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Background: Lung adenocarcinoma (LUAD), a predominant subtype of non-

small cell lung cancers, continues to challenge treatment outcomes due to its

heterogeneity and complex tumor microenvironment (TME). Dysregulation in

nucleotide metabolism has been identified as a significant factor in

tumorigenesis, suggesting its potential as a therapeutic target.

Methods: This study analyzed LUAD samples from The Cancer Genome Atlas

(TCGA) using Non-negative Matrix Factorization (NMF) clustering, Weighted

Correlation Network Analysis (WGCNA), and various machine learning

techniques. We investigated the role of nucleotide metabolism in relation to

clinical features and immune microenvironment through large-scale data

analysis and single-cell sequencing. Using in vivo and in vitro experiments such

as RT-qPCR, Western Blot, immunohistochemistry, and subcutaneous tumor

formation in mice, we further validated the functions of key nucleotide

metabolism genes in cell lines and animals.

Results: Nucleotide metabolism genes classified LUAD patients into two distinct

subtypes with significant prognostic differences. The ‘C1’ subtype associated with

active nucleotide metabolism pathways showed poorer prognosis and a more

aggressive tumor phenotype. Furthermore, a nucleotide metabolism-related

score (NMRS) calculated from the expression of 28 key genes effectively

differentiated between patient outcomes and predicted associations with

oncogenic pathways and immune responses. By integrating various immune

infiltration algorithms, we delineated the associations between nucleotide

metabolism signature genes and the tumor microenvironment, and

characterized their distribution differences at the cellular level by analyzing

single-cell sequencing dataset related to immunochemotherapy. Finally, we

demonstrated the differential expression of the key nucleotide metabolism

gene AUNIP acts as an oncogene to promote LUAD cell proliferation and is

associated with tumor immune infiltration.
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Conclusion: The study underscores the pivotal role of nucleotide metabolism in

LUAD progression and prognosis, highlighting the NMRS as a valuable biomarker

for clinical outcomes and therapeutic responses. Specifically, AUNIP functions as

a critical oncogene, offering a promising target for novel treatment strategies

in LUAD.
KEYWORDS

lung adenocarcinoma, nucleotide metabolism, tumor microenvironment, immune
microenvironment, AUNIP
1 Introduction

Lung cancer stands as one of the most prevalent forms of cancer

worldwide, with lung adenocarcinoma (LUAD) being the predominant

subtype among non-small cell lung cancers (1). Despite advances in

therapeutic strategies in recent years, the long-term survival rates for

patients with LUAD remain suboptimal. This challenge is partly due to

the tumor heterogeneity and the complexity of the tumor

microenvironment (TME), which collectively influence the biological

behavior of tumors and response to treatments (2). Dysregulation of

the cell cycle process is one of the fundamental mechanisms underlying

tumorigenesis, making pathways closely associated with nucleotide

metabolism viable targets for cancer therapy. Increasing evidence

suggests that abnormalities in nucleotide metabolism coexist with

other hallmarks of cancer, including metabolic reprogramming and

immune evasion (3). Therefore, targeted therapy against key genes in

nucleotide metabolism can not only inhibit the proliferation and

progression of cancer cells but also reverse the aberrant metabolic

state and restore immune surveillance. The rapid advancement of

bioinformatics has provided new perspectives and tools for cancer

research. Analyzing data from large-scale biomedical databases,

researchers can unveil new characteristics of tumor biology,

including alterations in tumor metabolism, the status of the immune

microenvironment, and their correlations with patient prognosis (4).

This study utilizes LUAD samples from The Cancer Genome

Atlas (TCGA) database, employing Non-negative Matrix

Factorization (NMF) clustering, Weighted Correlation Network

Analysis (WGCNA), and machine learning methods to explore

the role of nucleotide metabolism in LUAD. It assesses its

association with patient clinical features and the immune

microenvironment. Through the analysis of single-cell sequencing

data, this study further reveals the distribution of nucleotide

metabolism feature genes across different cell subpopulations and

their potential connections with immune regulation and the

modulation of the tumor microenvironment. By integrating a

variety of bioinformatics tools and algorithms, we aim to uncover

the potential significance and prognostic value of nucleotide

metabolism in the development of LUAD and explore its viability

as a potential therapeutic target.
02
2 Materials and methods

2.1 Data acquisition

We obtained transcriptomic data in Transcripts Per Kilobase

per Million mapped reads (TPM) format and corresponding clinical

information for 539 lung adenocarcinoma samples and 59 normal

samples from The Cancer Genome Atlas (TCGA) (access link:

https://portal.gdc.cancer.gov/). We selected samples with a final

diagnosis of lung adenocarcinoma and complete prognostic

information (patients with a survival time not equal to 0 and a

clearly defined survival status at the end of follow-up).

Consequently, a total of 503 tumor samples were included in the

subsequent analysis.

Clinical data and somatic mutation data for each patient were

also downloaded (access link: https://portal.gdc.cancer.gov/). The

Tumor Immune Dysfunction and Exclusion (TIDE) scores for this

cohort were obtained from the TIDE website (access link: http://

tide.dfci.harvard.edu/), and the Immune Phenotype Scores (IPS)

were sourced from The Cancer Immunome Atlas (TCIA) database

(access link: https://tcia.at/home) (5–7). We collected 28 gene sets

related to nucleotide metabolism from the Molecular Signatures

Database (MSigDB) on the GSEA website (access link: https://

www.gsea-msigdb.org/gsea/msigdb/index.jsp) (8, 9). The single-

cell sequencing dataset GSE207422, based on the GPL24676

platform (Illumina NovaSeq 6000, Homo sapiens), includes 15

non-small cell lung cancer samples pre- and post-immunotherapy

combined with chemotherapy, and was sourced from the Gene

Expression Omnibus (GEO) database (10).
2.2 NMF clustering for nucleotide
metabolism subtypes

