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Identification and validation of
interferon-stimulated gene 15 as
a biomarker for dermatomyositis
by integrated bioinformatics
analysis and machine learning
Xingwang Wang1*†, Hao Hu2†, Guangning Yan3†, Bo Zheng1,
Jinxia Luo3 and Jianyong Fan1*

1Department of Dermatology, General Hospital of Southern Theater Command, Guangzhou, China,
2Department of Radiation Therapy, General Hospital of Southern Theater Command,
Guangzhou, China, 3Department of Pathology, General Hospital of Southern Theater Command,
Guangzhou, China
Background: Dermatomyositis (DM) is an autoimmune disease that primarily

affects the skin and muscles. It can lead to increased mortality, particularly when

patients develop associated malignancies or experience fatal complications such

as pulmonary fibrosis. Identifying reliable biomarkers is essential for the early

diagnosis and treatment of DM. This study aims to identify and validate pivotal

diagnostic biomarker for DM through integrated bioinformatics analysis and

clinical sample validation.

Methods: Gene expression datasets GSE46239 and GSE142807 from the Gene

Expression Omnibus (GEO) database were merged for analysis. Differentially

expressed genes (DEGs) were identified and subjected to enrichment analysis.

Advancedmachine learningmethods were utilized to further pinpoint hub genes.

Weighted gene co‐expression network analysis (WGCNA) was also conducted to

discover key gene modules. Subsequently, we derived intersection gene from

these methods. The diagnostic performance of the candidate biomarker was

evaluated using analysis with dataset GSE128314 and confirmed by

immunohistochemistry (IHC) in skin lesion biopsy specimens. The CIBERSORT

algorithm was used to analyze immune cell infiltration patterns in DM, then the

association between the hub gene and immune cells was investigated. Gene set

enrichment analysis (GSEA) was performed to understand the biomarker’s

biological functions. Finally, the drug-gene interactions were predicted using

the DrugRep server.

Results: Interferon-stimulated gene 15 (ISG15) was identified by intersecting

DEGs, advanced machine learning-selected genes and key module genes from

WGCNA. ROC analysis showed ISG15 had a high Area under the curve (AUC) of

0.950. IHC findings confirmed uniformly positive expression of ISG15, particularly

in perivascular regions and lymphocytes, contrasting with universally negative

expression in controls. Further analysis revealed that ISG15 is involved in

abnormalities in various immune cells and inflammation-related pathways. We

also predicted three drugs targeting ISG15, supported by molecular

docking studies.
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Conclusion: Our study identifies ISG15 as a highly specific diagnostic biomarker

for DM, ISG15 may be closely related to the pathogenesis of DM, demonstrating

promising potential for clinical application.
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Background

Dermatomyositis (DM) is an autoimmune connective tissue

disease characterized by distinct skin lesions (1). DM

predominantly affects adults between 45 and 65 years of age, with

a higher incidence in females and a prevalence of 6-7 per 100,000

(2). Diagnosis of DM is challenging, especially when the classical

skin symptoms (such as Gottron’s papules, Gottron’s sign, and

heliotrope rash) or muscle weakness are absent (3). The early

diagnosis is crucial, as approximately 30% of individuals with DM

develop an associated malignancy (4). Meanwhile, DM usually

associated with fatal complications such as pulmonary fibrosis or

the myositis that may lead to permanent damage (2).

DM is known to have a significant genetic basis, yet the precise

mechanisms underlying its pathogenesis remain unclear (5). The

advent of high-throughput genomic technologies has facilitated a

detailed examination of gene expression across various tissues,

leading to the identification of numerous potential biomarkers (6,

7). Notably, a significant finding in DM patients is the marked

upregulation of the type I interferon (IFN) pathway in tissues such

as muscle, skin and blood (8, 9). This upregulation correlates with

cutaneous disease activity in adult DM, evidenced by a type I IFN

gene signature, suggesting their potential role in the disease’s

progression (8, 10). Among these genes, ISG15 stands out as a

ubiquitin-like modifier that is strongly induced by type I IFN (8, 9).

Studies conducted by Preuße and Salajegheh have consistently

shown a significant upregulation of ISG15 transcripts and

proteins in DM muscle biopsy samples compared to samples

from other inflammatory myopathies and healthy controls (11,

12). This upregulation is particularly pronounced in DM with
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perifascicular atrophy (PFA), suggesting that ISG15 may play a

critical role in the development or progression of PFA, a

characteristic and specific DM muscle lesion (12). Furthermore,

ISG15 is implicated in critical biological processes, including

antiviral defense, immune regulation, and possibly tumorigenesis

(13). Despite advancements in the understanding of DM, early and

accurate diagnosis remains a significant challenge. This is due to the

variability in clinical presentation and similarities with other skin

diseases, such as seborrheic dermatitis and rosacea (2, 14). These

situations often lead to misdiagnoses and diagnostic delays.

Traditional diagnostic criteria, such as those proposed by Bohan

and Peter in 1975 (15, 16) or the European League Against

Rheumatism/American College of Rheumatology (EULAR/ACR)

criteria (17), depend on a combination of clinical signs, histological

analysis of muscle biopsies, and laboratory tests associated with

myositis, like creatine kinase (CK) and lactate dehydrogenase

(LDH). However, these criteria sometimes lack sensitivity,

particularly for forms of DM without muscle weakness, known as

amyopathic DM (18). Moreover, muscle biopsies can be traumatic,

frequently meet with patient reluctance, and are not always ideal for

early detection. This highlights a need for biomarkers that are less

invasive while sensitive and convenient, enabling the early detection of

DM, even if only to provide effective indications. It is therefore critical

to identify accurate molecular targets associated with the onset and

progression of DM to improve diagnostic and treatment strategies.

