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Inflammatory bowel disease (IBD) is an idiopathic and persistent inflammatory

illness of the bowels, leading to a substantial burden on both society and patients

due to its high incidence and recurrence. The pathogenesis of IBD is

multifaceted, partly attributed to the imbalance of immune responses toward

the gut microbiota. There is a correlation between the severity of the disease and

the imbalance in the oral microbiota, which has been discovered in recent

research highlighting the role of oral microbes in the development of IBD. In

addition, various oral conditions, such as angular cheilitis and periodontitis, are

common extraintestinal manifestations (EIMs) of IBD and are associated with the

severity of colonic inflammation. However, it is still unclear exactly how the oral

microbiota contributes to the pathogenesis of IBD. This review sheds light on the

probable causal involvement of oral microbiota in intestinal inflammation by

providing an overview of the evidence, developments, and future directions

regarding the relationship between oral microbiota and IBD. Changes in the oral

microbiota can serve as markers for IBD, aiding in early diagnosis and predicting

disease progression. Promising advances in probiotic-mediated oral microbiome

modification and antibiotic-targeted eradication of specific oral pathogens hold

potential to prevent IBD recurrence.
KEYWORDS

inflammatory bowel disease, ulcerative colitis, Crohn’s disease, oral microorganism,
oral-gut microbiome axis
1 Introduction

Inflammatory bowel disease (IBD) is a type of intestinal disease marked by chronic

inflammation with an unclear cause, and it is most commonly associated with ulcerative

colitis (UC) and Crohn’s disease (CD). Even though IBD can be diagnosed at any age, from

early childhood to old age, most new cases are discovered in adolescence and the early
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stages of adulthood. It is often clinically manifested as diarrhea,

abdominal pain, and even bloody stool, with a tendency to delay

and relapse (1). The onset and duration of IBD vary, and the

disease’s severity is connected to the scope and degree of the lesions.

It is often accompanied by arthritis, iritis, skin lesions, oral ulcers,

hepatobiliary diseases, osteoporosis, and other parenteral lesions

(2). At present, the primary goals of IBD treatment are symptom

relief and quality of life enhancement, but there is no cure (3).

The etiology and pathogenesis of IBD are uncertain, although

multiple factors, including disrupted intestinal mucosal immune

regulation, persistent intestinal infections, impaired intestinal

barrier function, genetic predisposition, and environmental

factors (4), are believed to have a role in the onset and

development of the disease (5). Of note, substantial research

efforts have been directed towards unraveling the connection

between the gut microbiome and IBD (6). Numerous studies have

demonstrated that patients with IBD have marked dysbiosis in their

gut microbiome, including reduced bacterial diversity (7),

instability within the bacterial community at inflamed mucosal

sites (8), as well as increased bacterial translocation and

overgrowth (9).

Oral manifestations are increasingly recognized as extraintestinal

manifestations of IBD, including UC and CD. These manifestations

can present as various oral lesions, such as aphthous ulcers, mucosal

tags, angular cheilitis, gingival inflammation, and periodontal disease

(2). Ingesting a significant quantity of disordered oral bacteria, a

consequence of periodontitis, could potentially disrupt the balance of

gut bacteria, thereby causing changes in bacterial metabolites,

compromised gut barrier function, and immune dysfunction (10,

11). The prevalence and severity of these oral manifestations may

correlate with the activity and extent of intestinal inflammation. These

oral symptoms are crucial for professionals to be aware of since they

could have amajor influence on the quality of life of patients with IBD.

The exact mechanisms underlying the oral manifestations of IBD are

not entirely comprehended (12). Patients with IBD had higher levels

of microorganisms linked to opportunistic infections than non-IBD

patients (13). Furthermore, when compared to non-IBD controls, the

gut microbiome of IBD patients is noticeably more comparable to the

oral microbiome (14). However, it is believed that systemic

inflammation, immune dysregulation, altered oral microbiota, and

medication side effects may contribute to their development. Systemic

inflammation associated with IBD can lead to increased production of

pro-inflammatory cytokines (15), which may directly affect the oral

mucosa (16). Immune dysregulation in IBD can result in an abnormal

immune response to oral pathogens, leading to oral inflammation.