Expression profiles for 1070 genes associated with nucleotide

metabolism were analyzed using non-negative matrix factorization

(NMF) clustering. The NMF technique, alongside the ‘brunet’

method, was applied to categorize the samples. The cluster

number (K) was varied from 2 to 10 to determine the best fit,
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ascertained through metrics such as cophenetic correlation,

dispersion, and silhouette scores.
2.3 Weighted correlation network analysis

The ‘WGCNA’ R package was employed to analyze protein-

coding genes in 503 LUAD samples (11). During this process, an

appropriate power exponent was selected to convert the adjacency

matrix (AM) into a topological overlap matrix. The cut height was

set at 100,000, and the R2 at 0.9. A gene consensus module

correlation matrix with phenotypes was established, selecting

nucleotide metabolism subtypes, survival time, survival status,

and tumor stage as associated phenotypes. Subsequently, modules

significantly related to the phenotype were identified, and

nucleotide metabolism genes were intersected with genes

contained in selected modules for further analysis.
2.4 Machine learning for selecting
nucleotide metabolism feature genes

Four machine learning algorithms (KNN, LogitBoost, RF,

SVM), based on the R packages ‘caret’, ‘randomForest’, and

‘xgboost’, were used to further select feature genes predictive of

nucleotide metabolism subtypes (12). Importance feature was

employed for gene importance ranking.
2.5 PCA and PCA composite score

Based on the screened nucleotide feature gene expression, PCA

dimension reduction was performed on LUAD samples using the

‘psych’ R package, and a principal component score matrix was

calculated. Samples were grouped based on their principal

component composite score NMRS, using the median.
2.6 Immune cell scoring and
somatic mutations

Various immune scoring algorithms, based on the R packages

‘CIBERSORT’ and ‘immunedeconv’, were employed to calculate the

relative abundance of various types of immune cells in each sample

(13, 14). The ESTIMATE algorithm was used to assess tumor

microenvironment scores (15). The TIDE algorithm evaluated the

immune escape index of each sample, while the IPS algorithm

estimated the IPS score of each sample and the potential immune

response to PD-L1 and CTLA-4 immune checkpoint inhibitors.
2.7 Single-cell analysis

The 10x single-cell dataset GSE207422 was processed using the

R package ‘Seurat’ (16). Cell filtering criteria included: gene count
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per cell greater than 500, mitochondrial gene percentage less than

20%, ribosomal gene percentage less than 50%, and housekeeping

gene UMI value greater than or equal to 1. After data normalization,

functions from Canonical Correlation Analyses (CCA) -

‘SelectIntegrationFeatures’, ‘FindIntegrationAnchors’, and

‘IntegrateData’ - were used for data integration, followed by

centering. Clustering analysis was conducted using the

‘FindClusters’ function in Seurat, with R package ‘umap’ for

dimensionality reduction. Cell types were annotated using a

combination of automated annotation and manual labeling, with

marker genes identified for each cell cluster as follows: B cell

(‘CD79A’, ‘CD19’, ‘MS4A1’, ‘IGHM’), Epithelium (‘EPCAM’,

‘KRT19’, ‘KRT8’, ‘KRT7’), Stromal cell (‘COL1A2’, ‘DCN’,

‘COL6A2’, ‘VWF’), Mast cell (‘CPA3’, ‘MS4A2’, ‘KIT’), Myeloid

cell (‘LYZ’, ‘MARCO’, ‘C1QB’), Neutrophil (‘FCGR3B’, ‘CXCR2’,

‘S100A8’, ‘S100A9’), NK cell (‘KLRD1’, ‘KLRF1’, ‘CD8A’), pDC

(‘CLEC4C’, ‘LILRA4’, ‘IL3RA’), Plasma cell (‘IGHG1’, ‘JCHAIN’,

‘MZB1’), T cell (‘CD3E’, ‘TRBC2’, ‘TRAC’, ‘CD2’). The enrichment

scores for nucleotide metabolism feature genes in different cell

subpopulations were calculated using the R package ‘AUCell’ (17).
2.8 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was conducted using the

R package ‘clusterProfiler’ (18). The ‘org.Hs.eg.db’ package was

used for gene ID conversion. The parameter ‘pvalueCutoff’ was set

to 0.1, and ‘pAdjustMethod’ to “BH”. Functions or pathways with

an adjusted p-value less than 0.05 were considered to have

significant enrichment.
2.9 Cell culture

The LUAD cell lines, A549 (Cat No. SNL-257, Sunncell), H1975

(Cat No. SNL-087, Sunncell) and LLC (Cat No. SNL-119, Sunncell),

have undergone rigorous authentication procedures, including

short tandem repeat (STR) analysis, to ensure their authenticity

and reliability. The cell lines were cultured in RPMI-1640 or

DMEM medium (Gibco, USA), and enhanced with 10% fetal

bovine serum (FBS) (Cat No. AC03L055, Shanghai Lifei Lab

Biotech, China). Additionally, the cultures were supplemented

with 1% antibiotics. The incubation process occurred at a

constant temperature of 37 °C in a controlled environment of

5% CO2.
2.10 Western blotting

As previously reported, cells were lysed in RIPA on ice for

30 min, and then the lysate supernatant was collected by

centrifugation and used to determine protein concentration using

the BCA assay. The protein sample obtained shall undergo

electrophoresis on a 10% SDS-PAGE gel for analysis.

