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histological progression of
lung adenocarcinoma
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Introduction: Lung adenocarcinoma, a prevalent and lethal malignancy globally,

is characterized by significant tumor heterogeneity and a complex tumor

immune microenvironment during its histologic pattern progression.

Understanding the intricate interplay between tumor and immune cells is of

paramount importance as it could potentially pave the way for the development

of effective therapeutic strategies for lung adenocarcinoma.

Methods: In this study, we run comparative analysis of the single-cell

transcriptomic data derived from tumor tissues exhibiting four distinct histologic

patterns, lepidic, papillary, acinar and solid, in lung adenocarcinoma. Furthermore,

we conducted immunofluorescence assay and spatial transcriptomic sequencing

to validated the spatial co-localization of typical co-inhibitory factors.

Results and Discussion: Our analysis unveiled several co-inhibitory receptor-

ligand interactions, including PD1-PDL1, PVR-TIGIT and TIGIT-NECTIN2, that

potentially exert a pivotal role in recruiting immunosuppressive cells such as

M2 macrophages and Tregs into LUAD tumor, thereby establishing

immunosuppressive microenvironment and inducing T cells to exhaustion state.

Furthermore, The expression level of these co-inhibitory factors, such as NECTIN2

and PVR, were strongly correlated with low immune infiltration, unfavorable

patient clinical outcomes and limited efficacy of immunotherapy. We believe this

study provides valuable insights into the heterogeneity of molecular, cellular

interactions leading to immunosuppressive microenvironment during the

histological progression of lung adenocarcinoma. The findings could facilitate

the development of novel immunotherapy for lung cancer.
KEYWORDS

histologic pattern, scRNA-seq, cell-cell interactions, immunosuppressive
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Introduction

Lung cancer has the highest incidence among all malignant

tumors in men worldwide, causing over a million deaths every

year. Lung adenocarcinoma (LUAD) is the predominant

histological subtype (1), accounting for 40% of lung cancer

patients. The progression and prognosis of LUAD are closely

associated with the emergence of morphologically distinct tumor

regions, termed histologic patterns (2), including lepidic, papillary,

acinar, and solid patterns. These patterns reflect the increasing

aggressiveness of the tumor as it progresses. Previous studies have

reported that genomic alterations, such as tumor mutational burden

(TMB) and copy number variation (CNV), also increased during the

histological progression (3–6). However, the tumor heterogeneity and

intercellular interactions that contribute to the immunosuppressive

tumor microenvironment (TME) during the histological progression

remain elusive.

Solid tumors are often characterized by highly complex TME that

comprises infiltrating immune cells, stromal cells, chemokines, and

extracellular matrix components. Tumor cells dynamically interact

with TME to create a low-oxygen, low-pH, pro-inflammatory, and

immunosuppressive environment that promotes the progression of

cancer and influences patient’s response to drug treatment. Single-cell

RNA sequencing (scRNA-seq) enables a comprehensive analysis of

the cellular diversity and heterogeneity within tumor tissues (7–9). By

profiling the gene expression of individual cells, scRNA-seq offers a

valuable chance to reveal the intratumoral heterogeneity and cell-cell

communication mediated by ligand-receptor interactions (10). For

instance, Qi et al. studied the intratumoral heterogeneity in colorectal

cancer (CRC) tumors and adjacent tissues, with a particular focus on

the interplay between SPP1+macrophages and FAP+ fibroblasts. The

co-localization of these two cell types was substantiated through the

use of immunofluorescence staining and spatial transcriptomics (11).

Zhang et al. have studied the interaction between malignant cells and

regulatory T cells (Tregs) in intrahepatic cholangiocarcinoma (ICC),

and found that TIGIT-PVR signal was enriched between Tregs and

malignant cells (12). Kim et al. have studied the cell-cell

communications in different metastatic tumors of lung

adenocarcinoma (13). Nevertheless, there was a dearth of studies

exploring the molecular features and intercellular interactions during

the histologic pattern progression of lung adenocarcinoma.

In this study, we employed the scRNA-seq data to elucidate

molecular heterogeneity, intercellular communications, and

immunosuppressive landscapes of lung adenocarcinoma with

different histologic patterns. We revealed that the co-inhibitory

ligand-receptor interactions were more prevalent and prominent in

the solid pattern. Specifically, the tumors with high expression levels

of NECTIN2 and PVR exhibited low immune infiltration level,

limited response to immunotherapy and poor prognosis. Moreover,

our immunofluorescence experiment confirmed the spatial co-

localization of cells expressing high levels of PVR and TIGIT

molecules in the solid pattern, but not in the lepidic pattern. We

further performed spatial transcriptome sequencing to validate the

co-localization of these co-inhibitory factors. These findings

suggested that tumor cells escaped immune surveillance by
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upregulating the expression of NECTIN2 and PVR immune

inhibitory molecules to reduce immune cell infiltration. As far as

our knowledge, this is the first study that used the single-cell and

spatial transcriptomic data to explore the molecular mechanism

underlying the histologic pattern progression of LUAD. We believe

that our study provided insight into the immunosuppressive

microenvironment formation and the underlying mechanism

during the lepidic-to-solid progression of lung adenocarcinoma.
Materials and methods

