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Background: Bladder cancer (BCa) is one of the most common malignancies

worldwide, and its prognostication and treatment remains challenging. The fast

growth of various cancer cells requires reprogramming of its energy metabolism

using aerobic glycolysis as a major energy source. However, the prognostic and

therapeutic value of glycolysis-related genes in BCa remains to be determined.

Methods: The fused merge dateset from TCGA, GSE13507 and GSE31684 were

used for the analysis of glycolysis-related genes expression or subtyping; and

corresponding clinical data of these BCa patients were also collected. In themerge

cohort, we constructed a 18multigene signature using the least absolute shrinkage

and selection operator (LASSO) Cox regression model. The four external cohorts

(i.e., IMvigor210, GSE32894, GSE48276 and GSE48075) of BCa patients were used

to validate the accuracy. We evaluated immune infiltration using seven published

algorithms: CIBERSORT, QUANTISEQ, XCELL, TIMER, CIBERSORT-ABS, EPIC, and

MCPCOUNTER. Subsequently, in order to analyze the correlation between risk

groups(scores) and overall survival, recognised immunoregolatory cells or

common chemotherapeutic agents, clinicopathological data and immune

checkpoint-related genes of BCa patients, Wilcox rank test, chi-square test, cox

regression and spearman's correlation were performed.

Results: Conspicuously, we could see that CD8+ T, cancer associated fibroblast,

macrophage M2, NK, endothelial cells and so on were significantly dysregulated

between the two risk groups. In addition, comparedwith the low-risk group, high-risk

group predicted poor prognosis and relatively weak sensitivity of chemotherapy.

Additionally, we also found that the expression level of partial genes in themodel was

significantly correlatedwith objective responses to anti-PD-1 or anti-PD-L1 treatment

in the IMvigor210, GSE111636, GSE176307, GSE78220 or GSE67501 cohort; and its

expression level was also varied in different objective response cases receiving

tislelizumab combined with low-dose nab-paclitaxel therapy based on our mRNA
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sequencing (TRUCE-01). According to “GSEA” algorithm of R package

“clusterProfiler”, the most significantly enriched HALLMARK, KEGG pathway and

GO term was separately the ‘Epithelial Mesenchymal Transition’, ‘Ecm Receptor

Interaction’ and ‘MF_Extracellular_matrix_structural_constitunet’ in the high- vs.

low-risk group. Subsequently, we verified the protein and mRNA expression of

interested model-related genes from the Human Protein Atlas (HPA) and 10 paired

BCa tissues collected by us. Furthermore, in vitro functional experiments

demonstrated that FASN was a functional oncogene in BCa cells through

promoting cell proliferation, migration, and invasion abilities.

Conclusion: In summary, the glycolysis-associated gene signature established by us

exhibited a high predictive performance for the prognosis, immunotherapeutic

responsiveness, and chemotherapeutic sensitivity of BCa. And, The model also might

function as a chemotherapy and immune checkpoint inhibitor (ICI) treatment guidance.
KEYWORDS
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Introduction

The most frequent cancer of the urinary system and the tenth

most prevalent disease worldwide is bladder cancer (BCa). Because

BCa is a diverse illness, there are two clinical subtypes that may be

distinguished according to whether it invades the muscle layer: 75%

of instances are non-muscle invasive BCa (NMIBC), versus 25% of

cases that are muscle invasive BCa (MIBC) (1). In fact, up to 20%–

25% of patients with MIBC are diagnosed at the time of their first

diagnosis. The majority of bladder cancer deaths are caused by

MIBC, and it has a poor long-term survival rate and a high risk of

distant metastases (2). BCa histopathology often determines the

prognosis in clinical practice (3). It is important to note that each

individual differs from the other. The outcome of patients with

similar histopathology may also vary.

Energy is provided to the body by glycolysis. Cancer may be

indicated by changes in glycolysis. A primary characteristic of cancer

cells is an increase in glycolysis, which causes them to convert glucose

into lactic acid regardless of oxygen availability. This process is

known as the “Warburg effect” (4, 5). A number of malignancies,

such as bladder cancer, have an increased affinity for glucose and

exhibit a shift toward an aerobic glycolysis-dependent metabolism

(6). Increased or abnormal glycolysis has been demonstrated to

promote a variety of malignant progressions, as shown in breast,

liver, colorectal cancers, etc (7–10). For example, Knibbs et al. (7)

found that the long noncoding RNA NEAT1 is upregulated in breast

cancer patients, where it directly binds to and forms a scaffold bridge

for PGK1/PGAM1/ENO1 complex assembly, thereby enabling highly

efficient glycolysis to promote tumor initiation, growth, and

metastasis. Li et al. (8) demonstrate that the transcription factor

SIX1 promotes aerobic glycolysis in cancer by binding to promoters

and recruiting HBO1 and AIB1 to activate glycolytic genes. SIX1 is
02
inhibited by miR-548a-3p, and altering this pathway impacts tumor

metabolism and growth. A previous study revealed that HBx

triggered aerobic glycolysis through NF-kBp65/HK2 signaling in

spontaneous liver cancer, and the excess lactate significantly

enhanced HCC cell proliferation via the PI3K/Akt pathway (9). In

colorectal cancer, Hong et al. (10) reported that gut F. nucleatum

enhanced lncRNA ENO1-IT1 transcription by increasing SP1

binding to its promoter, promoting glycolysis and cancer

development. Researches have shown that excessive lactate from

abnormal glycolysis encourages tumor growth and invasion,

potentially weakening immune defenses and aiding tumor

recurrence (11, 12). Thus, targeting glycolysis could be an effective

cancer treatment strategy. In addition, there is evidence that increased

Warburg effects in BCa contribute to increased tumor aggressiveness

and faster proliferation (13).

A crucial component of the TME is the immune infiltrates, which

are crucial to the progression of bladder cancer (14). The immune

microenvironment can utilize glycolysis to modulate tumor immune

response and promote progression (15). A higher level of glycolysis

suppress immune cell infiltration, inhibiting antitumor activity (16,

17); thus, it might also contribute to distant metastatic and immune

escape (18). It has been demonstrated that glycolytic activity was a

prospective predictor of immune signatures in multiple cancers (19).

Furthermore, dysregulated glycolysis is also strongly related with

radio- and chemo-resistance in cancer (20, 21), manifesting that the

inhibition of glycolysis may be an effective strategy to explore optimal

combination regimens for the treatment of cancer. Although there

have been some previous significant achievements regarding

glycolysis in BCa; however, the expression profiles biological

functions and mechanisms of BCa-specific glycolysis, especially in

the regulation of the tumor microenvironment, has not been

completely understood.
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In this study, we integrated TCGA_BCa and two microarray

datasets (i.e., merge cohort; 664 BCa samples) to compensate for the

low sample sizes and to provide more convincing results. This was

followed by differential expression analysis between carcinoma and

para-carcinoma tissues, survival analysis, co-expression network

analysis to determine 34 vital glycolysis-associated gene effecting

the prognosis of patients with BCa. We categorized these merge

samples as 6 subtypes based on above filtered 34 genes expression

profiles by a consensus clustering algorithm. To determine the

underlying molecular mechanism of the difference in the prognosis

of these subtypes, we further performed differential gene expression

analysis between the 6 subtypes and constructed an 18-genes

signature using lasso-penalized cox regression analysis; later, the

model was validated in multiple external datasets (i.e., IMvigor210,

GSE32894, GSE48276 and GSE48075). Surprisingly, the

glycolysis-associated gene model could accurately indicate the

clinicopathological characteristics and the survival prognosis of

patients with BCa. Next, we confirmed the protein and mRNA

expression of interested model-associated genes from the Human

Protein Atlas (HPA) and 20 paired BCa tissues collected by us.

Moreover, the results showed that this signature might participate in

the regulation of immune cell infiltration, immune responses and

immune checkpoints. Meanwhile, we also further conducted to

evaluate the potential role of modeled genes as a biomarker for

immunotherapy efficacy in different immunotherapy cohorts (i.e.,

IMvigor210, GSE111636, GSE176307, GSE78220, GSE67501, and

Truce01). Notely, we performed a series of cellular function

experiments following FASN knockdown. Collectively, this study

systematically analyzed the clinicopathologic features correlation,

prognostic value, effects on the immune microenvironment and the

underlying molecular mechanism of glycolysis-related gene signature

in BCa, which provide a novel orientation to the potential targets.
Materials and methods

Extraction of glycolysis-related genes, and
data collection and processing

From the MSig database of the Broad Institute (http://

www.broad.mit.edu/gsea/msigdb/index.jsp), a priori defined

glycolysis-related gene set, including 311 genes, were downloaded. A

transcriptome and clinical data were downloaded from the TCGA

(http://tcga-data.nci.nih.gov/tcga/) and two GEO cohorts (GSE13507,

GSE31684) (http://www.ncbi.nlm.nih.gov/geo) for BCa. The TCGA

cohort contained 414 tumor tissues and 19 adjacent normal tissues.