Altered oral microbiota, characterized by an imbalance in the makeup

of oral microbial communities, could also influence the pathogenesis

of oral manifestations in IBD (17). The purpose of this review is to give

a broad overview of the advancements made in the field of oral

microbiology and its relationship with IBD.
2 Homeostasis of the oral microbiome

Extensive research has been conducted on the composition of the

oral microbiome.More than 250 types of organisms from the oral cavity
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have been identified through in vitro isolation and characterization,

including a number of key pathogens implicated in the development of

dental cavities and periodontal disease, for instance Tannerella forsythia,

Streptococcus mutans, Aggregatibacter actinomycetemcomitans and

Porphyromonas gingivalis (P. gingivalis) (2). Over time, integrated

approaches to understanding oral disease states from a multimicrobial

perspective have emerged, attributing disease pathology to co-occurring

microbial networks whose aggregate activity contributes to pathogenesis

rather than just key pathogens. The constant exposure of oral microbial

ecosystems to exogenous foreign substances determines the formation

of microorganisms and their ability to survive in this environment, as

well as the unique relationship between microbes and hosts that

depends on factors of selection (18). The ability to select and bind

tongue and cheek cells before teeth emerge and the capacity to compete

with other microbial species are key traits of pioneering oral microbial

colonists like Streptococcus salivarius, Streptococcus mitis, Streptococcus

gordonii, and Streptococcus sanguinis. These traits make them ideal for

this specific niche. The gut and the oral cavity are the beginning and the

end of the alimentary tract’s microbial aggregation. Both include distinct

microbiome linked to human health and illness (19), as well as some

shared microbiota. The relationship between gut and mouth microbiota

is intricate, erratic, and interwoven (20). They can maintain a precise

balance under normal physiological settings, but an imbalance in

crosstalk will lead to the onset and progression of illnesses (21). More

and more evidence showed connections between the oral microbiome

and digestive diseases like esophageal cancer, colorectal cancer,

acute appendicitis (22), and IBD. The capacity of numerous oral

bacteria to modify the inflammatory microenvironment and

obstruct host signaling pathways that regulate cell survival,

proliferation, and differentiation may provide a molecular

explanation for this connection.
3 The concept of intestinal microbiota
disturbance in IBD

There are more than 1,000 distinct types of bacteria in the

human intestinal microbiome, primarily belonging to the

Bacteroidetes and Firmicutes phyla, which contain both helpful

and harmful microorganisms (23). A condition of homeostasis

exists in the gut of healthy people because of ongoing interactions

between the microbiome, the human body, and between

components of the microbiome, which inhibit the overgrowth of

pathogenic organisms (24). The microbiota and the human body

are in a reciprocal relationship (25). Gut microbiome mimics

an “organ” community that plays a vital role in our bodies,

including the biological metabolism of bile acids, the synthesis

and utilization of dietary compounds such as vitamins and amino

acids, the synthesis of vitamins, increased immune levels, and the

protection of intestinal function (26). In exchange, an environment

rich in energy sources such as protein and carbohydrates enable gut

microorganisms to flourish (27). In recent years, plenty of subjects

have studied the significance of the gut microbiome in pathogenesis

of IBD and its composition and metabolism (28).

However, changes in the composition of bacteria can disrupt the

balance, leading to the proliferation of pathogens that inhibit the
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growth of beneficial members of the gut microbiome (29). This

disruption makes the gut more vulnerable to various pathogenic

hazards and has adverse effects on the host. This disruption of the

microbiome ecosystem is referred to as an “ecological imbalance”.

Ecological imbalance can be categorized into three distinct categories:

reduced microbial diversity (30), depletion of symbiotic bacteria,

overgrowth of opportunistic pathogens, infection with obligate

intestinal pathogens and antibiotic therapy. In fact, ecological

imbalance reflects shifts in the constitution of the microbiome,

metabolic disturbances, and alterations in the distribution of bacteria

that negatively impact the balance and can trigger tumorigenesis (31).

One of the most susceptible sites for the extraintestinal symptoms of

IBD is the mouth cavity, and multiple studies have revealed that IBD

patients are more likely to develop periodontitis than non-IBD patients

(32, 33). Furthermore, it was discovered that patients with IBD had

more severe and more extensive periodontitis than patients with

general periodontitis. Patients with IBD also had significantly higher

mean probing depths, plaque and calculus indexes, sulcus hemorrhage

indexes, and attachment loss (34). In addition, compared to healthy

controls without periodontitis, patients with periodontitis have an

increased chance of acquiring IBD (35).
4 Oral-gut microbiome axis

The oral-gut barrier, chemical separation, and physical barriers

like bile and stomach acid keep the oral and intestinal microbiomes

apart (36). Nevertheless, under certain circumstances, the integrity

of the oral-intestinal barrier can be compromised, and acidity of

stomach acid may decrease (37), allowing for the translocation and

communication of microorganisms between these two organs. For

instance, in newborns with immature barrier function,

Bifidobacterium that colonize the intestines can migrate into the

saliva (38).