Subsequently, the target protein on the SDS-PAGE gel was
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transferred onto a 0.45 mm PVDF membrane using a blotting

experiment. The overnight incubation procedure entailed the

utilization of primary antibodies specific to AUNIP (Cat No. bs-

15019R, Bioss, dilution 1: 1000), GAPDH (Cat No. 10494–1-AP,

Proteintech, dilution 1: 10000), and b-actin (Cat No. 20536–1-AP,

Proteintech, dilution 1: 5000). Subsequently, incubation of

secondary antibodies was performed, followed by exposure in a

darkroom utilizing ECL. The ensuing images were then analyzed for

grayscale intensity via Image J software.
2.11 RT-qPCR

The extraction of total RNA from cells was carried out utilizing

the TRIzol reagent (Cat No. AG21102, Accurate Biotechnology,

Hunan, China). RT-qPCR was conducted through the utilization of

a reverse transcription kit (Cat No. AG11728, Accurate

Biotechnology, Hunan, China). Subsequently, PCR was executed

employing a PCR kit (Cat No. AG11701, Accurate Biotechnology,

Hunan, China) for the purpose of amplifying the cDNA generated

during the reverse transcription process. All values were normalized

relative to their respective b-actin values, and the quantification of

fold change was performed using the 2-DDCt method.

The sequence of primers for RT-qPCR as follows:

h-AUNIP forward: 5′-GCGGAAAGTGCAGACACATTT-3′;
h-AUNIP reverse: 5′-TCTCTGGTGAATGCCTGTAGAT-3′.
h-b-actin forward: 5′-AAAGACCTGTACGCCAACAC-3′;
h-b-actin reverse: 5′-GTCATACTCCTGCTTGCTGAT-3′.
2.12 Immunohistochemistry

Following the embedding of the LUAD tissue paraffin blocks,

each with a thickness approximating 1 mm, the tissue sections were

meticulously adhered to the slides. Subsequently, the tissues

underwent the processes of deparaffinization and dehydration.

After epitope retrieval, H2O2 treatment, and blocking of non-

specific antigens, the LUAD tissues were incubated overnight at a

temperature of 4 °C with monoclonal rabbit anti-human AUNIP

(Cat No. bs-15019R, Bioss, dilution 1: 200). This was followed by

incubation with a secondary antibody, and signal detection was

accomplished utilizing a DAB staining kit sourced from Vector

Laboratories in the United States. The Histochemistry Score (H-

Score = ∑ (PI × I), calculated as the sum of (percentage of cells with

weak staining intensity multiplied by 1), (percentage of cells with

moderate staining intensity multiplied by 2), and (percentage of

cells with strong staining intensity multiplied by 3)) was determined

using the Quant Center Analysis tool. The staining intensity was

objectively assessed through blind scoring.
2.13 Cell counting Kit−8 assay

The LUAD cells inoculated into 96 - well plates with ~1 × 104

cells/well and cultured at 37°C with 5% CO2. The experiment will be
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divided into multiple treatment groups, repeated ≥ 3 times. During

culture, 10 mL of CCK-8 reagent (Cat No. C0037, Beyotime, China)

will be added to each well and incubated for 1 h. Absorbance values

will be measured at 450 nm using a spectrophotometer to calculate

proliferation under different interventions. Monitoring will last for

5 days.
2.14 Transwell and colony formation assay

After the intervention, cells were divided into treatment groups.

Cells diluted with serum-free medium were added to the upper

chamber of a 24 - well Transwell plate (2 × 104 cells per well), while

the lower chamber received 500 mL of 8% fetal bovine serum

medium. The cells were cultured in a 37°C, 5% CO2 incubator for

24 h. On the second day, the cells were washed with PBS, fixed with

methanol, stained with 0.1% crystal violet, and washed again with

PBS. Finally, the microscopy-based cell counting was conducted.

Cells were seeded onto 6-well plates at approximately 1000 cells

per well and incubated in a cell culture incubator. The cell culture

medium was replaced every 2 days. In 14 days, wash the cells in a 6 -

well plate once with PBS. Soak the cells in paraformaldehyde

fixative for 30 min. Then stain the cells with crystal violet for 20

min. After washing twice with distilled water, let them dry and

take photos.
2.15 Subcutaneous tumor formation
in mice

Six-week-old male C57BL/6j mice were purchased from Hunan

SJA Laboratory Animal Co., Ltd. (Hunan, China). LLC cells (stably

transfected with shControl/shAUNIP 1#) in 100 mL PBS were

injected subcutaneously into the right back of each mouse (5 × 106

cells per mouse). The length (L) and width (W) of the transplanted

tumors were measured every 3 days, and the subcutaneous tumor

volumes were determined by the formula of volume = L ×W2/2. Mice

were euthanized after 15 days, and the transplanted tumors were

weighed and then subjected to immunofluorescence.
2.16 Statistical analysis

All tasks pertaining to data processing, statistical analysis, and

visualization were executed utilizing R software, specifically version

4.2.0. The Kaplan-Meier method, alongside the log-rank test, were

utilized to estimate and compare subtype-specific overall survival

rates. Depending on the distribution of the data, either the analysis

of variance (ANOVA) was employed to assess differences in

continuous variables across groups. Categorical variables were

analyzed using either the chi-square test or Fisher’s exact test.

Additionally, Spearman’s correlation analysis was conducted to

determine correlations among variables. All p-values were

computed using a two-tailed approach, with a statistical

significance threshold set at p < 0.05.
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3 Results

3.1 Nucleotide metabolism subtypes and
prognosis in lung adenocarcinoma

We collected gene sets related to nucleotide metabolism from

the GSEA database, comprising 1070 genes closely associated with

the synthesis, degradation, and transport processes of nucleotides.