The two GEO cohort in total contained 250 tumor tissues. Due to a

lack of sample size for each cohort, we integrated TCGA cohort and

two GEO cohort to get merge cohort (13449 genes, 662 tumor

samples). Next, 88 glycolysis-related genes with prognostic values

were screened from 311 glycolysis-related genes by univariate Cox

regression analysis of overall survival (OS), based on the TCGA

dataset. In the TCGA cohort, using the “limma” R package, 128

differentially expressed glycolysis genes were identified between tumor

tissues and adjacent normal tissues with a false discovery rate (FDR)<

0.05. Therefore, we identified 34 glycolysis-related DEGs associated
Frontiers in Immunology 03
with prognosis by intersecting 88 prognostic glycolysis-related genes

with 128 differentially expressed ones. The Kaplan-Meier curve was

used to determine whether the high or low expression of each gene of

these 34 genes was correlated with the OS in patients with BCa

(p<0.05). Moreover, an analysis and visualization of these 34 gene

mutations was also conducted using the “maftools” R package.

The IMvigor210 cohort (obtained from the R package

“Imvigor210coreBiologies”), an 348 urothelial carcinoma cohort

treated with the anti-PD-L1 antibody atezolizumab, was used for

validation of glycolysis-associated gene signature. The microarray

expression data of other three GEO validation datasets, GSE48276

(n = 116), GSE48075 (n = 73), and GSE32894 (n = 224), were all

quantile-normalized, and the genes were annotated in their separate

microarray platform files GPL14951, GPL6947, and GPL6947.

Additionally, the microarray expression data of three GEO

immunotherapy datasets, GSE111636 (n = 11), GSE176307 (n = 89),

GSE78220 (n = 28), and GSE67501 (n = 11) were all quantile-

normalized, and the genes were annotated in their respective

microarray platform files GPL17586, GPL24014, GPL11154, and

GPL14951. Notably, in our single-arm phase 2 trial (term_id,

TRUCE-01; registration number, NCT04730219), tislelizumab

(200mg) combined with low-dose nab-paclitaxel (200mg) also

preliminary confirmed clinical benefits and safety in the therapy of

muscle-invasive urothelial bladder carcinoma patients (22). Therein,

tislelizumab is a novel humanized monoclonal antibody programmed

death receptor-1 (PD-1) inhibitor and shows a predictable and

manageable safety/tolerability profile in patients with PD-L1+ UC

(23). The clinical traits information, survival data or the

immunotherapeutic efficacy of above these datasets are shown in

Supplementary File S1 and Supplementary File S2, respectively.
Identification of bladder cancer subtypes,
and a series of association analysis

Based on the 34 genes’ expression, the “ConsensusClusterPlus” R

package was utilized to identify the possible molecular subtypes of

bladder cancer in the merge cohort (24). Clustering was performed

using the k-means method and similarity distance calculated according

to Euclidean distance. A clustering algorithm of 1000 iterations was

used, with 80% of the samples in each iteration, and a CDF curve of the

consensus score was used to calculate the optimal cluster number. The

glycolysis-related 34 DEGs associated with prognosis were selected to

perform principal component analysis (PCA) analysis. Afterwards, the

Kaplan–Meier (KM) method and log-rank test were used to compare

overall survival (OS), disease-free survival (DFS), disease-specific

survival (DSS), and progression-free survival (PFS) among subtypes

of BCa patients. Next, Correlations between subtype groups and

clinicopathological data, recognized immunoregolatory cells of BCa

patients were performed using chi-square test and wilcox rank test.

GSVA is used for evaluating KEGG gene set enrichment using

the “GSVA” R package, and significantly differential pathways

between molecular typing were selected using the adjusted p-

value<0.05 criterion. Single-sample gene set enrichment analysis

(ssGSEA) was used to quantify the enrichment score of 29 immune

signatures, and association analysis with subtypes.
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Model construction of the glycolysis-
associated gene signature and validation

As a first step, we identified 3754 differentially expressed genes

among the 6 clusters (|log2FoldChange| >1, false discovery rate (FDR)

<0.05). Using the “survival” R package, we performed univariate Cox

regression analyses of the DEGs, and got 1223 genes with prognostic

values. Following that, LASSO analysis using the R package “glmnet”

and multivariate Cox regression analysis using the “survival” R package

were performed to establish a risk model. Risk scores were calculated

using the “predict” function in R software, and risk scores are calculated

according to the following mathematical model: Risk score = h0 (t) ∗
exp(b1 X 1 + b2 X 2 +… + bn X n); this equation is expressed as follows:

n = the number of model genes to be modeled; b= correlation

coefficient and X = expression level of each model gene predicted;

and h0 (t) originated from the”predict” function.

Using the median risk score as a cutoff value, 664 BCa patients in

the training merge cohort were divided into high- and low-risk groups.

Kaplan-Meier (KM) survival and time-dependent receiver operational

feature (ROC) and calibration curves were plotted by “survival”,

“timeROC” and “RMS” R packages to assess the discrimination and

calibration of the glycolysis-related 18-gene model. And, risk score

distribution, risk status, and risk heat map were utilized for assessing

the risk of predictive models. Besides that, the glycolysis-associated

18-gene model was validated in four independent test cohort

(i.e., IMvigor210, GSE48276, GSE48075, and GSE32894).

Clinicopathological and survival information of these datasets was

obtained from the TCGA and GEO data portal andmanually collected.

Moreover, the partial modeled genes expression in the signature was

further validated through the Human Protein Atlas database (HPA)

and real-time quantitative PCR (qRT-PCR).
The associations between model and
clinical features; independent predictor;
predictive nomogram construction

Wilcox test or chi-square test was applied to investigate the clinical

correlations of the modeled risk scores/group and multiple clinical

traits. The Spearman rank correlation analysis was carried out in

analyzing the associations between riskscores and clinical factors of

BCa patients. To identify independent factors for OS in BCa patients,

we applied univariate and multivariate cox regression analysis for the

gene signature and other clinicopathological features (gender, age, T/N

status and grade). Additionally, the prognostic nomogram and

corresponding calibration plots was produced by the “RMS” R package.
Correlation analyses between glycolysis-
related gene model and immune
checkpoint, immune cell infiltration, tumor
mutation burden and immunophenoscore

To explore the efficacy of treatment response, we employed the

expression of immune checkpoint between high- and low-risk
Frontiers in Immunology 04
groups. Subsequently, to assess the immune-infiltration in BCa, we

conducted the 7 immune-infiltration algorithm (TIMER,

CIBERSORT, CIBERSORT-ABS, QUANTISEQ, MCPCOUNTER,

XCELL and EPIC) to calculate the proportion of various immune

cells and revealed the function of immune-infiltration via multiple

strategies. The Wilcox rank-sum test were applied to analyze the

differences between the two riskscore groups; then, the results were

visualized by heatmaps through the R package “Pheatmap”.

Associations between riskscore and immune-infiltration cells were

analyzed by the Spearman rank correlation analysis. And, the single-

sample gene set enrichment analysis (ssGSEA) algorithm was also

adopted to evaluate the score level of 29 immune infiltration/function

between high- and low-risk groups. TMB and IPS are all superior

predictor of the response to immune checkpoint blockades (ICBs;

anti-PD1, or anti-CTLA4, etc.), which quantifies the determinants of

tumor immunogenicity and characterizes the intratumoral immune

landscapes. Hence, we could predict the immunotherapy response of

each BCa patient using our model.
Gene set enrichment analysis and drug
sensitivity analysis

To further understand and identify enriched cellular pathways

associated with the model in BCa, R package clusterProfiler was used

for GSEA to compare the different Hallmark, KEGG pathways or GO

terms download from MSigDB (http://software.broadinstitute.org/

gsea/msigdb) between the two risk groups from the merge data.

Then, to explore the connection between glycolysis-related gene

expression levels and drug susceptibility, we downloaded the drug

sensitivity information from the CellMiner database and used the

National Cancer Institute (NCI)-60 analysis tool to analysis. Next,

the “pRRophetic” package was applied to obtain the half-maximal

inhibitory concentration (IC50) of two riskscore groups to

Cisplatin, Docetaxel, Paclitaxel and Vinblastine.
RNA extraction and quantitative real-
time PCR

In this study, 10 pairs of BCa tissues and adjacent normal tissues

were obtained from the urology department of Tianjin Medical

University’s Second Hospital. Patients were required to complete a

permission form before utilizing therapeutic resources. Total RNA

Kit (Omega, Norcross, USA) was performed to obtain the total

RNA from BCa tissues and adjacent normal tissues. Next, 3g of total

RNA was converted to cDNA using the RevertAid First Strand

cDNA SynthesisKit (Thermo Fisher Scientific, Waltham, USA).

qRT-PCR test utilized TOROGreen qPCR Master Mix (Toroivd,

Shanghai, China) on an ABI 7900HT rapid real-time PCR

equipment (Applied Biosystems, Waltham, USA) to measure

mRNA expression levels. GAPDH was used as an internal

control. The relative quantitative value of target gene was

determined by 2−DDCT method. The primer sequences are

displayed in Table 1.
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Cell transfection

Transfection can be done when cells accounts for 60–80% of

container. In a six-well plate, the transfection dose for each well was

100nM SiRNA or negative control RNAi 100-nM with

LipofectamineTM 2000 (Invitrogen) according to the

manufacturer’s protocol. After 48 h, the cells were collected for

western blotting, CCK-8, wound Healing, transwell assays.
Western blot analysis

Total protein was extracted from T24 and UM-UC-3 cell lines as

well as tumor tissues using RIPA buffer (BOSTER) supplemented

with PMSF. Protein concentration was determined using a BCA assay

kit. Equal amounts of protein samples (25 mg per lane) were separated
by SDS-PAGE on a 10% acrylamide gel, then transferred onto a

polyvinylidene difluoride (PVDF) membrane (Millipore, Billerica,

MA). The membrane was blocked with 5% non-fat milk and

incubated overnight at 4°C with the following primary antibodies:

rabbit anti-FASN (dilution 1:5,000; proteintech) and mouse anti-b-
actin (dilution 1:5,000; proteintech). Subsequently, the PVDF

membrane was washed and incubated with anti-rabbit or anti-

mouse IgG at room temperature for 1 hour. Chemiluminescence

was used to detect immune-reactive bands, and relative intensities

were measured and analyzed using ImageJ software.
Cell proliferation assays

Proliferation was detected with CCK-8 (Beyotime Institute of

Biotechnology). Briefly, 2×103 cells were cultured in 100 µL

medium in 96-well plates, incubated with 10 µL reagent for 2 h,

and analyzed using a microplate reader at a wavelength of 450 nm.

