) insufficient

knowledge on questionnaire selection, (iii) data collection and

interpretation, (iv) uncertainty on PROM utility and reliability,

(v) responder burden for patients, (vi) lack of standardization and

integration into clinical workflows, and (vii) the need to develop

disease-specific PROM questionnaires (88–90, 96, 97). The latter is

particularly problematic for PIDs, as the clinical heterogeneity

within this group of disorders prevents the development of useful

PID-wide PROMs (93).

Creating an entirely new disease-specific PROM is highly

labour-intensive and requires careful analysis and validation

before it can be introduced. The Patient-Reported Outcomes

Measurement Information System (PROMIS) aims to facilitate

this process by producing validated, standardized item banks

measuring different aspects of health-related quality of life (HR-

QoL), relevant across a range of chronic conditions (98). Based on

the selection of those item banks most appropriate to the specific

disease in question, a customized and sensitive PROM can be built.

While the use of PROMIS item banks for rare conditions overall has

increased (99), there is ample room for such measures to be

developed and implemented in the PID field. One study has been

conducted using the PROMIS-29 score for chronic diseases in

CVID patients, which underscored the impact of fatigue on HR-

QoL for this patient population (100). Additionally, a PROM

specific to CVID patients was developed and validated to be a

reliable tool, identifying fatigue and other HR-QoL issues associated

especially with CVID (101). However, more efforts are needed to

adequately capture non-CVID patients’ self-reported HR-QoL.

Next to PROMs which capture the patient’s view regarding their

health status and physical and mental wellbeing, patient-reported

experience measures (PREMs) are critical to gather information on

the patient’s perception of their received care, reflecting their

satisfaction with different aspects of the clinical care provided

(102). Patient organisations, in conjunction with clinical

specialists, are ideally positioned to advocate for the

implementation of both PROMs and PREMs as patient-centred

measurements (PCM) in every aspect of clinical care and research.

They can help develop qualitative and useful questionnaires tailored

to the needs and wishes of their specific patient populations, as is

exemplified by the CVID_QoL questionnaire which was produced

based on the outcomes of individual and patient group

consultations (101). To streamline the collection of PCMs and
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ensure compliance with data protection regulations, the

implementation of digital applicat ions enabling data

decentralization coupled with modern technologies driven by AI

to process natural language is a viable approach. Such tools allow

personal data to be owned by the patient while facilitating the

aggregation of PROM and PREM data and establishing

mechanisms for secondary use (103–106). Additionally, using this

approach patients can report their outcomes in ‘real-time’ which

increases the data’s reliability and accuracy (107). If made available

to clinicians, these electronic PCMs could complement existing

registries to guide medical decision-making and be consulted for

large-scale research initiatives. Indeed, the use of PCMs should be

promoted as an integral part of “value-based” medicine which aims

to maximize patient relevant outcomes at the lowest possible cost,

whenever care is provided (108). For it to be successful it is key to

understand what matters most to patients, thereby necessitating

PCMs to be at the core of this healthcare model (97).
The role of artificial intelligence (AI) in
improving diagnosis

The last decade has witnessed great advancements in the

integration of AI into all aspects of medicine. Machine learning

algorithms, by which large datasets are iteratively used to extract

information allowing the software to gradually improve its

performance, can aid in the early detection of conditions by

identifying patterns which are impossible for humans to discern

(109). As mentioned above, this is especially attractive for the

diagnosis of rare diseases, considering that such patients are often

confronted with a long diagnostic delay (110, 111). Alternatively,

once a certain pattern of characteristics has been linked to a rare

disorder, AI, leveraging Natural Language Processing techniques,

can be utilized to automatically screen a large number of electronic

health records, enabling the reevaluation of patients who may have

been undiagnosed in a hospital’s database (112). AI is also a

powerful research tool to generate new hypotheses on the genetic

or molecular pathogenesis underlying a disease, further improving

the diagnostic potential (113).

However, machine learning algorithms require clean,

comprehensive datasets to produce correct and precise

predictions. Yet, digital data in the field of medicine is often

scattered or inaccessible, which is further compounded for rare

diseases by their inherently small patient populations generating

only limited data (114). It is therefore critical to combine hybrid

models (machine learning models, rule-based and knowledge-based

reasoning) and diverse types of input data, ranging from clinical

and phenotypic descriptions – possibly collected via natural

language processing of electronic health records – to laboratory

test results, imaging, and high throughput molecular profiling

outcomes (e.g., genomics, proteomics, metabolomics, etc.) linked

to available knowledge databases (110, 115, 116).

Important hurdles to making this data accessible in real time

and in raw format relate to issues of data ownership and privacy,

bringing about ethical considerations and regulatory constraints.