Ethics approval statement

The ethical approval has been obtained from the institutional

review board the Affiliated Tongji Hospital of Tongji University,

Shanghai, China. Patients gave informed consent at hospitalization.
Single-cell transcriptomic data source

The scRNA-seq data of four histologic patterns was downloaded

from a prior study (14), which includes one lepidic sample, one

papillary sample, two acinar samples and two solid samples.
Spatial transcriptomics library
and sequencing

Two specimens of lung adenocarcinoma, each corresponding to

the lepidic and solid histologic patterns as confirmed through

histologic scrutiny, were procured in accordance with standard

surgical protocols. These specimens underwent a process of formalin

fixation and were subsequently encapsulated within paraffin-

embedded tissue blocks. The specimens were then sectioned and

subjected to hematoxylin and eosin (H&E) staining to facilitate

subsequent imaging at a resolution of 40x (equivalent to 0.25

micron/pixel) via the use of Aperio GT450 scanners. The tissue

slides were then conveyed to the Genomics core, where following

the decoverslipping of the tissue, the Visium CytAssist device was

employed to transfer transcriptomic probes from the original glass

slides to capture areas on Visium slides measuring 11mm x 11mm.

Comprehensive transcriptomic profiling was achieved post mRNA

permeabilization, through poly(A) capture and probe hybridization.

The resultant libraries were sequenced utilizing the Illumina Novaseq

6000, using paired-end sequencing with a read length of 150 base pairs.
Spatial transcriptomics data analysis

Visium spatial transcriptomics profiles for samples contained

18,085 genes across several thousand locations throughout each slide.

The profiles were then subjected to filtering process: spots with fewer

than 500 genes, genes expressed in fewer than 3 spots, and spots with

mitochondrial gene expression exceeding 15% were excluded from
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the analysis. Following the removal of regions lacking tissue using a

custom annotation tool augmented by the SAM, a total of 4992 spots

were obtained from the lepidic sample and 3701 spots from the solid

sample. Each Visium spot covers a circular capture area with a

diameter of 50-micron (200 pixels) at 40x magnification. Histology

images and FASTQ files were processed using the Space Ranger

pipeline and sequencing data were aligned to the human reference

genome (Ensemble Genome GRCh38). The output generated was

imported into Seurat for further analysis, including dimensional

reduction, clustering and data integration.
scRNA-seq data quality control and cell
type annotation

The scRNA-seq data was processed and analyzed using the

Seurat R package. Cells were removed if they had more than 20,000

UMIs, more than 5,000 or fewer than 500 expressed genes, or >30%

UMIs that were derived from the mitochondrial genome. The batch

effect across different samples was mitigated using Seurat’s CCA

algorithm. Prior to merging the data, the expression matrix of each

sample was standardized using the NormalizeData function and the

top 2000 variable genes were selected for principal component

analysis (PCA) using the FindVariableFeatures function. Next, the

merged data was normalized using the ScaleData function,

clustering analysis was performed using the first 30 principal

components at resolution 0.8, and visualization was performed

using the UMAP algorithm. The classic marker genes used to

identify the 13 main cell types were jointly determined by the

FindAllmarkers function and literature research, and finally the

following genes were used to identify different cell types: CD8+ T

(CD8A, CD8B), CD4+ T (IL7R), Tumor cells (EPCAM, KRT19,

KRT7), Tregs (FOXP3, IL2RA), Macrophages (CD68, C1QA,

C1QC), Plasma cells (IGHG1, JCHAIN, CD79A), B cells (MS4A1,

CD19), NK cells (NKG7, GNLY, KLRD1), Monocytes (S100A8,

S100A9, FCN1), Fibroblasts (LUM, PDGFRA, ACTA2), Mast cells

(TPSAB1, TPSB2, KIT, GATA2), Endothelial cells (VWF, CLDN5,

CALCRL), Dendritic cells (CD86, CD1C).
scRNA-seq-based CNV estimation

The inferCNV R package was used to infer copy number

alterations in various cell types, using the gene expression of B

cells as a reference. For parameter setting of inferCNV, cutoff was

set to 0.1, cluster by groups was set to T. The cell hierarchical

clustering method of the ward deviation sum of squares method

(ward.D2) was used to cluster cells and denoised the results.
Intercellular interaction analysis