For the colony formation assay, 1 × 103 cells were seeded in a 6-well
Frontiers in Immunology 05
plate and cultured for one week, followed by fixing with 4%

paraformaldehyde and staining with 0.25% crystal violet.
Cell invasion assays

For the cell invasion assays, 8 mm micropore inserts in 24-well

cell culture plates were used. For cell invasion experiments, 5 × 104

cells were seeded into upper wells coated with 50 mL diluted

matrigel without FBS. In transwell assay, 10% FBS was added to

lower wells. Wells were fixed with 4% paraformaldehyde for 30 min

and stained with 0.25% crystal violet for 20 min.
Wound healing assay

T24 and UM-UC-3 cells were seeded on 6-well plates and

grown to ply overnight. Twenty-four hours after transfection, plot

the channel on the monolayer of cells with a 10 mL micropipette tip.

T24 and UM-UC-3 cells were then rinsed with PBS and incubated

for an additional 24 hours in serum-free medium at 5% CO2, 37°C.
Statistical analysis

All analyses were completed by using R programming language

(version 4.1.2) and its relevant packages, as well as Graphpad Prism

8.0.2.Wilcox’s test compared variables between two risk score groups.

Chi-square tests examined the link between risk groups and

clinicopathological features. Spearman’s correlation was employed

to assess group correlations. The Kaplan-Meier curve analyzed

survival data. The R package time performed the ROC analysis.

Univariate and multivariate Cox regression analyses identified

independent prognostic factors. A two-sided P < 0.05 was

considered statistically significant. Furthermore, p-value summaries
TABLE 1 The primers used for real-time PCR are designed and synthesized by Sango Biotech (Shanghai, China).

Gene Name Primer Type Primer Sequence Product Length

SPINK4 Forward primer 5’-CAGTGGGTAATCGCCCTGG-3’ 100

Reverse primer 5’-CACAGATGGGCATTCTTGAGAAA-3’

DMRTA1 Forward primer 5’-GCAGAGACCGAGGCGTTAG-3’ 107

Reverse primer 5’-AACCTGCATCCCCGATGGTA-3’

SPINK5 Forward primer 5’-TGCTTTTCGGCCCTTTGTTAG-3’ 107

Reverse primer 5’-CACACATTGCACACTTATTGCC-3’

SLC1A6 Forward primer 5’-TGCGCCCATATCAGCTCAC-3’ 99

Reverse primer 5’-CAATGAGAGGTAACACCAGCAT-3’

FASN Forward primer 5’-CCGAGACACTCGTGGGCTA-3’ 209

Reverse primer 5’-CTTCAGCAGGACATTGATGCC-3’

GAPDH Forward primer 5’-CGGAGTCAACGGATTTGGTC-3’ 180

Reverse primer 5’-TTCCCGTTCTCAGCCTTGAC-3’
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were as follows: ****, P < 0.0001; ***, 0.0001 < P < 0.001; **,

0.001 < P < 0.01; *, 0.01 < P ≤ 0.05.
Results

Identification of glycolysis-related DEGs
associated with prognosis, and map of
these genes variants across the fused
merge dataset

A flow diagram for the present study can be found in Figure 1.

The 311 glycolysis-related genes were extracted from GSEA database.

After unicox analysis, we got 88 glycolysis-related genes which could

affect prognosis. The expression of 128 glycolysis-related genes were

differential between bladder cancer samples and adjacent normal

tissues in TCGA database. When the 88 prognosis-related genes and

the 128 differentially expressed genes overlapped, a total of 39 genes

was obtained (Supplementary Figure S1A). As shown in the heatmap,

most of the 39 overlapping genes showed an upregulation in tumor

tissue (Supplementary Figure S1B). It can be seen from the forest

plots using the univariate cox analysis that most of the genes are high-
Frontiers in Immunology 06
risk genes (Supplementary Figure S1C). STRING’s PPI network

showed the candidate genes’ interactions. The interaction network

among these genes indicated that G6PD, GAPDH and PFKM were

the hub genes (Supplementary Figure S1D). In order to follow-up

research and expand the sample size, we integrated TCGA dataset

and GEO dataset (GSE13507, GSE31684) to obtain merge dataset

(13449 genes, 662 tumor samples). Finally, 34 DEGs derived from the

intersection of TCGA-DEGs, GSE13507 and GSE31684 as the

research object were ultimately selected. It can be noted that these

34 differentially expressed genes exhibit a higher prognostic value,

based on both univariate Cox regression analysis and Kaplan Meier

(KM) curves (Table 2). These specific 34 genes status of CNVs and

mutations are also depicted in Supplementary Figure S2. Among

these, copy number amplifications (>10%) were encountered in 5

genes (B3GAT3, SOX9, GALK1, PGM2L1 and PMM2) and copy

number losses (>10%) in 2 genes (CHPF and GMPPA)

(Supplementary Figure S2A). Both chromosome 12 and 20 had the

highest number of five genes (Supplementary Figure S2B). Moreover,

mutation of each gene in different samples is shown in waterfall plot

(Supplementary Figure S2C). Of these, MUP205 has the highest

frequencies of gene mutation (6%); however, the remaining genes

were less than or equal to 1%.
FIGURE 1

Flow diagram of the study.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430583
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shen et al. 10.3389/fimmu.2024.1430583
Identification of molecular subtyping and
its prognostic significance based on the
above merge BCa dateset

First, the expression pattern of the 34 genes was used to probe

the possible bladder cancer clusters from the merge cohort.
Frontiers in Immunology 07
All bladder samples were divided into k (k = 2-9) clusters using

“Consensus Cluster Plus” R package. According to the CDF and

CDF delta area curves of the consensus score, and heatmaps of

consensus matrices, the most stable cluster when k = 6 was

delineated (Figures 2A–C). Thus, six molecular subtypes were

established. To test this further, we carried out PCA analysis
TABLE 2 According to TCGA-2GEO merge cohort, both uniCox regression and KM curves revealed 34 glycolysis-related genes with significantly
prognostic significance.

Gene ID HR(uniCox) HR.95L (uniCox) HR.95H (uniCox) Pvalue (uniCox) Pvalue (KM)

PYGB 1.177124973 1.044121603 1.327070716 0.00768163 0.001749207

ME1 1.084205115 0.993924492 1.182686151 0.068366637 0.004008069

PGM2L1 1.151544067 1.031316165 1.285787796 0.012139699 0.001545547

PPP2CB 1.28290605 1.082445567 1.520490252 0.004054996 0.000563397

CHPF 1.297704898 1.141294582 1.475550683 6.98E-05 2.45E-05

NUP205 1.21760277 1.036996391 1.429664094 0.016241653 0.000619682

TPST1 1.193933679 1.080990067 1.318677824 0.00047244 1.27E-06

CASP6 0.813637296 0.690735563 0.958406783 0.013570739 0.000947284

RBCK1 0.901322173 0.766342621 1.060076312 0.209428077 0.026685019

AURKA 1.168342073 1.058328553 1.289791526 0.00204581 8.57E-05

IDUA 0.89027279 0.804555799 0.985122028 0.024438389 0.00230427

PLOD1 1.375190984 1.200110929 1.575812865 4.53E-06 4.79E-06

SOX9 1.074959198 1.013340943 1.140324277 0.016395396 0.000311498

SLC2A3 1.179306971 1.096667766 1.268173439 8.61E-06 7.66E-06

CHST6 1.236625803 1.070149196 1.429000164 0.003989403 8.96E-05

B3GALT6 1.239814106 1.048899916 1.465477299 0.01175075 0.006558229

RAE1 1.293511489 1.056870863 1.583137571 0.012541781 0.003723595

PAM 1.131902109 1.016094115 1.260909168 0.024455926 0.001989656

TPI1 1.249796363 1.072907205 1.455849064 0.004186498 0.000871341

B3GNT3 0.955375463 0.891375205 1.023970905 0.196916662 0.04246574

B3GAT3 1.267888396 1.048140084 1.533708147 0.014520599 0.001957934

PMM2 1.178801633 1.009281304 1.376794839 0.037839546 0.001627931

ALDH1A3 1.082720142 1.009410103 1.161354441 0.026297025 0.004081642

GAPDH 1.18299621 0.998451236 1.401650859 0.052130802 0.000446617

STC1 1.150893854 1.055898025 1.25443616 0.00138651 0.001464813

SPAG4 0.918216705 0.839236999 1.004629108 0.062981795 0.003126145

HSPA5 1.203387875 1.018013956 1.422517215 0.030072056 0.006643677

G6PD 1.174422841 1.060490716 1.300595082 0.002014981 0.001332806

ENO1 1.363641011 1.170651508 1.588446088 6.79E-05 0.000136222

DCN 1.087284071 1.023407483 1.155147554 0.006749106 0.000448517

GMPPA 1.378955387 1.124226987 1.691400387 0.002044367 0.000475416

KDELR3 1.162056678 1.064221595 1.268885851 0.000816627 8.91E-05

PFKM 1.066270934 0.92795224 1.225207134 0.365377832 0.075171376

GALK1 1.491099325 1.276840983 1.741310961 4.47E-07 1.75E-07
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(Figure 2D). Moreover, Kaplan-Meier curves showed that the 6

clusters differ significantly in terms of overall survival rates (OS),

disease specific survival rate (DSS) and progression free survival rate

(PFS) (p < 0.01), whereas not disease-free survival (DFS)

(Figures 2E-H).