To further explore the potential pivotal roles of nucleotide

metabolism genes in cancer, we employed univariate Cox analysis

to select 297 genes significantly correlated with the overall survival

(OS) and survival status of 503 patients with LUAD from TCGA.

NMF clustering analysis indicated that these 297 genes could

distinctly classify all LUAD patients into two different gene

expression patterns (Figures 1A–D). Kaplan-Meier survival curves

showed significant differences in both overall survival (OS) and
Frontiers in Immunology 05
progression-free survival (PFS) between the two cluster

(Figures 1E, F).
3.2 Crosstalk between nucleotide
metabolism subtypes and key
metabolic pathways

To investigate the association between nucleotide gene

expression patterns and genes related to carbohydrate, lipid, and

amino acid metabolism, we gathered gene sets related to these three

major metabolic processes from the GSEA database. Significant

metabolic differences were observed between the two nucleotide

metabolism subtypes; genes associated with glucose transport and

gluconeogenesis, such as LDHA and LDHB, as well as most genes

involved in amino acid synthesis metabolism, such as GOT1 and
A

B C D

E F

FIGURE 1

Nucleotide metabolism subtypes and prognosis in LUAD. (A–C) Cophenetic distributions, residual sum of squares (RSS), and dispersion indices for
ranks 2–10. (D) Consensus map from non-negative matrix factorization clustering (K = 2). (E) Overall Kaplan-Meier survival curves for both subtypes.
(F) Progression-free Kaplan-Meier survival curves for both subtypes.
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GOT2, were significantly upregulated in subtype C1 (Figures 2A, B)

(19, 20). Conversely, a considerable proportion of lipid metabolism

genes such as ALDH gene family, were upregulated in subtype C2,

indicating a strong correlation between the three major metabolic

processes and nucleotide gene expression patterns, while also

suggesting potential crosstalk within the complex regulatory

networks of metabolic-related genes (Figure 2C) (21). GSEA

enrichment analysis showed that pathways such as immune

function, drug metabolism and cell adhesion were generally

downregulated in subtype C1 (Figure 2D). While numerous

nucleotide metabolism pathways including cell cycle, DNA

replication, alternative splicing, chromosomal homologous

recombination, base mismatch, and nucleotide excision repair

were significantly upregulated in C1 (Figure 2E). This result,

linked with the poorer prognosis of the C1 subtype, further

supports the notion that active cell cycle and DNA replication

pathways, as well as enhanced glycolysis and amino acid synthesis

metabolism, tend to indicate a worse tumor phenotype prognosis.
Frontiers in Immunology 06
3.3 Identifying characteristic genes of
nucleotide metabolism subtypes using
WGCNA and machine learning

Using the WGCNA method, we established a scale-free

topological network matrix of the transcriptomes of 503 LUAD

samples, clustering 19,962 mRNAs according to their expression

patterns into different gene consensus modules, and finally

establishing a correlation matrix between gene consensus modules

and clinical information (Figures 3A–E). We identified the ‘Blue

module’, which was most strongly associated with the clinical staging,

survival time, survival status, and nucleotide metabolism subtype of

tumor patients, containing 2337 genes. After intersecting with the 297

prognostically relevant nucleotidemetabolism genes, we obtained 163

genes. Subsequently, combining KNN, LogitBoost, RF, SVM - four

machine learning algorithms, we further selected important feature

genes representing the nucleotide metabolism gene expression

pattern (Figures 3F–I). After merging the top 10 important genes
A B C

D E

FIGURE 2

Crosstalk between nucleotide metabolism subtypes and key metabolic pathways. (A) Differences in glycolysis-related genes between subtypes. (B) Differences
in amino acid metabolism-related genes between subtypes. (C) Differences in lipid metabolism-related genes between subtypes. (D) Gene set enrichment
analysis (GSEA) reveals pathways downregulated in subtype C1 relative to C2. (E) GSEA reveals pathways upregulated in subtype C1 relative to C2.
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selected by each algorithm and removing duplicates, we obtained 28

feature genes that could predict the metabolic subtype. Figure 3H

demonstrates that the feature genes selected by each algorithm could

distinctly differentiate between the two nucleotide metabolism

expression patterns. Following PCA dimension reduction and

comprehensive scoring, we calculated the PCA score for each

sample based on the expression levels of the 28 genes, termed the

nucleotide metabolism-related score (NMRS). The samples were

divided into two groups based on the median NMRS, and

Figure 3J shows that the two groups exhibit strong dissimilarity.
Frontiers in Immunology 07
3.4 Associations between NMRS scores,
clinical features, and oncogenic pathways
in lung adenocarcinoma

Panel A shows that C1 samples are concentrated in the high

NMRS group, while C2 samples are predominantly in the low

NMRS group (Figure 4A). The 28 genes can be broadly categorized

into oncogenes and tumor suppressor genes based on previous

literature, with oncogenes such as ABCC2 and PFKP upregulated in

the C1 subtype, and tumor suppressor genes like BTG2
A B C

D E

F

G H

I J

FIGURE 3

Identifying characteristic genes of nucleotide metabolism subtypes. (A) Correlation matrix of WGCNA co-expression modules with various metrics.
(B) Node frequency in a scale-free network. (C) Negative correlation between log(k) and the logarithm of probability [log(p(k))], conforming to the
scale-free network topology. (D) Correlation between the soft threshold and R^2. (E) Mean connectivity under different soft threshold values. (F) Top
10 feature genes identified by each machine learning algorithm. (G) Reverse cumulative distribution of residuals for four machine learning
algorithms. (H) The prediction accuracy of nucleotide metabolism subtypes using features identified by different algorithms. (I) Root mean square of
residuals for different algorithms. (J) PCA of lung adenocarcinoma samples based on nucleotide metabolism characteristic genes.
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A B C