The relationship between the oral and intestinal microbiomes

exists even in individuals who are considered healthy (39). Research

examining microbial strains present in fecal and saliva samples

from 310 subjects in five different countries identified around 470

species of microorganisms (40). The study revealed that oral

microorganisms can frequently travel from the mouth to the

intestinum crassum and then colonize there in healthy

individuals. Additionally, most oral microorganisms have the

ability to be transferred to the gut (41). Ectopic colonization of

oral microbiota in the healthy bowel could help maintain the

physiological development of intestinal immunity. For example,

intestinal colonization by the oral bacterium Villanella. may

regulate host immunity (42). Oral microorganisms can be

transferred to the gut through the blood as well as through the

digestive tract.
4.1 Blood transmission route

Studies have demonstrated that mechanical actions like tooth

brushing or dental procedures can result in the transmission of oral

microorganisms to the blood through wounds (43). After oral
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bones, liver, heart and other organs, resulting in disease (44). In

addition, oral bacteria can invade dendritic cells and macrophages,

colonize them, and then travel through the circulatory system to

reach the highly vascularized intestinal tract (45), consequently

spreading to the intestinal mucosa (46). However, there are also

some oral microorganisms, such as Fusobacterium nucleatum, that

express the Fap2 protein, which inhibits the activity of T cells,

natural killer (NK) cells, and other immune cells by interacting with

T cell immunoglobulin and ITIM domain (TIGIT) receptors on the

surface of human immunocytes (47).
4.2 Digestive tract transmission route

The relationship between the oral and intestinal microbiomes is

facilitated by saliva, which serves as a medium for transporting

various components (48). Saliva can carry effector cytokines and

enzymes, both keratin-bound and free-floating bacteria, as well as

functional inflammatory cell subpopulations like lymphocytes,

neutrophils, and macrophages, to distant positions in the body

(49). Additionally, saliva is a mixture of proteins, lipids, water, and

mucins that make up mucus, which provides protection for these

ingredients against the acidic environment of the stomach (50),

allowing them to survive in the gastrointestinal tract (51). On

average, an individual produces approximately 1 to 1.5 liters of

saliva per day, which includes millions of microorganisms that can

colonize the gut (52). In addition to the protective effect of saliva

(53), there are also some oral pathogens with strong acid tolerance

that can pass through the stomach, such as the well-known

Streptococcus anginosus (54) (Figure 1).
5 Oral microbiome and development
of IBD

Extensive research has provided evidence of the involvement of

oral microorganisms in various extra-oral diseases, particularly

those affecting the digestive system. The associations between

these diseases and oral microorganisms are summarized in

Table 1. It has been observed that oral microorganisms can reach

the intestine through the ingestion of saliva, causing disruptions in

the intestinal microecology and eventually contributing to the

development of IBD. In the subsequent sections, we will delve

into the detailed relationship between six specific types of

microorganisms and IBD.
5.1 P. gingivalis and IBD

A well-known keystone pathogen for periodontal illnesses, P.

gingivalis can spread from the mouth to the gut in mice, causing a

dysbiosis of the gutmicrobiota characterized by an increased abundance

of Bacteroidetes and a decreased abundance of Firmicutes (65). This

weakens the function of the intestinal barrier by downregulating the

expression of tjp-1 and occluding genes (66). P. gingivalis secretes
frontiersin.org
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FIGURE 1

Correlation between oral microbiome and inflammatory bowel disease (IBD). The oral bacteria can induce the development of IBD via several
mechanisms: (1) Destruction of the intestinal epithelial barrier: P. gingivalis and K. pneumoniae can downregulate the expressions of tjp-1 and
occludin. (2) Release of pro-inflammatory cytokines: F. nucleatum and K.pneumoniae can induce stimulate the pro-inflammatory cytokine LPS. (3)
Disruption of the host immune system and induction of immune escape: F. nucleatum and Candida imbalance the Th1/Th17 which induce
inflammatory reactions. (4) Migration to the gut and activation of the inflammasome in colonic mononuclear phagocytes: K. pneumoniae and F.
nucleatum can migrate to the gut and activate the inflammasome in immune cells, leading to intestinal inflammation. Outer-membrane vesicles
(OMV), Toll-like receptor 4 (TLR4), myeloid differentiation protein-2 (MD2), Helper T 17 cell (Th17 cell), Cluster of differentiation 4+ T cell (CD4+ T
cell), Helper T 1 cell (Th1 cell), Limited Power Supply (LPS), Nitric Oxide (NO), Phosphoinositide 3-Kinase (PI3K), Cyclooxygenase-2 (COX2),
Interleukin-18 (IL-18), Interleukin-17 (IL-17), Interleukin-23 (IL-23), Jumonji domain-containing protein-3 (JMJD3), Signal transducer and activator of
transcription (STAT3), Peroxisome proliferator-activated receptorg (PPARg), Interferon-g (IFN-g).

Wang et al. 10.3389/fimmu.2024.1430001
gingipains that help them selectively inactivate pro-inflammatory

substances generated by activated dendritic cells (DCs) and evade

innate immune responses. In addition to the effects of metabolites,

microbiome dysbiosis can produce abnormal immunological responses.