To further search the significance of several clinical traits (fustat,

age, sex, T stage, N stage and grade) in the six clusters, chi-square test

was carried out. As shown on the tip of the heatmap, the clinical traits

(fustat, age, T stage, N stage, grade) showed a significant distribution

in the 6 clusters (p <0.05), whereas sex has no dramatic difference (p >

0.05) (Figure 3). Heatmap also demonstrated the expressional profiles

of the 34 glycolysis-associated prognosis genes at six molecular

subtypes in merge cohort (Figure 3). We can see cluster A has the

best OS, meanwhile cluster D has the worst OS. To explore the

underlying molecular mechanism of above 6 molecular typing, we

next performed GSVA of KEGG pathway gene sets to figure out

dynamics of biological processes and pathways between every two
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typing based on merge dataset (Supplementary Figure S3;

Supplementary File S3). With ssGSEA algorithms, we further

explored the interrelation between the 6 clusters and immune

status. The infiltration levels of CD56dim-natural-killer-cellna,

Monocytena and Type17-T-helper-cellna were obviously higher in

cluster A versus the other subtypes. Cluster B were characterized by a

obviously higher infiltration level of Type2-T-helper-cellna,

Neutrophilna, Activated-CD8-T-cellna and Activated-CD4-T-cellna

(Supplementary Figure S4).
Construction and internal validation of the
glycolysis-associated gene signature based
on merge cohort

In order to uncover the hidden cause of the differences in

clinical and immune characteristics between the six clusters in the
FIGURE 2

Identification the glycolysis-associated molecular subtypes of BCa. (A) Cumulative distribution function (CDF) curves of the consensus scores for
different subtype numbers (k = 2-9). (B) CDF delta area curve with k = 2 to 10. (C) Heatmaps of consensus matrices for k = 4, 5, 6 based on CDF
curve estimation. (D) Principal component analysis (PCA) for six molecular typing. A single point represents each sample, and each subtype is
represented by a different color. (E-H) KM survival analysis of OS, DSS, PFS, and DFS for the six subtypes.
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merge cohort, we compared the differences in mRNA expression of

the 6 clusters, and identified 3754 genes that were differentially

expressed between the clusters. (FDR <0.05, |log2FoldChange| >1)

(Supplementary Figure S5; Supplementary File S4). To better

understand the functional pathways involved in the 3754 DE-

genes in BCa, GO function and KEGG pathway enrichment

analyses were performed. We got 883 enriched GO terms (777

BP, 63 CC and 43 MF) and 37 KEGG pathways with adjusted p-

value <0.0001, which were presented at Supplementary Figure S6

and Supplementary File S5. Univariate Cox regression analysis was

used to analyze the above 3754 differentially expressed genes to

determine their clinical value and obtained 1223 genes (P <0.01)

(Supplementary File S6). After that, LASSO regression was used to

remove the genes that show strong collinearity. The independent

prognosis-related genes were validated with a multivariate Cox

regression analysis (Supplementary Figure S7). Finally, we got 18

of the 1223 genes for risk scoring model: CPNE8, CXCL6, COMP,

SPINK4, HLA−DQB2, CLIC3, DMRTA1, MAP2, ZNF600, CYTL1,

DIP2C, FOXC2, LPXN, SPINK5, SLC1A6, FASN, SCD and EGFL6.

As showing in the boxplot, we could see the correlation between the

model genes and the six clusters (Supplementary Figure S8). For

example, SPINK4 and ZNF600 are markedly expressed in subtype

A, while MAP2 is markedly expressed in subtype D, which means

that they may be marker genes for the two subtypes, respectively.

Subsequently, we stochastically divided the 662 bladder cancer

patients from merge cohort into training set and self-validation set

at a ratio of 7:3 (Table 3). A median risk score was used to categorize

all patients into high risk or low risk groups. Kaplan-Meier survival

curve, the ROC analysis and the calibration curves of 1-, 3-, and 5-

year OS from overall (Figure 4A), training (Figure 4B) and self-

validation set (Figure 4C) were plotted to assess accuracy of the

prognostic model. As revealed by Kaplan-Meier survival analysis,
Frontiers in Immunology 09
the OS of patients with BCa at high risk was significantly lower than

that of patients at low risk, among the all, training and self-

validation sets (P < 0.001, P < 0.001 and P = 0.003). An analysis

of ROC curves showed good predictive performance for the overall

(1-year AUC =0.762, 3-year AUC = 0.755, 5-year AUC = 0.755), so

does the training set and internal self-validation set. Furthermore,

the concordance index (C-index) for the overall set, the training set

and internal validation set, was separately 0.712 (95% CI: 0.6826-

0.7414), 0.743 (95% CI: 0.7097-0.7763), and 0.687 (95% CI: 0.6282-

0.7458). Furthermore, the risk score model, including risk score

ranking, living status, gene expression heat maps and survival plot

were further explored for overall, training and self-validation sets

and shown in Figures 4A–C, respectively. Patients with high risk

group had higher mortality rates than those with low risk group

when we compared their survival times. Analysis of heatmaps

revealed expression profiles of the 18 modeled genes in high risk

and low risk group. Corresponding risk group, age, gender, grade, T,

N, and fustat were also shown the top of the heatmap. In addition,

we conducted other external validation dataset analysis to

evaluate the prognostic model’s effectiveness and accuracy in

clinical practice.
The clinical outcome predictability of the
signature combined with
clinicopathological characteristics

In order to study the relationship between the glycolysis-related

gene signature and clinical features, we used chi-square or wilcox

nonparametric tests across the fused merge set to compare

risk scores between different clinical features (Supplementary

Figure S9). As presented in Supplementary Figure S9A, patients
FIGURE 3

Heatmap of 34 glycolysis-related prognosis DEGs, and the chi-square analysis between corresponding the six molecular subtypes and commonly
clinical traits. *p < 0.05, ***p < 0.001.
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with high grade had higher risk scores. Moreover, T3-4 patients,

>65 years patients and N1-3 exhibited higher risk scores (P<0.05).

Furthermore, the chi-square test was also performed to assess the

association between the risk score group and available clinical

parameters, in order to confirm the clinical value of the signature

(Supplementary Figure S9B). There were significantly correlations

between risk score group and age, grade, fustat, T, or N. We also

conducted association analysis between the risk score and published

TCGA_BCa immunotyping results (Supplementary Figure S10).

Obviously, patients with immune C1 or C2 than C3 or C4 had

higher risk scores.

Furthermore, risk score was shown to independently impact OS

in the univariate and multivariate Cox proportional hazards models

(univariate Cox: HR (95% CI), 1.193 (1.155-1.232), P < 0.001;

multivariate Cox: HR (95% CI), 1.174 (1.132-1.217), P<0.001;

Figures 5A, B). The results of this study suggest that our risk

score is also a viable independent prognostic factor for bladder

cancer patients. In order to provide a clinically practical tool for

predicting the probability of 1-, 3- and 5-year OS, we structured a

nomogram using commonly clinic-pathological features (age, sex,

grade, T stage, and N stage) and the risk score (Figure 5C).