CellPhoneDB was used to infer interactions between different

cell types. For genes expressed in a cell population, the percentage of
Frontiers in Immunology 03
cells expressing the gene and the average gene expression were

calculated, and the gene was removed if it was expressed in only

10% or less of the cells in the population. Cell-cell interactions were

inferred from the gene expression levels by 1000 permutation tests,

and then an adjacency matrix was generated for all cell-cell

interactions and displayed on a heat map. The relative expression

levels (z-scores) of partial ligands or receptors were visualized using

the ggplot2 (15) package.
Immunofluorescence staining

The immunofluorescence staining was performed to examine

the localization of TIGIT, NECTIN2 and PVR in the pathological

tissues of patients with two histologic patterns. Paraffin sections of

pathological tissues from LUAD patients with both histologic

patterns were first deparaffinized and hydrated, followed by

antigen retrieval. The primary antibody mixture was added at a

ratio of 1:1000: TIGIT (Abcam, Ab243903) + NECTIN2 (Abcam,

Ab269721) or TIGIT (Abcam, Ab243903) + PVR (Ab307687),

placed in a wet box, and incubated overnight at 4°C; Then added

two fluorescent secondary antibodies: Fluorescein (FITC)-

conjugated Affinipure Goat Anti-Rabbit IgG(H+L), Proteintech,

SA00003-2 + CoraLite594-conjugated Goat Anti-Mouse IgG(H

+L), Proteintech, SA00013-3 and Fluorescein (FITC)-conjugated

Affinipure Goat Anti-Rabbit IgG(H+L), Proteintech, SA00003-2 +

Rhodamine (TRITC)-conjugated Goat Anti-Rat IgG(H+L),

Proteintech, SA00007-7, placed in a humid box at room

temperature and incubated in the dark for 2 hours; then

counterstaining with DAPI and incubated in the dark for 15

minutes, and finally sealed the slides with an anti-fluorescence

quencher, and dried them at 37°C for storage.
Trajectory analysis

First, we extracted CD8+ T cell subsets for quality control,

normalization, and screening of highly variable genes to ensure

the reliability of the data. Next, PCA was used to reduce the

dimensionality of the high-dimensional gene expression data and

extract the first few principal components for subsequent analysis.

To further reduce the complexity of the data and identify different

cell clusters, we used UMAP to project the reduced-dimensional

data. Next, Slingshot was used to infer the differentiation

trajectory of CD8+ T cells. Slingshot mainly consists of two

stages, the inference of the global lineage structure and the

inference of pseudo-time variables of cells along each lineage.

The first stage uses a cluster-based minimum spanning tree (MST)

to stably identify the key elements of the global lineage structure,

namely the number of lineages and the location of their branches;

the second stage evaluates the potential cell-level pseudo-time

changes of each lineage by fitting branch curves. Finally, the

identified pathways were mapped to UMAP projections

for visualization.
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Survival analysis

In this study, the survival analysis were conducted by Kaplan-

Meier method, and the log-rank test was used to compare the

differences in survival rates between different groups. The survival

package was used to perform proportional hazards hypothesis tests

and fitted survival regressions. The patients were grouped using the

median grouping method and the significance level was set at 0.05.

The survminer (16) package was used to plot the Kaplan-Meier

survival curves.
Tumor immune microenvironment analysis

The CIBERSORTx tool was used to calculate immune cell

infiltration levels using the gene expression matrix, the limma

package was used for differential analysis of immune cells, and

the vioplot package was used for visualization. The score of the

TME was calculated using the ESTIMATE package, and the t-test

was used to evaluate statistical significance. p<0.05 is represented by

*, p<0.01 is represented by **, and p<0.001 is represented by ***.
Correlation analysis

The Spearman correlation between overall survival and

recurrence free survival on MSK-IMPACT LUAD cohort was

calculated for lepidic and solid patterns, respectively. Spearman
Frontiers in Immunology 04
correlation coefficients were also calculated between biomarker

genes on TCGA-LUAD cohort. The absolute value of the

correlation coefficient represents the degree of correlation: 0-0.3

represents weak or no correlation; 0.3-0.5 represents weak

correlation; 0.5-0.8 represents moderate correlation; 0.8-1

represents strong correlation. Specifically, the data with

expression values of zero or close to zero in some samples were

removed to eliminate the influence of extreme values on analytical

results. Also, the samples containing missing values were deleted.

The correlation coefficient and p-value were calculated to determine

whether the observed correlation was statistically significant.