Timetal. showed thatphagocytosis,NETosis, andCAMPactivityare the

three different ways that PPAD, which is the virulence factor of the oral

pathogenP. gingivalis, defuses antibacterialneutrophil assaults (67).This

indicates that PPAD plays a significant role in the escape of human

natural immunity. Research by Potempa (68) and colleagues

demonstrating PPAD-dependent complement system citrullination

supports this theory.

Because P. gingivalis fimbriae facilitate bacterial adherence to

and invasion of specific areas, they are essential for mediating the

organism’s contact with host tissues (69). According to the findings

from Lagha et al. (70), P. gingivalis penetrated and persisted in the

gingival epithelial cells that were cultivated, and it caused the

epithelial barrier to be damaged by breaking down the ZO-1

protein. The possible mechanisms are that the three ways that P.
Frontiers in Immunology 04
gingivalis reduced the amount of ZO-1 protein in vivo were via

detaching intestinal mucus, invading epithelial cells of the intestine,

and breaking down cytosolic ZO-1. Aleksandra et al. (71) showed

that fimbriae isolated from the P. gingivalismutant strain lacking in

PPAD were unable to activate TLR2, suggesting that fimbriae

constituents or other proteins related to fimbriae assembly must

be citrullinated in order for TLR2 to activate on host cells.

Gingipains (Kgp, RgpA, and RgpB) are complex, lysine- or

arginine-specific cysteine proteinases that are secreted to the

microbes surface through a type IX secretion system (T9SS) (72)

and released into the environment as cargo or as soluble proteins on

outer membrane vesicles (OMVs). These proteinases have been

identified as the primary pathogenic factors of P. gingivalis. When

enzymatically inactivated, RgpA is the gingipain that mediates

EGFR-mediated signaling. This is explained by the sequential

motif that is specific to the hemagglutinin adhesion domain of

RgpA and absent from Kgp (73). Izabela et al. showed that the

PI3K-AKT pathway was activated by potent tyrosine residue
frontiersin.org
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phosphorylation caused by RgpA in the absence of enzymatic

activity in EGFR. The pro-inflammatory response, endocytosis,

differentiation, proliferation, and metabolism are all attributed to

this route. Phosphorylation of T308 was the primary method by

which inactive RgpA activated AKT, indicating the participation of

the PDK1 protein, a phosphoinositide-1-dependent kinase (74).

This stands in stark contrast to RgpA, which is active enzymatically,

which reduces AKT phosphorylation and causes the kinase’s

natural form to degrade (75). The mechanism of action of KYT-

36 (76), a highly selective inhibitor peptide, against gingipain has

been demonstrated in a recent study. This peptide offers potential as

a therapeutic agent for the treatment of IBD and periodontitis in

clinical settings.

Related studies have shown that the Th17 cell increase in

periodontal tissues is stimulated by intestinal priming and oral P.

gingivalis infection, which exacerbates periodontitis (77). It was

observed that gut-translocated P. gingivalis can enter the Peyer’s

patches (PPs) of the small intestine through microfold cells (M

cells) in mice and induce a systemic response mediated by P.

gingivalis-Th17 cells. However, when P. gingivalis was heat-
Frontiers in Immunology 05
inactivated and its proteins denatured, M cells were less likely to

absorb it, resulting in reduced alveolar bone loss. This indicates that

heat-inactivated denatured proteins of P. gingivalis were ineffective

as components of the bacterial T cell antigen for uptake by M cells

(78). In patients with periodontitis, an upregulation of CCL20, a

chemokine involved in cell migration, has been observed in

periodontal tissues (79). P. gingivalis-Th17 cell migration

aggravates periodontitis progression, indicating that inhibiting the

CCL20/CCR6 axis could prevent periodontitis from developing

(80). To break the pathogenic gut-oral axis in the inflammatory

oral disease process, one possible therapeutic target is to inhibit the

invasion of pathobiont-responsive Th17 cells into the dental cavity.

Under normal conditions, the expression of JMJD3, a protein

involved in epigenetic regulation, is low. However, different cellular

stressors can cause JMJD3 to be expressed (81). Studies have shown

that lipopolysaccharide (LPS) stimulation has the ability to activate

JMJD3, which in turn controls genes linked to inflammation in

peripheral macrophages (82). Along with increased levels of p-

STAT3, STAT3, and RORgt, it was also found that P. gingivalis-LPS

stimulated the expression of JMJD3 and further improved their
TABLE 1 Summary of various clinical experimental studies regarding the presence of oral bacteria in Inflammatory bowel disease (IBD).