According to our constructed nomogram, the calibration line

agreed well with the curve calculated (Figure 5D). When ROC

curves were compared between the nomogram’s prognostic

accuracy and clinical features, the nomogram showed greater

predictive power and accuracy (Figure 5E). The concordance

index (C-index) for the nomogram was 0.736 (95% CI: 0.7066-

0.7654). There was a greater accuracy in survival predictions at 1-, 3-

and 5-years based on the decision curve (Figure 5F). To explore the

underlying molecular mechanism of the glycolysis-related prognosis
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model, we next conducted GSEA of HALLMARK, KEGG and GO

gene sets to figure out difference of biological function and pathways

between the high- and low-risk groups based on the merge cohort

(Figures 5G–I; Supplementary File S7). Of them, the most

significantly enriched 20 HALLMARK terms (including,

‘Epithelial Mesenchymal Transition’, ‘E2F Targets’, ‘G2M

Checkpoint’, ‘Angiogenesis’ and ‘Hypoxia’ in the high-risk group,

etc.) are shown in Figure 5G. For KEGG terms, GSEA results from

KEGG terms revealed that the high-risk group was primarily

enriched in “ECM receptor interaction”, “cell cycle”, “focal

adhesion”, “DNA replication”, “GAP junction”, “P53 signaling

pathway” (Figure 5H). For GO terms, the high-risk group was

primarily enriched in “MF-extracellular-matrix-structural-

constituent”, “BP_collagen fibril organization”, “BP_external

encapsulating structure organization”, “MF_collagen binding” and

“CC_collagen containing extracellular matrix”, and the low-risk

group was primarily enriched in “MF_bitter taste receptor

activity”, “MF_odorant binding”, “MF_G protein coupled receptor

activity”, “BP_detection of chemical stimulus”, and “BP_detection

of stimulus involved in sensory perception” (Figure 5I).

Subsequently, BCa patients were divided into subgroups

according to age, stage_T, stage_N, gender and grade,

respectively, and KM analysis was further conducted in each

subgroup. We can see high risk group with a bad prognosis in the

two age subgroups (P <0.001), T1-2 and T3-4 subgroups (P <0.01),

both N subgroups (P <0.01), both gender subgroups (p<0.01), both

survival status subgroups (p<0.001), and high grade subgroup

(P <0.001); however, high risk group did not show a bad

prognosis in the low grade subgroup (P = 0.156) (Supplementary

Figure S11).
TABLE 3 The merge dataset (662) was randomly divided into Train (467) and Test (195) groups.

Covariates Type Total cohort (662) Testing internal cohort (195) Training cohort (467) Pvalue*

Sex
Female 162 (24.47%) 48 (24.62%) 114 (24.41%)

1
Male 500 (75.53%) 147 (75.38%) 353 (75.59%)

Age
<=65 263 (39.73%) 89 (45.64%) 174 (37.26%)

0.0546
>65 399 (60.27%) 106 (54.36%) 293 (62.74%)

T

T1-2 289 (43.66%) 89 (45.64%) 200 (42.83%)

0.7108T3-4 340 (51.36%) 99 (50.77%) 241 (51.61%)

unknow 33 (4.98%) 7 (3.59%) 26 (5.57%)

N

Negative 434 (65.56%) 138 (70.77%) 296 (63.38%)

0.2985Positive 170 (25.68%) 46 (23.59%) 124 (26.55%)

unknow 58 (8.76%) 11 (5.64%) 47 (10.06%)

Grade

High 528 (79.76%) 152 (77.95%) 376 (80.51%)

0.6471Low 131 (19.79%) 41 (21.03%) 90 (19.27%)

unknow 3 (0.45%) 2 (1.03%) 1 (0.21%)

Fustat
Alive 388 (58.61%) 121 (62.05%) 267 (57.17%)

0.2824
Dead 274 (41.39%) 74 (37.95%) 200 (42.83%)
*Significant difference (p < 0.05 using Chi-square test).
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The external validation of the glycolysis-
associated gene signature based on four
additional cohorts

To evaluate the effectiveness and accuracy of the above 18 gene

prognostic model in clinical practice, we conducted external

validation using four independent datasets, including IMvigor210

GSE48075, GSE32894 and GSE48276 dataset from GEO database

(Figures 6, 7). It is worth mentioning that the IMvigor210 cohort, a

cohort of 348 MIBC patients treated with Atezolizumab (PD-L1
Frontiers in Immunology 11
inhibitor), was included to further evaluate the predictive capacity

of the prediction models in BCa immunotherapy cohorts.

For IMvigor210 dateset, patients with high risk had a markedly

worse OS than those with low risk based on the Kaplan-Meier curve

(Figure 6A, P<0.001). Time-dependent ROC curves were used to

assess the predictive performance of the risk score for OS, and the

curve area (AUC) reached 0.679 at 10 months, 0.708 at 20 months

(Figure 6B). The C-index based on the IMvigor210 set was 0.625

(95% CI, 0.5878–0.6622). Compared with the ideal model, the

calibration plot for an OS of 10 months and 20 months was a
FIGURE 4

Stratification of overall, training and self-validation set from the fused merge dateset. Kaplan-Meier survival plots, ROC curves for 1-, 3-, 5-years
along with the c-index, calibration curve, the distribution of risk score ranking and survival status, model gene expression heatmaps with order of
increasing risk score, and PCA analyses in the all (A), training (B) and self-validation set (C).
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good predictor (Figure 6C). The spread of risk scores were revealed

for the bladder cancer samples from IMvigor210 cohort. Green

indicates low risk, red indicates high risk. The spread of overall

outcome was illustrated (Figure 6D). In green, the dots indicate a
Frontiers in Immunology 12
live patient, while in red, the dots indicate a dead patient. It is

evident that bladder cancer patients with higher risk scores have a

worse prognosis (Figure 6E). The heatmap showing expression of

these 18 genes in the two groups (Figure 6F). And, the wilcox rank-
FIGURE 5

Establishment and evaluation of the nomogram. (A, B) The risk score was independent risk factors for BCa by univariate and multivariate Cox
regression analyses of overall survival. (C) Construction of a glycolysis-related gene signature combined with clinical features nomogram for
predicting the 1-, 3- and 5-year OS rates. (D) Calibration curve of nomogram. (E) A multi-index time-dependent ROC analysis was employed to
evaluate the predictive accuracy of the glycolysis-related gene signature or our nomogram, and compare it with other clinical traits. (F) DCA of 1-,
3- and 5-year was applied to render clinical validity to the constructed gene signature or nomograms. (G–I) The most significant HALLMARK, KEGG
pathways and GO functional enrichment in the high risk and low risk groups by GSEA method are displayed. *p < 0.01, ***p < 0.001.
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sum test and chi-square test was also adopted to evaluate the

correlations between the risk score group and available clinical

variables (Figures 6G, H). Obviously, there were significantly

associations between risk score/group and treatment response,

metastatic state, immune phenotype, or TCGA subtype. It is

worth saying that PD/SD patients exhibited higher risk scores

than CR/PR patients, and patients with high-risk were almost all

PD/SD cohort (89%).
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Similarly, for GSE32894, GSE48276, and GSE48075 datasets,

the KM, ROC and calibration curves analysis results in all three

external validation sets were highly consistent with those of the

training or above-mentioned validation sets; namely, patients with

the high-risk group exhibited a worse prognosis (Figure 7).

Moreover, These graphs, including risk score distribution, living

status, gene expression heatmap, were plotted in above these

verification cohorts (Supplementary Figure S12). It is notable that
FIGURE 6

External validation of the 18 model genes signature in the IMvigor210 cohort by different aspects such as (A) survival outcomes, (B) ROC curves,
(C) calibration plots, (D) the distribution of risk scores, (E) the distribution of overall outcomes and (F) the gene expression heatmap analysis.
(G, H) Correlation between riskscore group and clinicopathological data of BCa patients via Wilcox rank test or Chi-square test. CR, complete
response; PR, partial response; SD, stable disease; PD, progressive disease.
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the C-index eventually reached 0.773 (95% CI, 0.6711–0.8749),

0.658 (95% CI, 0.5639–0.7521), and 0.777 (95% CI, 0.6672–0.8868)

for the GSE32894, GSE48276, and GSE48075 datasets, respectively.

The results of all these validation sets also suggested that the 18 gene

signature is a good prognostic factor of BCa patients with or

without ever receiving immunotherapy.
The correlation between the prognostic
model and aforementioned glycolysis-
related clusters, TMB, mapping of
mutations as well as the tumor immunity

The Sankey diagram fully illustrated the association between

glycolysis-related clusters, model risk score group, and clinical

characteristics (Figure 8A). The boxplot was used to understand

the relationship between the six above-mentioned glycolysis-related

clusters and risk score (Figure 8B). As shown in the boxplot, the

risks core was dramatically higher in the cluster D, while showed a

dramatically lower level in the cluster A (Kruskal-Wallis test, p<

2.2e−16). Then, we further subdivided patients into 4 subgroups

including high TMB plus high risk score, low TMB plus high risk

score, high TMB plus low risk score and low TMB plus low risk

score to assess the synergistic effects of TMB and risk score in

bladder cancer. The high TMB plus low risk score subgroup
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displayed better survival than the high TMB plus high risk score

subgroup (log-rank test, p < 0.001) (Figure 8C). To explore the

relationship between risk group and immune status, we quantified

immune-associated enrichment scores using ssGSEA algorithm. All

the score of 14 immune cell, especially the score of CD56-bright-

natural-killer-cellna, Macrophagena, Type-2-T-helper-cellna,

Monocytena, Natural-killer-T-cellna, Neutrophilna, Type-17-T-

helper-cellna and Mast-cellna were significantly different between

the low and high risk group (all adjusted P<0.05, Figure 8D).