D E

F

G H

I J K

FIGURE 4

Associations between NMRS scores, clinical features, and oncogenic pathways in LUAD. (A) Distribution of NMRS groups among nucleotide metabolism
subtypes and survival samples. (B) Differential genes between nucleotide metabolism subtypes. (C) Activity differences in classic cancer-related pathways
between nucleotide metabolism subtypes. (D) Relationships between NMRS and various clinical characteristics and gene expression levels. (E) Overall
Kaplan-Meier survival curves for high and low NMRS groups. (F) Progression-free Kaplan-Meier survival curves for high and low NMRS groups. (G)
Correlation of NMRS with apoptosis-related genes. (H) Correlation of NMRS with cell proliferation-related genes. (I) Frequency of characteristic gene
mutations among different nucleotide metabolism subtypes in lung adenocarcinoma patients. (J) Distribution of the top 10 genes with the highest mutation
frequencies across different subtypes. (K) Correlation of NMRS with enrichment scores of different classic tumor pathways.
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downregulated in C1 (Figure 4B). The function of some genes in

lung cancer remains unclear, with AUNIP, notable for its significant

p-value, warranting further validation in LUAD cell lines.

Subsequently, using the R package ‘decoupleR’, we calculated the

scores of classical cancer pathways for each sample (Figures 4C, K).

The high NMRS group exhibited upregulation of oncogenic

pathways such as EGFR, VEGFR, MAPK, PI3K, in contrast to the

significant suppression of tumor-suppressor pathways like p53,

Androgen, and Trail. This aligns with our earlier results linking

nucleotide metabolism subtype C1 to a worse cancer phenotype

prognosis. Moreover, we observed that patients with a high NMRS

score tend to present with later tumor stages, and the NMRS score is

significantly correlated with T, M, N stages, and gender (Figure 4D).

Significant differences in overall survival (OS) and progression-free

survival (PFS) were observed between patients in the high and low

NMRS groups (Figures 4E, F). We then examined the relationship

between the nucleotide metabolism score and genes related to

tumor apoptosis and the cell cycle. Interestingly, the NMRS

showed a negative correlation with most apoptosis-related genes

and a positive correlation with most cell cycle-related genes,

indicating that tumors with a higher NMRS score are more

inclined to resist apoptosis and engage in more active cell cycle

replication processes (Figures 4G, H). Compared to LUAD patients

with high mutation frequency in TP53 and TTN genes, these

nucleotide feature genes generally had a lower overall mutation

frequency in the genome and were observed to have a higher

mutation frequency in the high NMRS group (Figures 4I, J).
3.5 NMRS as a potential predictor of
microenvironment and
immunotherapy response

We further explored the differences in the tumor

microenvironment between NMRS groups. First, using the

CIBERSORT algorithm for deconvolution, we obtained the relative

abundance of 22 types of immune cells. We observed a high degree of

consistency between nucleotide metabolism subtypes and NMRS

grouping in the tumor microenvironment. Immune cells such as

CD8+ T cells, activated memory CD4+ T cells, and Macrophages

M0/M1 were significantly upregulated in the C2 type and low NMRS

group, while Macrophages M2, Dendritic cells, etc., were significantly

upregulated in the C1 type and high NMRS group, indicating that

patients with C2 type and low NMRS group tend to have a more active

tumor microenvironment (Figures 5A, B). Seven tumor

microenvironment and immune cell calculation methods further

supported this conclusion, with NMRS scores showing a significant

negative correlation with the majority of immune cell contents

calculated by various software systems, while showing a high positive

correlation with suppressive immune cells, epithelial cells, and tumor

purity (Figure 5C). The ESTIMATE algorithm indicated that patients

in the low NMRS group have higher overall levels of immune cells,

suggesting that LUAD patients with a low NMRS score may have a
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better immune therapy response (Figure 5D). The TIDE algorithm

showed that patients in the high NMRS group have higher TIDE

scores, indicating a higher possibility of immune escape and poorer

immune therapy response in this group (Figure 5E). Correspondingly,

TIDE predictions indicate a lower NMRS score in populations with an

immune response, with a higher proportion of patients in the low

NMRS group responding to the immune response (Figures 5F, G). The

IPS score supports this result, with the IPS scoring system predicting

that patients with a low NMRS score have higher IPS scores when

using PD-L1 and CTLA-4 immune checkpoint inhibitors, implying a

stronger potential therapeutic effect (Figure 5H).
3.6 Single-cell analysis of NMRS in LUAD
pre- and post-immunochemotherapy

We explored the distribution of NMRS marker genes in

GSE207422. This dataset aims to explore changes in the tumor

microenvironment (TME) of non-small cell lung cancer (NSCLC)

following targeted PD-1 immunotherapy combined with

chemotherapy. Single-cell sequencing was performed on samples

from 3 patients before treatment and 12 patients after receiving the

combined therapy. Based on pathological response, the 12 post-

treatment samples were divided into two groups: the major

pathologic response (MPR) group (n = 4) and the non-major

pathologic response (NMPR) group (n = 8). After excluding non-

qualifying cells, a total of 92,003 cells were included in the

subsequent analysis. Based on the marker genes of various cell

types, we annotated the cells into nine distinct categories

(Figures 6A–D). Compared to the treatment-naive (TN) group,

the MPR and NMPR groups exhibited an increase in T/NK cells and

B cells, while tumor epithelial cells decreased (Figure 6I). Using the

‘AUCell’ algorithm, we observed that there was no significant

change in the distribution trend of NMRS characteristic genes

across the TN, NMPR, and MPR groups. These genes

predominantly localized within the epithelium, T/NK cells, and

neutrophils both before and after treatment (Figures 6E–H, L).