Oral Associated Bacteria Sampling/Size Methods Main Findings References

Fusobacterium nucleatum
Streptococcus

—Saliva and stool samples/
UC patients (n=42),
CD patients (n=185),
Controls (n =45)

16S rRNA
gene

sequencing

—Increased abundance of presented bacteria
in IBD

Jin Imai
et al. (14)

Candida albicans —Feces, Oral swabs, colonic mucosa/UC
patients (n=72),

CD patients (n=18),
Controls (n=36)

PCR-
RAPD reaction

—Increased abundance of presented bacteria
in IBD

Danuta
Trojanowska
et al. (55)

Fusobacterium nucleatum —Colonic mucosa/
UC patients (n=4),

CD patients (n=17), Controls (n=34)

qPCR —Increased abundance of presented bacteria in
IBD

—high invasive Potential

Jaclyn
Strauss (56)

Campylobacter concisus —Saliva samples/UC patients (n=6),CD
patients (n=13),Controls (n=23)

qPCR —Increased abundance of presented bacteria
in IBD

Fang Liu (57)

Fusobacterium nucleatum —Feces samples/UC patients (n=20),
CD patients (n=71), Controls (n=43)

qPCR —Increased abundance of presented bacteria in
IBD.

—Correlated with patients’ disease activity

Hua Liu (58)

Klebsiella pneumoniae —Feces samples/UC patients (n=51),
CD patients (n=7), Controls (n=150)

16S rRNA
gene sequences

—Increased abundance of presented bacteria in
IBD and exacerbate intestinal diseases

Koji
Atarashi (59)

Fusobacterium,Haemophilus,
Porphyromonas, Campylobacter

—Feces samples/CD patients (n=43),
Controls (n=18)

16S rRNA
gene

sequencing

—Increased abundance of presented bacteria
in IBD

Kai Xia (60)

Porphyromonas gingivalis —Feces samples/CD patients (n=11),
Controls (n=8)

16S rRNA
gene

sequencing

—Increased abundance of presented bacteria
in CD

Yu-Chen
Lee (61)

Streptococcus gallolyticus —Feces samples/IBD patients (n=44),
Controls (n=40)

qPCR —Increased abundance of presented bacteria
in IBD

Ahmad
Farajzadeh
Sheikh (62)

Campylobacter concisus —Feces samples/CD patients (n=54),
Controls (n=33)

16S rRNA
gene

sequences,

—Increased abundance of presented bacteria
in CD

Si Ming
Man (63)

Candida —Feces samples/
IBD patients (n=235),

Controls (n=38)

16S rRNA
gene sequences

—Increased abundance of presented bacteria
in IBD

Harry Sokol (64)
Inflammatory bowel disease (IBD), Ulcerative colitis (UC), Crohn’s disease (CD), Polymerase Chain Reaction Random Amplified Polymorphic DNA reaction (PCR-RAPD reaction).
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interactions. This implies that JMJD3 might be targeting STAT3

and RORgt (83).
5.2 Fusobacterium nucleatum and IBD

The obligate anaerobic bacterium F. nucleatum is spindle-

shaped, opportunistic, Gram-negative, and anaerobic (84). It is

frequently found in the oral cavity, is a major factor in intrauterine

infections linked to pregnancy complications such as stillbirth,

neonatal sepsis, and preterm birth, and is present in the dental

plague that precedes the beginning of periodontitis (85). The

human intestine is not primarily colonized by F. nucleatum,

which is actually a protobacterium, which can be both

carcinogenic and antigenic. It is a very poor colonizing bacterium

found in the gut microbiome of healthy humans, and most

significantly, it has a distinct advantage in the microenvironment

of colorectal tumors (86). Several symbiotic bacteria, in particular

driver bacteria, are protobacteria in the human gut microbiome that

are able to directly trigger damage to colon epithelial cells, thereby

promoting the development of colorectal cancer. The

gastrointestinal pathway is the main pathway for the colonization

of oral Fusobacterium tuberculosis colorectal cancer tissue, and its

virulent proteins FadA and Fap2 are mainly involved in its adhesion

to colorectal cancer cells (87).

The mechanism of F. nucleatum in IBD has been thoroughly

studied. F. nucleatum infection aggravates the inflammatory

response and damages the integrity of the intestinal mucosal

barrier (88). F. nucleatum produces a significant amount of

hydrogen sulfide, a very toxic byproduct of cysteine metabolism

that prevents colon cells from using butyrate effectively and causes

persistent intestinal inflammation (89). According to certain

research, the invasion and colonization of F. nucleatum may

influence MUC2 production, which could lead to the

development of intestinal inflammation (90, 91). Highly invasive

F. nucleatum isolates from the lesions of CD patients showed

considerably increased expressions of tumor necrosis factor alpha

(TNF-a) and MUC2 compared with moderately invasive strains

isolated from the healthy intestinal mucosa of control participants

(92). By causing intestinal structure to be destroyed, upregulating

the expression of TNF-a and IL-1b, and downregulating the

expression of IL-10, F. nucleatum accelerates the development of

DSS experimental colitis. F. Wei et al. suggest that F. nucleatum-

EVs promote colitis by enhancing autophagy through the miR-574-

5p/CARD3 axis (93).