Furthermore, we examined somatic variants of driver genes

between low- and high-risk groups using the R package

“maftools”. An analysis was carried out on the top 20 driver

genes with the highest mutation frequency in high and low risk

groups (Supplementary Figure S13).
The potential role of modeled genes in
predicting the immunotherapeutic efficacy
in multiple independent
immunotherapy cohorts

A comparison was made between high risk and low risk groups

for the expression of immune checkpoint-related genes and HLA

genes by wilcox ranksum test. We found significantly different

expression of most immune checkpoint-related genes and HLA
FIGURE 7

External identification of the prognostic model for bladder cancer based on (A) GSE32894, (B) GSE48276, and (C) GSE48075 datasets.
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genes between the two groups, such as LGALS9, NRP1, TNFSF9,

TNFRSF14, CD276, CD40, HLA-DQB2, HLA-DOA, HLA-G,

HLA-B, HLA-A, HLA-F, HLA-DMA, and HLA-E (Figures 8E, F).

These results suggested that the glycolysis-associated gene signature

was associated with the regulation of tumor immune checkpoints.
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Afterward, we used the scores of IPS, IPS with CTLA4 blocker, IPS

with PD1 blocker, and IPS with CTLA4 plus PD1 blocker to assess

the modeled potential application values of ICBs for BCa; and IPS

score in low-risk group was significantly higher compared with that

in the high-risk group (Figure 8G).
FIGURE 8

(A) Sankey diagram of glycolysis-related gene cluster distribution in groups with different risk score and survival outcomes. (B) The boxplot showing
the relationship between the 6 clusters and risk score. (C) Kaplan–Meier curves for patients stratified by both TMB and risk score. (D) The difference
in the expression of immune cell between high and low risk score. (E, F) The difference in the expression of immune checkpoint-related genes and
HLA genes between high-risk and low-risk groups. (G) The modeled potential application values of ICBs for BCa. *p < 0.05, **p < 0.01, ***p < 0.001.
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Immunotherapy using anti-PD-1/PD-L1 have undoubtedly

made a great breakthrough in cancer treatment. Thus, we

conducted the association analyses between modeled genes

expression and effectiveness of immunotherapy in authenticity

population of bladder cancer (IMvigor210, GSE111636 and

GSE176307), melanoma (GSE78220), renal cell carcinoma

(GSE67501), and our mRNA sequencing (Truce01). Patients were

divided into two groups as the low and high expression groups by

the median expression level of modeled genes. We identified that

the expression level of CPNE8/FOXC2/SPINK5/CXCL6 was

negatively correlated with objective responses to anti-PD-L1 or

anti-PD-1 treatment, and patients with responses to
Frontiers in Immunology 16
immunotherapy presented lower expression in the Imvigor210,

GSE111636, GSE176307, GSE78220 or GSE67501 datasets

(Figure 9). Conversely, we also found that the expression level of

DMRTA1/SCD/LPXN was positively correlated with responses to

immunotherapy in the GSE67501, GSE111636, GSE176307 or our

mRNA sequencing cohorts (Figure 9). Moreover, in our ongoing

single-arm phase II clinical study (TRUCE-01, NCT04730219), we

also illustrated that the expression level of CLIC3/COMP/FASN/

SCD/SLC1A6/ZNF600 in BCa cases with response to tislelizumab

combined with nab-paclitaxel therapy significantly decreased after

treatment, reversely the expression level of CPNE8/CYTL1/

DMRTA1/FOXC2 increased after treatment in non-responsive
FIGURE 9

The expression level of the modeled genes in groups with a different immunotherapy response status. (A-F) These modeled genes expression in
different cohorts, including GSE111636, Imvigor210, GSE176307, GSE78220, our mRNA sequencing (TRUCE-01), and GSE67501.
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cases (Figure 10). In all, these results show that expression of

modeled genes can help predict immunotherapy response.
Exploration of the tumor immune
microenvironment and chemosensitivity
based on the glycolysis-associated gene
prognostic model

Tumor progression, prognosis, and therapeutic effect, especially

with immunotherapy, are dependent on the level of immune cell

infiltration in tumor microenvironment (TME). According to the 7
Frontiers in Immunology 17
immune-infiltration algorithm, we studied the correlation between

risk score and immune cell infiltration. A heatmap of 45 significant

differences of immune cells including CD8+ T cells, cancer

associated fibroblast, B cell, macrophage M2, neutrophils, NK cell

and endothelial cell and so on in the two risk groups is presented in

Figure 11A (Wilcoxon test, P < 0.01). Meanwhile, using spearman’s

rank correlation analysis, we compared riskscore and immune-

infiltration cells (Figure 11B). And in Figure 11C, the linear fit

between riskscore and immune cells that affect immunotherapy is

further depicted. Beside this, the ssGSEA immune-cell score from

merge and IMvigor210 cohorts was implemented to investigate

whether riskscore is associated with immune cell enrichment in
FIGURE 10

The changes of partially modeled genes expression before and after tislelizumab combined with low-dose nab-paclitaxel (TRUCE-01) of bladder
cancer (A-J).
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BCa; our signature showed a significant negative correlation with

CD8+ T cells infiltration (Supplementary Figure S14). That

argument were consistent with the above conclusion. These

results suggested that the glycolysis-associated gene signature was

associated with the regulation of tumor immune checkpoints.

In order to further prove that our glycolysis-related risk score has

good reliability, we studied the drug sensitivity of the compounds

picked out from glycolysis-related 18 genes of this model. A

transcriptome analysis of 60 cancer cell lines collected from the

CellMiner database was used to screen out these compounds using

our 18 model genes. Next, we examined the correlation between 18

model genes expression and IC50 for each drug type (Supplementary

File S8), and thus screened out top 20 most significant IC50-
Frontiers in Immunology 18
associated agents (Supplementary Figure S15A) and several

clinically commonly used drugs (including Cisplatin, Docetaxel,

Doxorubicin, Paclitaxel, Gemcitabine, Methotrexate and

Vinblastine) presented in Supplementary Figure S15B. Also, by

using the pRRophetic algorithm, we determined the IC50s of four

commonly used chemotherapeutic drugs that treat BCa. Low-risk

group had a relatively high effect on these drug sensitivity tests

compared with high-risk group (P<0.05, wilcox test; Supplementary

Figure S15C). Further, we conducted a spearman analysis between

the risk score and the IC50 of the chemotherapy agents listed above.

As evident from Supplementary Figure S15D, correlation analysis

results matched those of Wilcox analysis of the risk groups

mentioned earlier (P<0.05, spearman correlation test).
FIGURE 11

Associations between glycolysis-related gene signature and immune-cell infiltration evaluated by seven different approaches. (A) There were
significant differences in some immune infiltrate components between low- and high-risk groups. (B, C) Correlation analysis between the riskscore
and infiltrating immune cells abundance. *P < 0.05, **P < 0.01 and ***P < 0.001.
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The model-associated partial genes
expression validation by qRT-PCR and the
HPA database

Subsequently, we analyzed the protein expression levels of several

genes of interest using the Human Protein Atlas (HPA). Among them,

SPINK5, DMRTA1, SLC1A6, and FASN were upregulated in BCa

tissues. SPINK4 were downregulated compared to normal tissues, as

shown in Figure 12A. Furthermore, the mRNA expression levels of

these genes were detected in 10 pairs of BCa tissues and corresponding

normal tissues. The qRT-PCR results showed the similar trend as the

above protein results, as shown in Figure 12B.
The biological behavior of FASN in
vitro experiments

To investigate the biological function of FASN, we performed in

vitro experiments using BCa cells. In the beginning, we assessed

FASN expression in 10 bladder cancer tissue specimens using

western blotting (WB), revealing higher expression levels in

tumors compared to adjacent noncancerous tissues (Figure 13A).

Subsequently, we explored the functional impact of FASN on the

biological behavior of BCa cells. T24 and UM-UC-3 cells were

transiently transfected with siRNAs targeting FASN or control

siRNAs for 48 hours, and transfection efficiency was confirmed
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by WB (Figure 13B). Specifically, we evaluated the effect of FASN

knockdown on the migration ability of T24 and UM-UC-3 cells

using wound healing and transwell migration assays. Our results

demonstrated that FASN knockdown significantly inhibited the

migration and invasion ability of these cell lines (Figures 13C, D).

Furthermore, we assessed the effect of FASN knockdown on T24

and UM-UC-3 cell proliferation using colony formation and CCK-8

assays, revealing a significant suppression in proliferation compared

to controls (Figures 13E, F).Collectively, these findings indicate that

FASN plays a crucial role in promoting proliferation, migration,

and invasion of BCa cells.
Discussion

In many cases, patients who are diagnosed with bladder cancer

have advanced disease at the time of diagnosis, so they miss the ideal

treatment period, and their prognosis is poor. Currently, the

International Union Against Cancer (UICC) and International

Society of Urological Pathology (ISUP) are the most common

criterion used to determine bladder cancer prognoses. Patients may

still experience different outcomes at the same stage because their

tumors may have different molecular characteristics. It is therefore

imperative that a more sensitive prognostic diagnostic method is

developed that is based on the molecular characteristics of bladder

cancer patients. This study aimed to identify molecular signatures
FIGURE 12

Validation of model-associated gene expression. (A) The protein expression levels of the glycolysis-related partial model genes were confirmed by the
HPA database. (B) qRT-PCR was utilized to detect the expression of SPINK4, SPINK5, DMRTA1, SLC1A6, and FASN in 10 paired tumor tissues. *P < 0.05.
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that can aid in predicting prognoses and evaluating the efficacy of

immunotherapy. For this study, we analyzed the mRNA expression

and clinical data of BCa in a public database and identified 34

glycolysis-related DEGs associated with prognosis. Based on the 34

genes, we divided the samples into 6 clusters and found that cluster A

had the best prognosis, while cluster D had the worst prognosis.