Interestingly, the relative abundance of NMRS in these three cell

types significantly decreased in the MPR group (Figure 6J).

Additionally, we found that the expression levels of NMRS

characteristic genes were generally lower in the MPR group

compared to the TN group, whereas the NMPR group showed a

relatively higher abundance of these genes (Figure 6K).

Based on the GSEA algorithm, cells with high AUC scores in the

total malignant epithelial cell subgroup significantly upregulated

functions such as DNA replication, chromosomal reconstruction,

and cell nuclear division, while immune-related functions were

significantly downregulated (Figure 6N). Pathway analysis

indicated that various key nucleotide metabolism pathways, such

as cell cycle, alternative splicing, DNA replication, were significantly

upregulated in cells with high AUC scores, while pathways like

‘Intestinal immune network for IgA production’ and ‘RIBOSOME’

were significantly downregulated (Figures 6M, O).
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FIGURE 5

NMRS as a scoring criterion for the immune microenvironment. (A, B) Differences in infiltration levels of 22 immune cell types between nucleotide
metabolism subtypes and between NMRS groups. (C) Correlation of NMRS with various immune cells as revealed by seven different algorithms.
(D) Differences in tumor microenvironment scores between different NMRS groups as revealed by the ESTIMATE algorithm. (E) Differences in NMRS scores
between populations responding and not responding to immunotherapy as predicted by the TIDE algorithm. (F) Differences in TIDE scores between different
NMRS groups. (G) Distribution of immunotherapy beneficiaries among different NMRS groups. (H) Differences in IPS scores predicting effectiveness of PD-L1
or CTLA-4 inhibitor treatments between different NMRS groups.
Frontiers in Immunology frontiersin.org10

https://doi.org/10.3389/fimmu.2024.1430171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1430171
3.7 AUNIP promotes LUAD cell
proliferation and modulates
immune infiltration

After intersecting the top 10 genes predicted by four machine

learning methods for subtype identification, only AUNIP and

CYP4B1 remained. This indicates that AUNIP may be one of the
Frontiers in Immunology 11
most universally predictive genes. Additionally, the strong positive

correlation between AUNIP expression levels and NMRS, along

with its positive correlation with most NMRS characteristic genes,

suggests AUNIP may not only serve as a classification marker for

NMRS subtypes but also reveal its potential pro-oncogenic role in

lung adenocarcinoma (Supplementary Figures 2A, I). Therefore, we

have chosen to validate the biological function of AUNIP in lung
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FIGURE 6

Single-cell analysis of NMRS in LUAD pre- and post-immunochemotherapy. (A–D) Single-cell analysis revealed the differences in cell subpopulations
across all patients (A), the MPR group (B), the NMPR group (C), and the TN group (D). (E–H) The ‘AUCell’ algorithm revealed the differences in cell
distribution of NMRS signature genes across different groups. (I) Differences in the abundance of cell types across different groups. (J) The
differences in the abundance of NMRS signature genes among epithelial cells, T/NK cells, and neutrophils across different groups. (K) The
transcriptional level differences of 28 NMRS signature genes. (L) The differences in the abundance of NMRS signature genes across different cell
subpopulations in all patients. (M) Enriched pathways in cells with high versus low AUC scores. (N) Functional differences between cells with high
and low AUC scores. (O) GSEA reveals significantly altered pathways in cells with high AUC scores compared to those with low scores.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1430171
adenocarcinoma. To investigate the expression level of AUNIP in

LUAD tumors. The results of the Western blotting experiment

demonstrated that the expression level of AUNIP is higher in

LUAD cell lines compared to the normal alveolar epithelial cell

line BEAS-2B (Figures 7A, B). Later, we discovered that the

expression of AUNIP in LUAD tumor tissue was higher than in

the adjacent non-cancerous tissue (Figures 7C, D). This finding was

further validated through immunohistochemical staining

(Figures 7E, F). Additionally, we knocked down the level of

AUNIP in LUAD cells by transfecting shAUNIP (Figures 7G, H).

Interestingly, we observed that knocking down AUNIP in LUAD

cells significantly reduced their clonogenic and proliferative

capabilities (Figures 7I–K). Furthermore, the TRANSWELL

results demonstrate that silencing AUNIP can reduce the

migratory capacity of LUAD cells (Figures 7L, M).

In our research, based on the ‘ESTIMATE’ and deconvolution

algorithms, AUNIP shows a significant positive correlation with

tumor purity scores, and a negative correlation with immune scores,

B cells, CD8+ T cells, and CD4+ T cells in the lung adenocarcinoma

cohort from the TCGA database (Supplementary Figures 2C–H).

Ma et al. also demonstrated that the expression of AUNIP is

associated with immune infiltration in hepatocellular carcinoma

(HCC) and LUAD (22). Next, we performed subcutaneous

tumorigenicity experiments by LLC cells in C57 mice, and the

results showed that knocking down AUNIP inhibited cell

proliferation in vivo (Figures 7N–P). In addition, we found that

knockdown of AUNIP increased the degree of infiltration of CD3+

CD4+ T cells and CD3+ CD8+ T cells in tumors (Figures 7Q, R).

Thus, our experimental results suggest that AUNIP acts as an

oncogene to promote the proliferation and migration of LUAD

cells and correlates with the immune infiltration of T cells in LUAD.
4 Discussion

Lung cancer has become a major challenge in the field of global

public health, causing a heavy burden on the global economy every

year (23). Although there has been some progress in the treatment

of lung cancer, the therapeutic effect still fails to meet expectations,

seriously violating the rights and interests of patients’ lives and

health (24). In order to more effectively evaluate the prognosis of

lung cancer patients, it is particularly important to develop reliable

predictive tools. Nucleotide metabolism, as a basic metabolic

process closely related to tumor growth, plays a key role in cancer

progression (25). Studies have shown that nucleotide metabolism

has the potential to become a new indicator for evaluating the

prognosis of lung cancer patients, and is expected to provide more

scientific and accurate basis for clinical decision-making (26).