Finally, ggplot2 package was used for visualization.
Results

Different histologic patterns showed
molecular heterogeneity and prognosis

Tumor heterogeneity arises from diverse molecular mechanism

during tumor progression (17), resulting in substantial differences

in the tumor microenvironment (TME), tumor mutation burden

(TMB), and clinical outcomes. We explored the TMB differences

between the four histologic patterns On the TCGA-LUAD (lepidic:

n=10; papillary:n=47; acinar:n=65; solid:n=58) andMSK-IMPACT-

LUAD (lepidic:n=88; papillary:n=43; acinar:n=368; solid:n=68)

cohorts, and found that the solid pattern had higher TMB than

the other patterns in both cohorts (Figure 1A), indicating a higher
FIGURE 1

Heterogeneity of four histologic patterns of LUAD. (A) Differences in TMB between patient subgroups of four histologic patterns on TCGA and
MSKCC cohorts. (B) Differences in OS and RFS between patient subgroups of four histologic patterns on LUAD in MSKCC cohorts. (C) Spearman
correlation between OS and RFS of the patients with four histologic patterns on the MSKCC cohort. p<0.05 is represented by *, and p<0.001 is
represented by ***. The "ns" means "no significance".
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rate of genetic mutations in the solid pattern. Moreover, On the

MSK-IMPACTLUAD cohort, we observed significant differences in

the survival outcomes between four histologic patterns. Patients

with solid pattern had lower relapsefree survival (RFS) than those in

other patterns (Figure 1B), indicating higher degree of tumor

growth and invasiveness in the solid pattern. Our results are

consistent with the findings of previous studies (5, 6). We also

found that OS was highly correlated with RFS in patients with

lepidic pattern and only weakly correlated in those with solid

pattern (Figure 1C). This suggested that the tumor in solid

pattern exhibited higher degree of resistance to drug treatment.
scRNA-seq revealed increasing tumor
heterogeneity during histologic
pattern progression

To further elucidate the molecular heterogeneity of four

histologic patterns, we obtained scRNA-seq data of six LUAD

samples (one lepidic, one papillary, two acinar and two solid)

from a prior study (14). After quality control, 35,107 cells

remained for subsequent analysis. We normalized and

standardized the data and selected the top 2,000 highly variable

genes. Utilizing the Uniform Manifold Approximation and

Projection (UMAP) dimensionality reduction, we identified 21

cell clusters (Supplementary Figure S1), comprising 13 cell types

(Figure 2A). The mean expression levels of the marker genes of each

cell type were shown in Figure 2B. The epithelial cell marker genes

EPCAM, KRT19, and KRT7 were used to annotate tumor cells that

were further verified copy number variations (18). Accordingly, the

tumor cells exhibited higher CNVs than other types of cells

(Figure 2C, Supplementary Figure S2). Comparative analysis

between histologic patterns revealed that tumor cells in the solid

pattern had higher CNVs than those in the other patterns,

indicating a close link between histologic pattern progression and

genomic instability (Figure 2D). By grouping all cells according to

histologic patterns, we revealed the differences in cell composition

and heterogeneity in the tumor immune microenvironment

(Figure 2E, Supplementary Figure S3). In the solid stage, the

infiltration level of immune cells in tumor tissues increased, with

macrophages and Tregs cells showing the most significant increase,

indicating the emergence of immune inhibitory microenvironment

during tumor progression. The differences in immune cell

composition among different patients were observed (Figure 2F).

In summary, single-cell transcriptome revealed the molecular

characteristics and heterogeneity of the tumor microenvironment

during histologic pattern progression.
Immunosuppressive genes increasingly
expressed during histologic progression

The scRNA-seq data showed a diversity of immune

inflammatory cells were recruited to the tumor microenvironment,

such as tumor-associated macrophages (TAMs), lymphocytes, and

mast cells (Figure 2E). The TAMs, comprising M1 and M2 subtypes,
Frontiers in Immunology 05
were the predominant tumor-infiltrating immune cell population