The surface of F. nucleatum is home to a number of proteins,

including RadD, FadA, Fap2, and FomA. These proteins not only

facilitate its copolymerization with other bacteria but also aid in its

attachment to host cells and trigger a number of immunological

reactions in the host (94). F. nucleatum may cause colitis by

controlling the skewing of M1 macrophages (95). Liu et al. found

that by increasing the release of cytokines including IL-1b, IL-6, and
IL-17 and by triggering the STAT3 signaling pathway, F. nucleatum

may worsen intestinal inflammation by promoting the growth of

CD4+ T cells and their differentiation into Th1 and Th17 cells (58).

Li et al. found that patients with UC had higher levels of FadA genes
Frontiers in Immunology 06
and F. nucleatum, particularly those with severe pancolitis,

indicating a potential role for FadA in the pathophysiology of UC

(96). However, further research is required to clarify the precise

mechanism of this connection and the functions of FadA genes and

F. nucleatum in UC. Yan et al. found that non-surgical periodontal

therapy triggers intestinal microbiome regulation and promotes a

rehabilitative and healthy microbial environment by using the

ApoE−/− mice model (97). Furthermore, studies showed that F.

nucleatum could interact with many other microorganisms and

showed a synergistic effect of virulence when it was co-infected with

other pathogens (98). A down-regulation of the mean relative

abundance of probiotics, like Clostridium prai, coincides with an

increase in the abundance of opportunistic pathogens, including F.

nucleatum (99). The culture supernatant of F. nucleatum has an

obvious inhibitory effect on Clostridium prai and Bifidobacterium

lactis and can reduce the activity of Lactobacillus rhamnosus in high

concentration. F. nucleatum can improve the efficiency of E. coli

penetrating vascular endothelial cells (100). In addition, Duan et al.

(101) found that Lactobacillus rhamnosus could significantly

improve the damage to intestinal epithelial cells caused by

infection with F. nucleatum. A variety of probiotics have been

proven to help maintain intestinal barrier integrity and relieve or

prevent DSS-induced intestinal inflammation in mice with UC, and

F. nucleatum may further affect the recurrence of IBD through

interaction with these probiotics (102). All the above studies

indicated that F. nucleatum could jointly affect the occurrence

and development of IBD through interactions with other

microorganisms, but the specific effects and mechanisms

remain unclear.
5.3 Streptococcus gallolyticus and IBD

Nearly every area of the human body has Streptococcus, which is

the predominant species in the mouth (103). Streptococcus is

divided into eight different groups, including pyogenic, mitis,

bovis, sanguinis, anginosus, downei, mutans, and salivarius (104).

At present, the oral cavity contains all groups, with the exception of

the pyogenic and bovis groups. The largest group found in the

mouth is the mitis group, with 20 species (105). Some researchers

have reported increased amounts of Streptococcus in the intestines

of patients with irritable bowel syndrome (IBS). These Streptococcus

bacteria probably translocated from the mouth (106).

In subsequent investigations, studies found that oral

Streptococcus can indeed migrate from the mouth and colonize

the gut, even in healthy people (107). In a recent study, patients with

IBD had higher concentrations of Streptococcus in their intestines

(108). And the researchers confirmed that the Streptococcus

originated in the mouth. Therefore, oral streptococci are the only

shared genus (109). Streptococcus sanguinis ATCC10556 and

TW289 from oral Streptococcus have been shown to aggravate

colitis in mice by infecting liver cells and causing interferon

gamma secretion, which leads to colitis aggravation. The specific

mechanism may be that after infection with Streptococcus TW289

and ATCC10556, the Th1 immune response in the blood is

activated, resulting in increased secretion of IFN-g by T cells in
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the blood and spleen, which promotes the aggravation of

inflammation (110).

In addition, Streptococcusmutans serotype k strain TW295 also

has the effect of aggravating colitis. It infects the liver through the

blood system and increases the expression of IFN-g in the liver, thus

aggravating colon inflammation (111). While TW295 is difficult to

reach the colon through the complex physiological environment of

the digestive tract, which is primarily brought on by blood dental

surgery (112). However, not all oral streptococci are detrimental.