In this study, we conducted a Cox analysis by employing the

coxph function in R, along with NMF algorithm based on nucleotide

metabolism-related genes. Using this approach, we successfully

identified two distinct clusters of LUAD. Furthermore, we

characterized the gene expression profiles within each cluster.

The poor prognosis associated with tumor phenotypes is often

closely related to the abnormally active cell cycle, overactive DNA
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replication pathways, as well as enhanced glycolysis and amino acid

synthesis metabolism (27–29). These biological processes play

crucial roles in the development and progression of tumors,

which not only promote rapid proliferation and metastasis of

tumor cells but also increase the challenges of treatment and the

risk of poor prognosis (30). Interestingly, we discovered that the

upregulated genes in subtype C1 are primarily associated with

glucose transport, gluconeogenesis, and amino acid anabolic

metabolism, key metabolic processes. On the other hand, subtype

C2 has a focus on lipid metabolism. These findings unveil a strong

correlation between nucleotide gene expression patterns and the

three metabolic processes mentioned. Furthermore, upon

performing GSEA enrichment analysis, we observed a significant

upregulation of various nucleotide metabolism pathways in C1

compared to C2. These pathways encompass cell cycle, DNA

replication, alternative splicing, homologous recombination, base

mismatch repair, and nucleotide excision repair, among others.

Additionally, we identified a general downregulation trend in genes

associated with drug metabolism and cell adhesion pathways in the

C1 subtype.

Next, we employed WGCNA to establish co-expression

classification and identified genes significantly associated with

clustering. Ultimately, we identified the “blue module”, a gene

consensus module that is most correlated with clinical staging,

survival time, survival status, and nucleotide metabolism subtypes

in tumor patients. Moreover, by integrating four machine learning

algorithms: KNN, LogitBoost, RF, and SVM, we identified 28

characteristic genes capable of predicting metabolic subtypes.

Upon further analysis using PCA dimensionality reduction and a

comprehensive scoring system, our findings revealed that C1

samples were primarily concentrated in the high NMRS group,

whereas C2 samples were predominantly grouped in the low

NMRS group.

Multiple studies have demonstrated that ABCC2 and PFKP play

a carcinogenic role in the development of lung cancer. Additionally,

patients with LUAD who have lower expression of the BTG2 gene

in their tumor tissue tend to have a poorer prognosis (31–33).

Consistent with these findings, our analysis revealed that in C1

samples, the expression levels of ABCC2 and PFKP were

upregulated, while tumor suppressor genes such as BTG2 were

downregulated. Subsequently, the R package ‘decoupleR’ was

utilized to calculate the canonical cancer pathways for each

sample. The results demonstrated that oncogenic pathways such

as EGFR, VEGFR, MAPK, and PI3K were upregulated in the high

NMRS group, whereas tumor suppressor pathways including p53,

Androgen, and Trail exhibited significant suppression (34). Moving

forward, we conducted a deeper analysis to explore the correlation

between NMRS scores and T, M, N staging, as well as gender.

Interestingly, we also observed that patients with higher NMRS

scores tended to exhibit later tumor staging. Additionally, patients

in the high NMRS group exhibited shorter overall survival (OS) and

progression-free survival (PFS). Furthermore, our analysis indicates

that tumors in the high NMRS group exhibit a more active cell cycle

and possess stronger anti-apoptotic capabilities. These analytical

results further corroborate the association between C1 nucleotide
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1430171
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Luo et al. 10.3389/fimmu.2024.1430171
A B C

D E F

G H I J

K

L M

N

Q R

O P

FIGURE 7

AUNIP As an oncogene promoting the progression of LUAD. (A, B) The lung normal or LUAD cell lines were harvested for Western blot analysis. Data
presents as mean ± SD with three replicates. *p < 0.05; ***p < 0.001; ****p < 0.0001. (C, D) The protein expression levels of AUNIP in the adjacent
non-tumor lung tissues and LUAD tissues were analyzed by the western blot. The protein levels of AUNIP were quantified by the image J software. p
value as indicated. (E, F) The IHC staining was performed in the LUAD and normal lung tissues by using the AUNIP antibody. p value as indicated.
(G–M) A549 and H1975 cells were infected with shControl, shAUNIP #1, or shAUNIP #2 for 72 h. Cells were collected for Western blot analysis (G),
RT-qPCR analysis (H), colony formation assay (I, J), CCK-8 assay (K), Transwell assay (L, M). Data presents as mean ± SD with three replicates. **p <
0.01; ***p < 0.001. (N-R) LLC cells were transfected with the described shRNAs for 72 h. Cells were collected and injected subcutaneously into the
C57 mice. The tumors were removed (N) and measured for mass (O), growth curve (P), and immunofluorescence (Q, R). Data presents as mean ±
SD with five or three replicates. **p < 0.01; ***p < 0.001.
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metabolism subtypes and the poor prognosis of LUAD

cancer phenotypes.

The tumor microenvironment serves as one of the key driving

factors for various malignant tumors (35). Previous studies have

established a correlation between CD8A and the existence of CD8+

T cells, which exhibit anti-tumor activities, thereby suggesting more

favorable immunotherapy outcomes (36). Conversely, PD-L1, an

immune checkpoint protein, is associated with tumor cells evading

immune responses, potentially resulting in poorer prognoses for

patients (37). Therefore, we analyzed the relative abundance of 22

immune cell types using the CIBERSORT algorithm. The analysis

reveals a strong correlation between nucleotide metabolism

s u b t y p e s a n d NMRS g r o u p i n g s w i t h t h e t umo r

microenvironment, where patients with subtype C2 and low

NMRS scores have a more active tumor microenvironment.