(19). M2 macrophages mainly promote tumor growth, invasion,

metastasis and immune evasion (20, 21). We investigated the

expression of HAVCR2 and LGALS9, typical immune suppressive

genes, and CD163, an M2 macrophage marker gene, and found that

they were co-expressed in the macrophage clusters (Figure 3A),

indicating that the TAMs infiltrating the tumor might be M2

subtype. We used gene expression profiles from the TCGA-LUAD

cohort (n=598) and GSE43458 cohort (n=110) to assess the

expression correlation of these gene (Figures 3B, C). We observed

that HAVCR2 gene expression had a strong correlation with CD163

(r=0.819 and 0.823 on two cohorts), and LGALS9 also showed weak

correlation (r=0.292 and 0.317 on two cohorts). High HAVCR2

expression in TAMs has been shown to exert immune suppressive

effect (22, 23), thus we speculated that TAMs in LUAD exerted

immune suppression through HAVCR2 gene. Subsequently, we

stratified the LUAD patients into high and low subgroups based on

the HAVCR2 expression level, and estimated the infiltration level of

22 immune cells using the CIBERSORTx tool (24). We discovered

that the M2 macrophage infiltration level in the high group was

greater than that in the low group (Figure 3D). Meanwhile, we

noticed that the infiltration levels of naive B cells and plasma cells in

the high group were low, which would lead to reduced ability to kill

tumor cells.We further compared the expression of HAVCR2 gene in

four histologic patterns and the expression levels in different cell

types. The result showed that HAVCR2 expression was higher in

solid pattern than others (Figure 3E), and predominantly expressed

in macrophages (Supplementary Figure S9). Meanwhile, the

proportion of macrophages in the solid pattern was higher than

those in the early histologic pattern (Supplementary Figure S3),

indicating that tumor microenvironment evolved to be immune

suppressive during the histologic pattern progression.
Cell-cell communication analysis revealed
immunosuppressive microenvironment

During the occurrence and progression of malignant tumors, a

complex cell-cell interaction network is often established to

promote immunosuppressive environment and immune evasion.

To study the interplay between tumor cells and other cells,

CellPhoneDB (25) was used to explore the immune co-

inhibitory interactions in four histologic patterns. The results

revealed significant differences in the interactions among various

cells between the four histologic patterns (Figure 4A). In the

lepidic pattern, tumor cells interacted substantially with

macrophages and Tregs, indicating that tumor cells recruited

TAMs and Tregs into the tumor at the early stage to create

immunosuppressive microenvironment. With the histologic

pattern progressed, the interactions between tumor cells and

immune ce l l s increased marked ly . The tumor ce l l s

communicated strongly with CD4+ T cells, CD8+ T cells, Tregs,

macrophages and NK cells (Figure 4B).

In particular, we found that the NECTIN2-TIGIT immune

coinhibitory interactions, mediated by the NECTIN2 ligand

expressed on tumor cells and the TIGIT receptor expressed on
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immune cells, were prevalent during the histologic progression. In

the lepidic pattern, the NECTIN2-TIGIT interactions involved

tumor cells and NK and Tregs cells, and the interactions

extended to encompass tumor cells and CD4+ T/CD8+ T cells

with the histologic pattern progression. This suggested that the

tumor cells expressed NECTIN2 to exert co-inhibitory signals and

progressively inhibited an increasing number of immune cell types

during tumor progression. The gene expression profiles on the

TCGA-LUAD cohort corroborated that NECTIN2 was highly

expressed in tumor tissues (Supplementary Figure S4). We

speculated that the communicative signal between TIGIT and
Frontiers in Immunology 06
NECTIN2 represented a crucial mechanism for LUAD tumor

cells to establish the immunosuppressive microenvironment.

Indeed, several studies have confirmed that the TIGIT-NECTIN2

signal functioned to create immunosuppressive environment in

other cancers. For example, Ando et al. also verified that

NECTIN2 knockout promoted cell apoptosis and diminished cell

proliferation and migration capacity in lung adenocarcinoma via

functional assays (26). Ho et al. conducted single-cell sequencing

and gene knockout (KO) experiments in mice to verify that the

TIGIT-NECTIN2 interaction regulated the immune-suppressive

environment and promoted tumor progression in hepatocellular
FIGURE 2

scRNA-seq data revealed heterogeneity of four histologic patterns in lung adenocarcinoma. (A) UMAP visualization of 13 major cell types. (B) Dot
plots showed the average expression of known biomarker genes in specified cell clusters, with the size of the dots representing the percentage
of the cells expressing the gene in each cluster. (C) Illustration of copy number alterations in tumor cells, with B cells as the reference cells.
(D) Comparison of CNVs in tumor cells between four histologic patterns. (E) Cell type differences between the four histologic patterns.
(F) Differences of cell compositions among six patients.
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carcinoma (27). Xu et al. showed that the interactions occurred

between the metastatic breast cancer cells and TME cells, and their

spatial co-localization was verified by immunofluorescence

experiments (28).