One of the earliest bacteria to colonize the human mouth cavity and

digestive system after birth is Streptococcus salivarius, which may be

important for the development of immunological homeostasis

(113). In mouse models, Streptococcus salivarius JIM8772 strains

showed significant palliative effects on colitis. It was found that live

Streptococcus salivary strains down-regulated the pro-inflammatory

chemokine interleukin-8 (IL-8) secreted by intestinal epithelial cells

in vitro and prevented the activation of the nuclear transcription

factor-kB (NF-kB) pathway (114). Commensal Streptococcus

salivarius can also regulate PPARg transcription activity in

human intestinal epithelial cells and significantly reduce the

expression levels of I-FABP and Angptl4, thus contributing to the

preservation of the health and equilibrium of the host

environment (115).
5.4 Campylobacter concisus and IBD

A single polar flagellum, located at either or both sides of the

bacterium, enables the majority of gram-negative, spiral- or curved-

shapedCampylobacter species tomove in amanner akin to a corkscrew

(116). In the digestive tracts of different animals, the majority of

Campylobacter bacteria exist as regular microbiomes. C. concisus is

regarded as a pathogen for intestinal and oral disorders and is found in

the digestive tract and oral cavity of IBD patients (117). PCR detection

showed that the detection rate of C. concisus in the saliva of patients

with UC was 100%, 85% in patients with CD, and only 75% in healthy

individuals. Campylobacter has been presented in many studies to raise

the chance of IBD (118). Compared with healthy controls, the

incidence of Campylobacter in intestinal biopsies and stool samples

collected from patients with IBD significantly increases. Especially C.

concisus is more likely to colonize the proximal colon. The majority of

Campylobacter species are oral bacteria found in humans rather than

zoonotic species (119). The innate environmental factor for C. concisus

colonization in the intestine is hydrogen gas. H2 gas significantly affects

C. concisus growth. In laboratory culture, C. concisus grows very slowly

in anaerobic settings but not at all in microaerobic conditions. H2

makes it possible for C. concisus to grow in microaerophilic

environments and greatly accelerates its growth in anaerobic

environments. The human intestine has microaerobic to anaerobic

atmospheric conditions, with hydrogen, carbon dioxide, methane, and

other gases making up the majority of colonic gases. In view of this, C.

concisusmay have the ability to offer a constant amount of available H2

for growth in their intestinal environment (120). Although the

relationship between oral Campylobacter and IBD has been proven,

the specific mechanism is still not very clear. Some oral C. concisus

strains have owned the zonula occludens toxin (Zot) gene from viruses
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(pre-phages), and C. concisus zot has the same conserved base sequence

as the human zonulin receptor binding domain and the cholera vibrio

Zot receptor binding domain. The mechanism by which Zot-positive

strains of C. concisus may promote the start and recurrence of IBD is

primary barrier dysfunction, and Campylobacter can also activate

inflammasome signaling in macrophages through Zot, thereby

increasing the expression levels of TNF-a and IL-8 (121, 122). C.

concisus isolated from the mouth and small intestine of IBD patients is

highly invasive to HT-29/Caco2 cell lines, can upregulate the

expression of MD-2 and TLR4 on cell surfaces, induce IL-8

production, increase intestinal epithelial permeability, and promote

cell apoptosis. This suggests that Campylobacter may repeatedly enter

the digestive tract with saliva and colonize the intestine, causing IBD in

susceptible populations (123–126).
5.5 Klebsiella pneumoniae and IBD

A German microbiologist named Edwin Klebs made the initial

discovery of K. pneumoniae (127). It is a widespread environmental

bacterium that can be found on plants, in sewage, surface water, and

soil. It belongs to the enterobacteriaceae family and is encapsulated,

rod-shaped, gram-negative, and non-motile (128). Moreover, the

bacteria are also known to colonize animal mucosa, including those

of the gastrointestinal system and oral cavity. However, studies have

shown significant differences between the Klebsiella genus identified

in healthy human saliva and K. pneumoniae isolated in the saliva of

patients with IBD (59, 129, 130). What’s more, recent research has

discovered that the ectopic colonization of oral Klebsiella genus can

lead to the activation of inflammasomes in resident macrophages,

thereby exacerbating colitis (131). Studies have proved that when K.

pneumoniae was taken orally, NF-kB activation in the colon, lipid

peroxidation, and production of TNF-a, COX-2, IL-1b, and ZO-1

increased, whereas tight junction-associated proteins claudin-1,

ZO-1, and occludin decreased (132). In animals with TNBS-

induced colitis, K. pneumoniae also worsened the expression of

tight junction-associated proteins and inflammatory markers (133).

K. pneumoniae generated lipopolysaccharide and b-glucuronidase,
which effectively stimulated the production of NO and COX-2 in

mice peritoneal macrophages (134). From the colon tissues of colitis

patients, they recovered K. pneumoniae J (KLPJ), a strain of KLP.

This bacterial strain has the ability to cause and develop colitis,

mediated by dextran sodium sulfate. It can also activate caspase-11

inflammasomes and cause mature IL-18 to be produced in colon

epithelial cells and intestinal organoids (135). K. pneumoniae

isolated from the salivary microbiome of 2 CD patients,

specifically Kp-2H7, can activate epithelial cells and DCs through

the TLR4 signaling pathway, stimulate IL-18 secretion, and cause

recruitment and activation of Th1 cells, thereby leading to colitis

(59). K. pneumoniaemigrates from the mouth through the digestive

tract and colonizes the intestines under harsh conditions. Through

fermentation, K. pneumoniae generates hydrogen (H2) to

counteract the damaging effects of NO and ROS. These properties

keep it active in the mouth. In addition, exopolysaccharide capsules

are its most important structure. By blocking immune cell

phagocytosis, innate immune response activation, and
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complement activation-induced lysis avoidance, the capsule