Subsequently, 29 immune cells were also analyzed for their levels of

infiltration by ssGSEA algorithm. We found that the infiltration of

CD56dim-natural-killer-cellna, Monocytena, and Type17-T-helper-

cellna were dramatically higher in cluster A than in cluster D. Some
Frontiers in Immunology 20
studies have pointed out that tumor progression and blood-borne

metastasis could be inhibited by the CD56dim natural killer cells

within the immune system (25). In addition, cytokines appear to

direct monocytes to kill malignant cells by inducing cell death and

phagocytosis (26). Some researchers point out Type17-T-helper-

cellna in the tumor correlated with reduced tumor progression and

improved patient survival (27). These views may be helpful to

introduce the reason why cluster A had the best prognosis.

Afterward, we established a Glycolysis-related 18-gene signature

in order to more accurately predict prognosis of BCa patients in the
FIGURE 13

Loss‐of‐function experiments were conducted to explore the biological function of FASN in vitro. (A) WB assay to examine the FASN protein
expression in BCa tissues (T) and normal bladder tissues (N), b-actin protein served as control. (B) FASN small-interfering RNA (siRNA) transfection
efficiency was assessed by WB in T24 and UM-UC-3 cells. (C) The wound healing assay demonstrated the capacity of migration in T24 and UM-UC-
3 cells. (D) The transwell assay demonstrated the capacity of invasion in T24 and UM-UC-3 cells. (E) The colony-forming assay detected the
proliferation ability of tumor cells. (F) CCK-8 assays were utilized to detect cell proliferation ability in T24 and UM-UC-3 cells. ****p < 0.0001.
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era of precision medicine based on the fused merge cohort (including

TCGA, GSE13507 and GSE31684) through LASSO regression.

Among these selected partial genes, the protein or mRNA

expression of them was confirmed by the HPA database and qRT-

PCR. The 18 genes were CPNE8, CXCL6, COMP, SPINK4, HLA-

DQB2, CLIC3, DMRTA1, MAP2, ZNF600, CYTL1, DIP2C, FOXC2,

LPXN, SPINK5, SLC1A6, FASN, SCD and EGFL6. This predictive

signature has a high prediction consistency, discrimination capability,

and accuracy. As a side note, the model has been validated in several

external cohorts of BCa (IMvigor210, GSE32894, GSE48276 and

GSE48075). Based on Kaplan-Meier analysis, low-risk patients had a

promising survival advantage. And, according to the test in the merge

training set, internal validation set, and the four external testing sets,

we found that this model had excellent accuracy. Furthermore, we

explored the relationship between gender, age, grade, T stage, N stage

and the modeled risk score/groups. There was a significant increase in

riskscores among BCa patients with high-grade, T3/4, N1-3,

immune-excluded, liver metastases or the immunotherapy

ineffective-response (SD/PD) as compared with oppositional traits.

So that, these features were incorporated into a nomogram which

could be used to predict clinical survival.

Therefore, we performed a systematic investigation analysis of

these genes among the model. Amember of the Copine family, CPNE8

contributes to the development of a variety of tumors. Ovarian clear

cell carcinoma is dramatically inhibited by CPNE8 knockout studies

(28). In other study, prognosis was related to high expression of CPNE8

in gastric cancer (29). Cancers such as prostate cancer, gastrointestinal

tumors, and breast cancer appear to be mediated by CXCL6 (30). A

cartilage metabolism marker, COMPmodulates the cellular phenotype

during tissue genesis and remodeling. COMP has been shown to

promote the progression of breast, colon, and prostate cancers in recent

studies (31–33). SPINK was originally composed of four members in

humans and belongs to the Kazal type of serine protease inhibitor

family (34). A recent study showed that serum SPINK4 levels were

elevated in CRC preoperatively, decreased after resection, and were

associated with distant metastases (35). The HLA-DQB2 gene has a

limited polymorphism, an unknown function, and at least two

transcription variants: in version 1, the full-length beta-chain is

encoded, while in version 2, exon 4 is absent, which allows soluble

proteins to be generated. There is immunological significance to HLA-

DQB2 genes that have poor polymorphism, according to some

observations (36). CLIC3, an intracellular chloride channel with 236

amino acids, resides at 9q34.3. Chloride ions are promoted by encoded

proteins, which have a size of 26.6 ku (37). The prognosis is poorer for

BCa patients with high levels of CLIC3 mRNA, as well as adverse

clinicopathological characteristics. Using CLIC3, prognostic

biomarkers of BCa can be identified (38). Genes encoded by the

DMRT family play an important role in sexual development. There is a

correlation between bladder cancer prognosis and DMRTA1

expression (39). MAPs are proteins associated with microtubules,

which consist mainly of tubulin (40). Neurons express MAP2 and its

subcellular distribution is particularly pronounced in dendrites and

soma (41). In both vitro and in vivo, studies have demonstrated that

MAP2 expression can reduce melanoma cell growth and proliferation

(42). An important transcriptional regulator, ZNF600, is a zinc finger

protein. New loci of phospholipids have been associated with ZNF600
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in recent GWAS studies (43). A novel cytokine called CYTL1 has been

detected in CD34+ hematopoietic cells for the first time. As CYTL1 is

hypermethylated in breast, lung and stomach cancers, its expression is

significantly reduced in these cancers. As a result of decreasing STAT3

phosphorylation, CYTL1 could inhibit tumor metastasis (44). From

worm to human, DIP2C is a member of the disconnected interacting

protein 2 (DIP2) family and plays an important role in fatty-acid

metabolism (45) and methylation machinery (46). In lung cancer

tissues (47) and breast cancer cells (48), DIP2C was found to be

significantly mutated. As a result of its somatic mutations, the protein

function in breast cancer tissues might be affected, which is thought to

be involved in tumor development (49). Known as winged helices

because of the butterfly-like appearance of their loops, FOX proteins

are a family of transcription factors (50). The transcription factor

FOXC2 plays a crucial role in both angiogenesis and

lymphangiogenesis (51), and may contribute to increased

pathological angiogenesis and neovascularization, which play a

crucial role in the growth and progression of tumors (52). Paxillin

protein family member LPXN possesses LIM domains and LD motifs

as protein-protein interaction domains (53). Prostate cancer cells

expressed LPXN, which regulated invasion and adhesion (54).

Through the PI3K/AKT pathway, LPXN also stimulate the

proliferation, metastasis, and angiogenesis of bladder cancer (55).

SPINKs are the largest group of inhibitors of serine proteases (56).

Spink5 encodes a serine protease inhibitor called LEKTI, which is

associated with lymphoid epithelial cells (57). The Wnt/b-catenin
signaling pathway can be inhibited by SPINK5 in order to act

against esophageal cancer cells proliferation, migration, and invasion

(58). In mammals, SLC1A6 is one of a family of transporters known as

the SLC1A family, which includes the excitatory amino acid

transporter EAAT1-EAAT5 and the alanine serine cysteine

transporter ASCT1-ASCT2 (59). Cancer of the bladder urothelium

can be predicted by the expression of SLC1A6 (60). In most normal

tissues except for liver and adipose tissue, FASN turns acetyl-CoA and

malonyl-CoA into FAs. Prostate cancer patients with FASN protein

overexpression have poor biochemical survival (61). Through SCD,

monounsaturated fatty acids (MUFAs) are generated that contribute to

cell growth, survival, differentiation, metabolic regulation, and signal

transduction. Cancers such as lungs, breasts, esophagus, bladders, and

liver are overexpressed in SCD (62). A member of the epidermal

growth factor superfamily (EGF), EGFL6 is involved in cell cycle

regulation, proliferation, and differentiation. Tumor-associated

endothelial cells express high levels of EGFL6, which controls the

development of blood vessels during physiological and pathological

angiogenesis (63).

Patients with bladder cancer were divided into high and low risk

groups based on the above risk model. High risk patients had a worse

prognosis. As a result of GO and KEGG analyses, we identified that

high risk individuals were activated in pathways that involved ECM-

receptor interaction. ECM-receptor interaction pathways play a key

role in the removal of tumors, adhesion, degradation, movement, and

hyperplasia. The ECM plays a role in tumor invasion and metastasis

in multiple cancer types (64, 65). During colorectal cancer, the ECM

may promote epithelial-mesenchymal transition (EMT) (66).

Therefore, patients with high risk score may benefit from drugs

that inhibit the migration and invasion of cancer cells by altering key
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adhesive protein expression patterns. Antigen processing and

presentation pathways were activated in patients with low risk

score. Therefore, the low risk group may benefit more from

immunotherapeutic drugs. Apart from that, we also analyzed the

sensitivity to chemotherapy agents commonly used for treating BCa

by calculating IC50 value, and thereby picked out candidate small-

molecule compounds.