In contrast to the lepidic pattern, the solid pattern exhibited

increased significance of two additional receptor-ligand

interactions, PDCD1-CD274 (PD1-PDL1) and PVR-TIGIT,

between tumor cells and T cells. It is well-established that the
Frontiers in Immunology 07
engagement of immune checkpoint receptors (PD-1) and ligand

(PD-L1) is a crucial mechanism by which tumor cells evade

immune surveillance (29). TIGIT (T cell immunoglobulin and

ITIM domain) is another immune inhibitory receptor protein that

has been identified to be a reliably marker of T cell exhaustion (30)

and a promising therapeutic target (31–33). PVR is widely

expressed in various types of solid tumors (34–37). The

immunohistochemistry results from HPA database showed that
FIGURE 3

Expression of immunosuppressive biomarker genes of TAMs in four histologic patterns and their impact on immune infiltration levels. (A) Abundant
expression of multiple immunosuppressive marker genes and M2 macrophage markers. (B, C) Expression of CD163 and HAVCR2 were significantly
correlated in both TCGA (left) and GSE43458 (right) cohorts. (D) Difference of infiltration levels of 22 types of immune cells between two groups
with high and low HAVCR2 expression. (E) HAVCR2 has higher expression level in solid than other histologic patterns revealed by bulk and scRNA-
seq data. p<0.05 is represented by *, p<0.01 is represented by **, and p<0.001 is represented by ***. The “ns” means “no significance”.
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PVR is significantly enriched in tumor tissues (Supplementary

Figure S5). The binding of PVR to TIGIT forms a tetramer to

transmit inhibitory signals, suppressing the immune cytotoxicity

of T cells and NK cells (38). We observed that PVR-TIGIT

interaction was enriched between tumor cells and Tregs in the
Frontiers in Immunology 08
papillary and solid patterns, implying that blockade of the PVR-

TIGIT axis is a potentially effective treatment for LUAD patients

with papillary and solid patterns. These finding confirmed that

during tumor progression immmunosupression has been

reinforced through PVR-TIGIT co-inhibitory interaction. These
FIGURE 4

Heterogeneity of intercellular interactions in four histologic patterns. (A) Number of reciprocal pairs between cell types in four histologic patterns.
(B) Co-inhibitory interactions between tumor cells and immune cells in four histologic patterns, where each row represents receptor-ligand pairs,
each column represents the interacting cell types. The color and size of dots were positively correlated with the probability of intercellular
interactions, with redder color representing higher expression levels (Z-scores), and larger dot size representing more significance (-log10 p-values).
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findings motivated us to estimate the impact of the expression

levels of NECTIN2 and PVR on the tumor microenvironment and

prognosis. Running the ESTIMATE tool (39) on bulk RNA-seq

data from the TCGA-LUAD cohort, we calculated the level of

tumor immune infiltration and found that high expression of

NECTIN2 and PVR genes inhibited immune cell infiltration levels

(Figures 5A, B). We also assessed the prognostic value of these two

genes based on the clinical data of TCGA-LUAD cohort and

found that high expression of both genes correlated with poor

patient prognosis (Figures 5C, D). Furthermore, we analyzed the

IPS immune scores of 512 patients who received anti-PD-1/

CTLA-4 immunotherapy in the TCIA database (40) and found

that high expression of the PVR gene significantly reduced the

immunotherapy response for LUAD patients (Figures 5E–G).

Univariate and multivariate Cox regression analysis showed that

PVR gene is an independent prognostic factor (Supplementary

Figure S6). Also, we conducted Cox regression for other co-
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inhibitory genes. The results indicated that only the NECTIN2

gene remains an independent prognostic factor in both

univariate and multivariate regression analyses (p-value<0.05,

Supplementary Table S1). These results suggested that

overexpression of NECTIN2 and PVR in tumor cells played an

important role in the establishment of immune-suppressive

environment during LUAD progression.
Immunofluorescence assays and spatial
transcriptome validated co-localization of
immune coinhibitory ligands and receptors

Our analysis above has revealed that TIGIT-NECTIN2

communication was highly active in four histologic patterns,

whereas the PVR-TIGIT communication was only prominent in

the papillary and solid patterns. To validate this observation, we
FIGURE 5

Significance of tumor ligand/receptor in immune infiltration, patient prognosis and immunotherapy. (A, B) High expression of NECTIN2 and PVR was
significantly associated with poor immune infiltration. (C, D) High expression of NECTIN2 and PVR was significantly associated with poor overall
survival probability. (E-G) High expression of PVR was significantly correlated with poor immunotherapy benefit. Horizontal coordinates indicates
gene expression group (low and high) and vertical coordinates represents immunotherapy scores. IPS score (ctla4: neg; pd1: pos) represents the IPS
score when receiving only anti-PD1 therapy, IPS score (ctla4: pos; pd1: neg) represents the IPS score when receiving only anti-CTLA4 therapy, IPS
score (ctla4: pos; pd1: pos) represents the IPS score when receiving both anti-CTLA4 and anti-PD1 therapy.
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performed immunofluorescence staining on TIGIT, NECTIN2

and PVR proteins on the pathological sections with lepidic and

solid patterns. The results showed that TIGIT and NECTIN2 co-

localized spatial in both types of tissues (Figure 6A), reflecting that

the tumor cells and immune cells communicated frequently

through this receptor-ligand axis to create immune-suppressive

environment. In contrast, PVR and TIGIT did not exhibit close

proximity in lepidic tumor tissue but co-localized spatially in solid

tissue (Figure 6B). To further verify the reliability of our findings,

we have supplemented the IF staining results from other four

patients with lepidic and solid histologic patterns, and the results

were still similar to the cell communication analysis results

(Supplementary Figure S7). This findings suggested that tumor

cells in the solid pattern enhanced immune evasion by expressing

more immune co-inhibitory molecules.