provides protection against the host immunological response

(136, 137).
5.6 Candida albicans and IBD

Fungi actively participate in affecting health and disease in the

intricate and multidimensional relationship that exists between the

digestive system and the resident fungal community (the fungal

community). Candida is the predominant fungal genus in the

digestive tract and mouth of healthy individuals (138). Candida is

suitable for colonization in various places in the digestive tract and

mouth, increasing the possibility that Candida from the mouth will

migrate to the intestine to cause disease. In a study of Candida

colonization in the digestive tracts of patients undergoing

hematopoietic stem cell transplantation (HSCT), the same

candida genotypes were found in oral and intestinal samples. Oral

Candida colonization is a risk factor for intestinal Candida

colonization (139). In addition, Candida is closely associated with

the development of IBD. Research has shown that the abundance of

C. albicans in IBD patients, especially those with sudden

inflammation, increases significantly. They verified a noteworthy

rise in the abundance of C. albicans in IBD patients, especially

during flare-ups. In mouse models, it was discovered that Candida

tube feeding exacerbated the DSS model without impacting weight

loss or diarrhea. This was evidenced by increased intestinal leakage

(FITC-glucan assay, serum BG, endotoxemia, and blood bacterial

load), a more severe colon histology, and higher mortality. Higher

levels of pro-inflammatory cytokines are induced in intestinal and

blood tissues by DSS+ Candida (140). And it has been found that

colitis can be alleviated by preventing the propagation,

pathogenicity, and colonization of Candida (141). Compared to

healthy individuals, C. albicans colonized CD patients and their

primary healthy relatives (HRs) more frequently and more severely.

There was a correlation found between the colonization of C.

albicans in the HRs and the antibodies against Saccharomyces

cerevisiae antibodies (ASCAs) found in the sera of patients with

CD (142). In addition, ASCA is a recognized marker for the clinical

distinction between CD and UC (143). CD is associated with genes

that are involved in the Candida glycogen response. For nucleotide-

binding oligomerization domain-containing proteins (NOD) 1 and

NOD2, as well as the NOD-like receptor family (133), genes

encoding cytokines or their receptors, like IL-23 or IL-17, and

pyrin domain-containing 3 (NLRP3), the direct impact on

inflammatory responses is particularly evident. Autophagy is a

significant mechanism in the development of IBD. By negatively

regulating adaptive immunity and the activation of T cells, it makes

patients susceptible to infection by C. albicans (144). Research has

demonstrated that in patients with UC, severe cases are associated

with the presence of “highly invasive” Candida strains, which can

produce Candida to damage macrophages and promote the pro-

inflammatory factor (145).
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6 Conclusion and future prospects

There is increasing evidence in favor of a reciprocal relationship

between IBD and the oral microbiota. The oral microbiota is one of the

important symbiotic partners in the mouth and the human body.

However, periodontal disease can cause systemic disease through the

spread of inflammatory mediators and bacterial components through

the blood. Current research has found that oral periodontal bacteria

passing through the digestive tract can change the intestinal microbiota

and cause ectopic colonization of the intestine, thereby exacerbating

intestinal inflammation (146).We emphasize the significance of several

oral bacteria in IBD via the oral-intestinal axis in this review. These

include P. gingivalis, F. nucleatum, C. concisus, K. pneumoniae, and

C. albicans.

Microbiota research on IBD has primarily focused on the gut

microbiota, but emerging evidence suggests a potential link between

dysbiosis of the oral microbiota and the development of IBD. The

oral microbiota may have an impact on the inflammatory response

of IBD, leading to worsening of the condition in IBD patients with

periodontitis (147). Significant dysbiosis in the oral microbiota of

IBD patients has been observed, indicating a potential role of the

oral microbiota in the pathogenesis of the disease (148). Firstly,

alteration in the oral microbiota can serve as markers for IBD,

aiding in early diagnosis and predicting disease progression. Some

studies have already identified variations in the composition of the

oral microbiota between healthy people and IBD patients,

suggesting that oral microbiota analysis could be used as an

adjunct diagnostic tool for IBD (149, 150). Secondly, the oral

microbiota can be a therapeutic target, and modulating the oral

microbiota may offer a new approach for treating IBD, for example,

reducing the abundance of oral bacteria in the intestine by using

mouthwash (151). Future advancements in targeting probiotics for

the oral microbiota and eliminating specific oral pathogens with

targeted antibiotics hold promise for preventing IBD recurrence.

However, this topic of study is still in its infancy, so further research

is required. In the future, combining the investigation of oral

microbiota with the monitoring of particular microbial products

from the oral to the gut may provide fascinating new insights into

the oral-gut microbiome axis.
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