These limitations also hinder effective collaboration and data
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thereby restricting the integration and harmonization of AI-driven

diagnostic tools on a larger scale (117). One approach to overcome

these limitations is federated learning, a technique that allows for

collaborative machine learning without sharing the actual data,

maintaining privacy and compliance with regulations. It enables

healthcare providers to update models in real time and improve

their generalization by learning from diverse datasets without

compromising data security. While promising, implementing

federated learning requires careful consideration of technical

infrastructure, efficiency, regulatory oversight, and ensuring

incentives for participation (118).

Establishing international consensus and guidance within a

policy framework will be imperative to address the current

challenges related to AI integration in clinical practice and

research. To this end, governments and political institutions

worldwide have started to develop regulations concerning the use

of AI in healthcare, such as the proposed European legal framework

“AI Act” for which a political agreement was recently reached (119).

To ensure the effectiveness and acceptability of AI tools for

broadscale clinical implementation it is crucial to involve all

relevant stakeholders throughout their development and

integration (120, 121). Patient organizations, along with

clinicians, regulators, and other relevant parties, should be

actively engaged, as they are ideally positioned to bridge potential

gaps between the AI developer and the patient community (120).

The ability of AI to transform patient records into computational

objects will ensure faster access and smarter use of the large volumes

of clinical data being collected, catalysing our diagnostic ability and

accelerating translational research and personalized patient care.

See Table 3 for the summary on the prospective (Where do we

want to be? And how are we going to get there)?
TABLE 3 Diagnosing PIDs in 2030: what needs to happen to diagnose
better and to diagnose more?

Where do we want to be? How are we going to
get there?

• Universal use and integration of
available laboratory investigations as
diagnostic screening tools to tackle
the diverging diagnosis rates between
regions.
• Accessibility of genetic diagnostic
tools regardless of geographic region.
• Systematic integration and use of
PROMs in clinical care pathways
and clinical research.
• Broad-scale integration of AI-based
diagnostic tools in healthcare
practices and research for PID and
the larger rare disease community.
• Active involvement of patient
organizations and all relevant
stakeholders in the development and
integration of AI tools.

• Implementation of calculated globulin
or other diagnostic tools as screening
methods in an automated flagging
system, both in high and low-resource
settings.
• Enhanced international collaboration
and smart use of logistically favourable
and cost-efficient alternatives as source
material (e.g., dried blood spots on filter
paper).
• Digitalization of PROMs for facilitated
collection of real-time patient-reported
data and integration in electronic health
records and/or registries.
• International alignment and enhanced
interoperability through robust legal
frameworks facilitating data sharing
while safeguarding data ethics.
• Consider the creation of an IPOPI-led
initiative on AI integration in patient
diagnosis and other aspects of
clinical care.
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Glossary

AGORA Access to Gene Therapies for Rare Disease

AI Artificial Intelligence

AMR Antimicrobial Resistance

ATMP Advanced Therapy Medicinal Product

CAR Chimeric Antigen Receptor

CG Calculated Globulin

COVID-19 Coronavirus disease 2019

CVID Common Variable Immunodeficiency

EBMT European Society for Blood and Marrow Transplantation

EID Emerging Infectious Diseases

ESID European Society for Immunodeficiencies

Fc crystallizable fragment

FcRn neonatal Fc receptor

GDPR General Data Protection Regulation

GT Gene Therapy

HIC High-Income Countries

HIV Human Immunodeficiency Virus

hIg Hyperimmune globulins

HLA Human Leukocyte Antigen

HSCT Hematopoietic Stem Cell Transplantation

HR-QoL Health-related quality of life

IEI Inborn Errors of Immunity

IEWP Inborn Errors Working Party

Ig Immunoglobulin

IgRT Immunoglobulin Replacement Therapy

IPOPI International Patient Organisation for
Primary Immunodeficiencies

IUIS International Union of Immunological Societies

IV Intravenous

LMIC Low- and Middle-Income Countries

NBS Newborn Screening

NGS Next Generation Sequencing

PAD Primary Antibody Deficiencies

PCM Patient-Centered Measurement

PEP Post-Exposure Prophylaxis

PID Primary Immunodeficiencies

PLUS Platform of Plasma Protein Users

PREM Patient-Reported Experience Measures

PrEP Pre-Exposure Prophylaxis
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PROM Patient-Reported Outcomes Measures

PROMIS Patient-Reported Outcomes Measurement Information System

QoL Quality of life

SARS-
CoV-2

Severe Acute Respiratory Syndrome Coronavirus 2

SC Subcutaneous

TBEV Tick-borne encephalitis virus

UNITAR United Nations Institute for Training and Research

VUS Variant of uncertain significance

WHO World Health Organization
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