We next performed spatial transcriptome sequencing (ST-seq) on

two tumor samples with lepidic and solid histologic patterns. As

Expected, we observed that the solid pattern had higher expression

levels of these genes than the lepidic pattern and that they were

predominantly localized in the tumor regions (Figures 7A–D).

Moreover, we detected spatial co-localization of TIGIT-NECTIN2 in

both patterns, while PVR-TIGIT co-localization was more evident in
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the solid pattern (Figure 7E). Moreover, we observed that the tumor cell

marker gene EPCAM exhibited more similar spatial localization with

the NECTIN2 than PVR gene in lepidic pattern, which is consistent

with the results of scRNA-seq data. The TIGIT gene demonstrated

spatial expression patterns akin to T-cell marker genes CD3D and

CD3E in both lepidic and solid patterns (Supplementary Figure S10a).

These findings further confirmed that these immune coinhibitory

ligand-receptor axes may play a key role in mediating cell-cell

communications leading to immunosuppressive microenvironment.
T lymphocytes transited to exhaustion
during histologic progression

To verify the transition of T cells to exhaustion state during the

histologic pattern progression, we clustered the CD8+ T cells into 13

subclusters (Figure 8A). We examined the expression of three

exhaustion marker genes LAG3, TIGIT and ENTPD1 in each

cluster and found that they were highly expressed in clusters 1, 2,

4, and 13 (Figure 8B), indicating that these T cell subclusters

underwent exhaustion state transition. To compare the

evolutionary trajectory association between the exhausted and
FIGURE 6

Immunofluorescence staining of TIGIT, NECTIN2 and PVR proteins in tumor tissues with two histologic patterns from two patients.
(A) Immunofluorescence image of TIGIT and NECTIN2 proteins in lepidic and solid histologic patterns. (B) Immunofluorescence image of PVR and
TIGIT proteins in lepidic and solid histologic patterns. (Scale bar = 50µm).
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non-exhausted cells, we conducted pseudotime analysis on all CD8+

T cells using Slingshot (41) and found that CD8+ T cells formed six

differentiation lineages, with lineage 3, 4, 5 and 6 showing the

transition from non-exhausted state to exhausted state (Figure 8C).

We also calculated the expression level changes of the three

exhaustion marker genes along different differentiation lineages

and found that their expression levels increased with pseudotime

in the four exhaustion lineages (Figure 8D). Moreover, we found

that the three exhaustion marker genes were highly expressed in the

solid pattern but almost absent in the lepidic and acinar patterns
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(Figure 8E), indicating the CD8+ T cells transited to exhausted state

in the advanced stage of LUAD.

Our further intercellular communications analysis revealed a

pronounced enrichment of the TIGIT-NECTIN2 interaction

between the tumor-associated macrophages (TAMs) and CD8+ T

cells within the solid tumor pattern (Figure 8F). In addition, we

visualized the co-inhibitory receptor-ligand interactions between

CD8+ T cells and other types of immune cells across four histologic

patterns (Supplementary Figure S8). The results suggest that co-

inhibitory interactions between TAMs and CD8+ T cells became
FIGURE 7

Spatial transcriptome mapping of tumor cell-associated molecule. (A, B) Expression of NECTIN2 and PVR molecules in two histologic patterns.
(C, D) Tumor regions in two histologic patterns (left: lepidic; right: solid). (E) Spatial distribution of TIGIT(blue dots), NECTIN2 and PVR(red dots) in
two histologic patterns. Boxes indicate adjacently expressed receptors and ligands.
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increasing frequent during the tumor progression, indicating that

these interactions may be a contributing factor to CD8+ T cell

exhaustion. Previous study has demonstrated that CD8+ T cells

interacted with TAMs to initiate the exhaustion program (42).

Accordingly, we observed that the abundance of TAMs was

predictive of the scarcity of tumor-infiltrating CD8+ T cells, as

well as reduced T cell killing activity against tumors (Figure 8G).