Moreover, we also performed to assess the potential role of

modeled genes as a biomarker for immunotherapy efficacy based on

different immunotherapy cohorts (i.e., IMvigor210, GSE111636,

GSE176307, GSE78220, GSE67501, and TRUCE-01). According to

these immunotherapy datasets, we determined that the expression level

of partial genes in the model, including CPNE8/FOXC2/SPINK5/

CXCL6/DMRTA1/SCD/LPXN, etc., was remarkably associated with

the efficacy of anti-PD-L1/anti-PD-1 treatment. Hargadon et al.

reported that FOXC2 promotes melanoma progression via several

oncogenic pathways, including xenobiotic metabolism, oxidative stress

response and interferon responsiveness, as well as is a prognostic

indicator of patient response to chemotherapy and immunotherapy

(67). The immune-associated 7-IRG signature (containing gene

SPINK5) constructed by Peng et al. could validly indicate survival

prognosis and immunotherapy response of HCC patients (68).

Previous research revealed that CXCL6 can enhance the growth and

metastases of ESCC cells through activating STAT3/PD-L1 pathway

(69); on the other hand, the CXCL6 secretion by breast cancer cells

induced by Ionizing radiation that can recruit antitumor effector T

cells, convert tumors into relatively “inflamed” peripheral tissues, and

improve the effect of immunotherapy (70). Afterwards, based on our

phase II clinical studies ongoing (term_id, TRUCE-01; registration

number, NCT04730219), we identified that the expression level of

CLIC3/COMP/FASN/SCD/SLC1A6/ZNF600 in BCa groups with CR/

PR response to tislelizumab combined with low-dose nab-paclitaxel

therapy significantly decreased after treatment, whereas the expression

level of CPNE8/CYTL1/DMRTA1/FOXC2 were upregulated after

treatment in SD/PD non-responsive cases. For ovarian cancer,

aberrant activation of FASN oncogenic pathway cause the

compromised antitumor immune response by lipid accumulation in

tumor-infiltrating dendritic cells and then T-cells exclusion and

dysfunction (71); and its inhibitors TVB3664 could be combined

with other drugs for enhancing treatment efficacy of HCC (72).

Overall, the expression patterns of 18 model-related genes displayed

predictive accuracy and superb stability in detecting immunity-related

characteristics or identifying immunotherapy response.

Apart from the above, since the model was initially associated with

immune-related genes or the efficacy of immunotherapy, we then

explored how it might be applicable to immune microenvironments.

The results of 7 immune-infiltration algorithm analyses, indicated that

the riskscore showed a significant positive correlation with the

infiltration of cancer-associated fibroblasts (CAFs), macrophage M2,

neutrophils, and endothelial cells, etc; nevertheless, riskscore was

sharply and negatively associated with the infiltration level of CD8+

T, activated NK, and B cells. CAFs and macrophage M2 are the

predominant cells within the tumor stroma and are responsible for

maintaining a favorable microenvironment for tumor cell growth and

proliferation (73–75); its can both block antitumor drugs as well as

induce tumor resistance, which is closely related to poor prognoses (76,
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77). On the other hand, cells such as CD8+ cytotoxic T cells and NK

cells are capable of killing tumor cells (78, 79). In addition, high risk

individuals infiltrated more immune cells according to ssGSEA

algorithm analysis. The low risk group had higher levels of CD8+T

cells, CD56bright natural killer cells, Macrophagena cells, Monocytena

cells and Type17 T helper cells, and higher levels of immune

checkpoint genes and HLA genes, indicating that immunotherapy

may be beneficial for them.

In the present study, molecular typing of glycolysis genes is

closely related to the prognosis of BCa patients. Subsequently, we

established and validated a glycolysis-related gene signature as a

predictive prognosis, immune infiltration, or drug sensitivity tool in

BCa through integrated analysis of multiple data sets. Moreover,

differential expression of these candidate model genes were next

validated by real-time qRT-PCR and HPA database. The results also

found that these genes of model may act as a promising biomarker

for predicting the efficacy of immunotherapy in BCa patients.

Finally, we also identified FASN as significantly contributing to

BCa cells proliferation, migration and invasion via in vitro

phenotypic experiments. Of course, to determine whether the risk

model can accurately predict bladder cancer prognosis and immune

response, more clinical samples and prospective studies are needed.
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SUPPLEMENTARY FIGURE 1

Identification of the candidate glycolysis-related genes based on the TCGA

cohort. (A) Venn diagram to identify 39 prognostic glycolysis-related DEGs

between tumor and adjacent normal tissue. (B) Heatmap of expression
profiles of 39 prognosis-associated DEGs. (C) Prognostic forest plots

showing the results of the univariate Cox regression analysis of these 39
glycolysis-associated genes. (D) The PPI network analysis of these

overlapping DEGs was performed based on the STRING database.

SUPPLEMENTARY FIGURE 2

The CNVs and mutations status for these filtered 34 glycolysis-related
prognostic DEGs. (A) Frequency of copy number variations for each gene.

(B) Location of the variant at chromosome per gene. Red squares indicates
high level amplifications, blue denotes high level losses. (C) The waterfall plot

shows the mutation distribution of these genes.

SUPPLEMENTARY FIGURE 3

GSVA enrichment analysis for KEGG pathway gene sets based on merge
dataset. (A-O) The top 20 significantly enriched differences in pathway

activities scored via GSVA of KEGG gene sets between every two subtyping
group. (P) The intersection condition of differentially significant enriched

pathways between every two clusters.

SUPPLEMENTARY FIGURE 4

Comparison of the ssGSEA enrichment scores for immune-related cells
among different subtyping.
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SUPPLEMENTARY FIGURE 5

UpSet plot showed the intersection status of differentially expressed genes
between glycolysis-associated six clusters. The bar plot indicates the

intersection size (number of genes).

SUPPLEMENTARY FIGURE 6

For differentially expressed genes among the six clusters, GO function and

KEGG pathway enrichment analyses were conducted.

SUPPLEMENTARY FIGURE 7

Lasso regression further screen these prognosis-associated DEGs among the
six clusters. (A) Lasso coefficient plot of candidate genes. (B) The tuning

parameter (lambda) was chosen by cross validation.

SUPPLEMENTARY FIGURE 8

The relationship between the expression of the 18 model genes and the
glycolysis-related six clusters established by us.

SUPPLEMENTARY FIGURE 9

Association analysis between risk score/group and clinicopathological data of

BCa patients through wilcox rank test or chi-square test based on the
merge dateset.

SUPPLEMENTARY FIGURE 10

Correlation analysis between the modeled risk score and accepted

immunotyping results from the TCGA-BCa cohort.

SUPPLEMENTARY FIGURE 11

Stratification analysis of various clinicopathological factors by Kaplan–Meier

curves for the patients with bladder cancer in the high and low risk score
groups. Kaplan–Meier curves of OS in different subgroups stratified by (A) age,
(B) stage_T, (C) stage_ N, (D) gender, (E) grade, and (F) survival status.

SUPPLEMENTARY FIGURE 12

The risk score ranking, survival status scatter diagram, and expression
heatmap of modeled genes in the (A) GSE32894, (B) GSE48276, and (C)
GSE48075 cohorts.

SUPPLEMENTARY FIGURE 13

The oncoPrint in the low (A) and high (B) risk score groups based on TCGA-
BCa cohort.

SUPPLEMENTARY FIGURE 14

Bubble diagram showed the spearman correlation between riskscore and the

ssGSEA immune-associated enrichment scores from merge (A) and
IMvigor210 (B) cohorts.

SUPPLEMENTARY FIGURE 15

Correlations between risk score/group and IC50 for different drugs. (A) The
top 20 agents most significantly associated with model gene expression and

(B) several clinically commonly used drugs by Spearman rank correlation test

with p<0.05 using the CellMiner database. (C) Wilcox group analysis and (D)
spearman correlation analysis all indicated that the glycolysis-related gene

signature is robust to drug sensitivity of Cisplatin, Gemcitabine, Mitomycin C,
and Doxorubicin from the pRRophetic algorithm.

SUPPLEMENTARY FILE S1

Clinical, histopathological and survival information of TCGA_BCa, IMvigor210

and five GEO datasets (i.e., GSE13507, GSE31684, GSE48276, GSE48075,
and GSE32894).

SUPPLEMENTARY FILE S2

The efficacy information of immunotherapy from six immunotherapy
cohorts, including IMvigor210, GSE111636, GSE176307, GSE78220,

GSE67501, and Truce01.

SUPPLEMENTARY FILE S3

The pair-wise comparisons of glycolysis-related molecular typing in terms of
GSVA score of KEGG pathways were performed based onmerge datasets and

these DE-pathways are summarised in this file.
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SUPPLEMENTARY FILE S4

The pair-wise comparisons of glycolysis-related molecular typing in term of
gene expression were performed based on merge datasets and these DE-

genes are summarised in this file.

SUPPLEMENTARY FILE S5

GO function and KEGG pathway enrichment analyses were conducted for the
3754 DE-genes from the pairwise comparison between among the

glycolysis-related subtyping in BCa.
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SUPPLEMENTARY FILE S6

According to merge cohort, uniCox regression revealed 1223
molecular_typing-related DE-genes with significant prognostic significance.

SUPPLEMENTARY FILE S7

The GSEA enrichment was performed for the HALLMARK, KEGG and GO

terms in high-risk vs. low-risk group based on merge datasets.

SUPPLEMENTARY FILE S8

Correlations between 18 model genes expression and IC50 for different drugs.
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