Further analysis using seven tumor microenvironment and

immune cell calculation methods showed a significant negative

correlation between NMRS scores and the majority of immune cell

populations, but a strong positive correlation with suppressive

immune cells, epithelial cells, and tumor purity. Furthermore, the

results of ESTIMATE, TIDE, and IPS scoring suggest that LUAD

patients in the high NMRS group have a poorer response to

immunotherapy and a higher likelihood of immune evasion.

Conversely, LUAD patients in the low NMRS group may be more

sensitive to immunotherapy.

The single-cell RNA sequencing (scRNA-seq) is a powerful

technique for characterizing the heterogeneity of immune and

tumor cells in LUAD (38). The technique enables detailed gene

expression analysis at the single-cell level, revealing rare cell

populations and intercellular communication within the tumor

immune microenvironment (TIME), which may lead to the

development of novel therapeutic strategies against LUAD (39).

Therefore, a comprehensive analysis was conducted on the

distribution patterns of NMRS marker genes within a

comprehensive dataset of resectable non-small cell lung cancer

patients who underwent a combined immunotherapy and

chemotherapy treatment protocol. It is well known that targeted

immunotherapy of PD-L1 influence on immune cells within the

tumor microenvironment is extremely important (40, 41). Of

interest, studies have shown that targeting nucleotide metabolism

enhances anti-tumor immune responses (26). Therefore, we

selected the single-cell sequencing dataset GSE207422 for analysis

to explore the changes in the distribution of NMRS marker genes in

NSCLC patients before and after targeted PD-1 immunotherapy

combined with chemotherapy. Before and after treatment, there was

a significant decrease in malignant epithelial cells and an increase in

the proportion of immune cells such as T/NK cells, which is

consistent with clinical practice. The distribution characteristics of

the major cell types of the nucleotide metabolism signature genes

did not show significant changes, mainly malignant epithelial cells,

followed by neutrophils and T/NK cells, and this relatively fixed

localization implies that the NMRS signature genes may be

characterized by both malignant tumor biology and immune-

related functions. Interestingly, the transcript levels of most
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NMRS-characterized genes showed a general down-regulation in

the MPR group, while the NMPR group showed insignificant down-

regulation or even up-regulation, such as AUNIP and CDCA5.

Comparing the TN and NMPR groups, the overall NMRS

abundance in the MPR group was significantly decreased in

malignant epithelial cells, neutrophils and T/NK cells. Notably,

there is a significant upregulation of various nucleotide metabolism

pathways, including cell cycle, alternative splicing, and DNA

replication, specifically in the high-NMRS group of malignant

epithelial cells. Conversely, a downregulation is observed in the

IgA production of the intestinal immune network and the ribosome

pathway. Thus, these results suggest that patients in the low NMRS

group have a higher sensitivity to targeted PD-1 immunotherapy

combined with chemotherapy, possibly through direct or indirect

targeting of relevant genes characterized predominantly by

nucleotide metabolism.

AUNIP (Aurora kinase A and ninein-interacting protein) plays

a crucial role in preserving the integrity of the centrosomal structure

and promoting spindle assembly (42). The study found a

correlation between AUNIP and immune and stromal scores in

oral squamous cell carcinoma (OSCC), indicating a potential role in

recruiting infiltrating immune and stromal cells in the tumor

microenvironment of OSCC (43). Interestingly, Ma et al. found

that AUNIP is a potential diagnostic and prognostic biomarker for

liver cancer and lung cancer (22). While the precise biological

function of AUNIP in LUAD remains enigmatic, our study has

identified it as an oncogene that demonstrates elevated expression

in high NMRS. Based on the “ESTIMATE” and deconvolution

algorithms, our results similarly showed that AUNIP was

significantly positively correlated with tumor purity scores, and

negatively correlated with immune scores, B-cells, CD8+ T-cells

and CD4+ T-cells. In addition, we further showed by in vivo and in

vitro experiments that AUNIP acts as an oncogene to promote the

proliferation and migration of LUAD cells and is associated with

immune infiltration of T cells.

Our research, despite its significance, is not without limitations.

Presently, our model still has numerous risk factors yet to

incorporate, thereby limiting its widespread practical application.

To address this, we are committed to monitoring advancements in

prognostic models and actively incorporating additional risk factors

to further enhance and refine our model. Furthermore, recognizing

that this study primarily relies on retrospective data, we intend to

strengthen our focus on prospective research in the future to derive

more precise and comprehensive conclusions.
5 Conclusion

Utilizing various databases and analytical techniques, we

conducted a thorough investigation to assess the potential

significance and prognostic implications of nucleotide metabolism

in the progression of LUAD. Furthermore, we explored the

feasibility of targeting nucleotide metabolism as a potential

therapeutic approach.
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SUPPLEMENTARY FIGURE 1

(A–D) Thresholds for NMRS signature gene abundance across different

groups set by the ‘AUCell’ algorithm.

SUPPLEMENTARY FIGURE 2

(A) Correlation between AUNIP transcription levels and NMRS. (B–E): The
‘ESTIMATE’ algorithm revealed the correlation between AUNIP transcription

levels and tumor purity (B), immune score (C), stromal score (D), and the
overall ESTIMATE score (E). (F–H) Correlation between AUNIP and the

relative abundance of three different immune cell types revealed by
deconvolution algorithm. (I) Correlation of AUNIP transcription levels with

the other 27 NMRS signature genes.
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