Another study has also confirmed that NECTIN2-TIGIT co-

localized significantly more in tumour than in background spots

via single-cell and spatial transcriptomics analysis in non-small cell

lung cancer (43). In summary, our analysis showed that during the

progression of tumors from lepidic to solid pattern, CD8+ T cells

gradually became exhausted and lost their ability to kill tumor cells.
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Discussion and conclusion

In this study, we conducted comparative analysis of the tumor

immune microenvironment between four histologic patterns of

lung adenocarcinoma. The burden of tumor mutations gradually

increases during the histologic progression from the lepidic to solid

pattern. This suggested that genome transit to unstable in the later

stages of tumor, leading to cellular dysfunction, disordered

proliferation and poor differentiation.

The cell-cell communications landscape in the four histologic

patterns indicated that as the LUAD tumor progressed, the level of

immune cell infiltration increased, while the immune co-

inhibitory interactions between tumor cells and immune cells
FIGURE 8

CD8+ T cells transition to exhaustion state during histologic progression. (A) UMAP visualization of 13 subclusters of CD8+ T cells. (B) Expression of
exhaustion-related biomarker genes in each subcluster. (C) Illustrative plot of pseudotime lineages among subclusters, with each point representing
a cell, and directed solid line the differentiation trajectory. (D) Change trends in the expression levels of exhaustion-associated marker genes over
pseudotime. (E) The expression level of exhaustion-related genes in four histologic patterns. (F) TIGIT-NECTIN2 and PVR-TIGIT signals in
intercellular interactions between CD8+ T cells and macrophages. (G) Proportion of M2 macrophages in the TCGA-LUAD cohort inversely correlated
with the level of tumor infiltrating CD8+ T cells.
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synchronously intensified. In the solid pattern, there was an

increase in tumor-infiltrating immune cells, especially tumor-

associated macrophages and T lymphocytes. The high

expression levels of exhaustion-related genes in CD8+ T cells

reflected the immune-suppressive microenvironment in the solid

pattern. Studies have reported that macrophages could hinder T

cells from infiltrating into lung cancer tissue (44). We also found

that the immune-suppressive molecule HAVCR2 was not only

enriched in TAMs, but also highly correlated with M2

macrophage marker gene. HAVCR2 high expression promoted

the infiltration of M2 macrophages. In fact, the immune-

suppressive role of HAVCR2 in hepatocellular carcinoma has

been extensively studied (45, 46), but its mechanism of action in

lung adenocarcinoma has not been elucidated. Our future work

would explore whether HAVCR2 participate in the creation of

immune-suppressive environment and anti-T cell infiltration in

lung adenocarcinoma.

It was also found significant cell-cell communications between

tumor cells and tumor-infiltrating immune cells via the TIGIT-

NECTIN2/PVR pairs. The expression of the tumor-associated

ligand/receptor genes NECTIN2 and PVR were enriched in lung

adenocarcinoma and inhibited immune cell infiltration. They

were also highly correlated with poorer overall survival and

immunotherapy response in LUAD patients. TIGIT, a known

marker gene of T cell exhaustion, is a potential therapeutic target

to improve treatment efficacy for LUAD patients, via

monotherapy or in combination with other drugs. For example,

the phase II CITYSCOKE trial has evaluated the combination of

tiragolumab (anti-TIGIT antibody) and atezolizumab (anti-PD-

L1 antibody) for the treatment of non-small cell lung cancer and

reported promising therapeutic effects (47). Moreover, our

immunofluorescence assay and spatial transcriptomic data

confirmed the spatial co-localization of TIGIT-NECTIN2/PVR

in the solid pattern.

One limitation of this study is the relatively small sample size of

scRNA-seq LUAD samples. Despite the availability of numerous

datasets in public repositories, most single-cell sequencing data of

lung adenocarcinoma lack pathologic pattern information. This

limitation significantly hindered us to expand our dataset to include

additional scRNA-seq samples regarding the pathological stages,

leading to the constrained sample size in this study. We

acknowledge that the limited sample size undermines the

robustness of our conclusions, leading to decreased statistical

power and weak reproducibility. Another limitation of this study

is that the tissue samples used for single-cell sequencing, spatial

transcriptomics, and immunofluorescence experiments were not

derived from the same patient. Tumor heterogeneity can lead to

discrepancies in the proportion of specific cell type across different

samples exhibiting same histologic pattern, as well as significant

differences in gene expression levels. However, such limitation is

often challenging to avoid in practice due to the limited availability

of cancer tissue material from biopsy samples, making it difficult

to meet the requirements for both single-cell and spatial

transcriptomics sequencing.
Frontiers in Immunology 13
In summary, our integrative analysis of scRNA-seq, bulk RNA-

seq and ST-seq data from four histologic patterns of lung

adenocarcinoma, we have revealed the tumor heterogeneity and

immune-suppressive landscape during histologic pattern

progression. These findings may provide unique insights into the

treatment for lung adenocarcinoma patients.
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