In this study, we employed a systematic approach to identify

potential biomarkers for DM. Utilizing a combination of

bioinformatics and machine learning techniques, we analyzed a

comprehensive dataset to pinpoint ISG15 as a key molecule of

interest. Our findings suggest that ISG15 plays a critical role in the

pathogenesis of DM, making it a promising target for diagnostic

and therapeutic strategies.
Materials and methods

Data acquisition and data preprocessing

Our study’s workflow was depicted in Figure 1. Datasets in GEO

(https://www.ncbi.nlm.nih.gov/geo/) database were accessed, the

selection criteria included: 1) Adequate sample size to provide

statistical power. 2) Availability of raw expression data. 3)

Inclusion of both DM and control skin samples for comparative
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analysis. Based on these criteria, we accessed datasets (GSE46239,

GSE142807 and GSE128314) containing gene expression data in

skin lesion samples of DM patients and controls. The GSE46239

and GSE142807 datasets, which offer a larger sample size, were

selected and merged for the analysis discovery phase to ensure that

our machine learning models could sufficiently learn. In contrast,

the GSE128314 dataset, having a smaller sample size, was utilized

for the validation phase to test the model’s performance and

generalization ability on an independent dataset.

We initially applied the “inSilicoMerging (19)” R package to

merge the GSE46239 and GSE142807 datasets into a single

combined dataset. To correct for batch effects in the merged

dataset, we used the “removeBatchEffect” function from the

“limma” R package (version 3.42.2). The batch effect-corrected

expression matrix was then used for the identification of DEGs.
Differential expression analysis and
functional correlation analysis

The selection of DEGs was performed using the “limma” package

in R, adhering to the criteria of an |LogFC| > 1 and adj.p < 0.05. Then

theseDEGs underwentGeneOntology (GO) andKyoto Encyclopedia

of Genes and Genomes (KEGG) pathway analyses, utilizing the

“org.Hs.eg.db” R package and the KEGG REST API for annotations.

The maximum gene set is 5000 and the minimum gene set is 5.
Machine learning for feature selection

After identifying DEGs, we applied three machine learning

algorithms to further refine potential biomarker selection. The
Frontiers in Immunology 03
algorithms included the Least Absolute Shrinkage and Selection

Operator (LASSO) (20), Support Vector Machine-Recursive

Feature Elimination (SVM-RFE) (21), and Bayesian Ridge

regression (22). The “glmnet” and “caret” R packages were used

for LASSO and SVM-RFE, respectively. Sklearn in Python was used

to conduct Bayesian ridge analysis. These methods are known for

their efficacy in handling high-dimensional data and aiding in

biomarker discovery.
Weighted gene co-expression
network analysis

To investigate gene correlations, WGCNA (23) package in R

was applied. Initially, we calculated the median absolute deviation

(MAD) for each gene, subsequently excluding the lower 50% based

on MAD values. Next, “goodSamplesGenes” function was used to

remove unsuitable genes and samples, followed by the construction

of a scale-free co-expression network. The network’s adjacency was

established using a “soft” thresholding power (b) based on co-

expression similarity. Specifically, Pearson’s correlation matrices

and the average linkage method were performed for all pairwise

genes. A weighted adjacency matrix was then constructed using a

power function A_mn=|C_mn|^b (C_mn = Pearson’s correlation

between Gene_m and Gene_n; A_mn= adjacency between Gene m

and Gene n. The soft-thresholding parameter b was selected to

emphasize strong correlations between genes and penalize weak

ones. After choosing the power of 8, the adjacency was transformed

into a topological overlap matrix (TOM), which measures a gene’s

network connectivity as the sum of its adjacency with all other

genes. Subsequently, the corresponding dissimilarity (1-TOM) was

calculated. For the classification of genes into modules based on
FIGURE 1

Schematic diagram illustrating the comprehensive bioinformatics analysis and validation methodology for DM research.
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similar expression profiles, average linkage hierarchical clustering

was conducted using the TOM-derived dissimilarity measure, with

a minimum cluster size of 30 genes for the gene dendrogram.

Further analysis included the calculation of dissimilarity among

module eigengenes, selection of a cut height for the module

dendrogram, and merging of selected modules. Additionally,

modules with a distance less than 0.25 were merged, ultimately

resulting in 10 co-expressed modules.
Validation using independent dataset

We intersected DEGs, machine-learning-selected genes, and

WGCNA key module genes to identify potential biomarkers. The

finding was presented in a Venn diagram, which was drawn using

the Venn online tool (http://soft.sangerbox.com/). For validation

purposes, the independent dataset GSE128314 was utilized. This

dataset includes RNA expression data extracted from the skin

tissues of eight DM patients and five healthy controls. To verify

the predicted value of the biomarkers, we constructed a logistic

regression model using “PROC” package in the R. The diagnostic

value of the identified biomarkers was assessed by the area under

the ROC curve (AUC, AUC was between 0.5 and 1). The closer the

AUC is to 1, the more effective the diagnosis is. Additionally, a

controlled reliability analysis was performed to statistically compare

gene expression differences between DM patients and healthy

controls using the same dataset.
Human samples

All participants diagnosed with DM and healthy controls

provided informed consent in the study. The study’s experimental

protocols were rigorously reviewed and received approval from the

Ethics Committee of the General Hospital of Southern Theater

Command of the PLA, ensuring compliance with ethical standards.
Immunohistochemistry

IHC was performed on skin biopsy specimens from 9 DM

patients and 12 healthy controls to validate our bioinformatics

findings. The paraffin-embedded tissue sections were first

deparaffinized in xylene and subsequently rehydrated through a

graded ethanol series. Antigen retrieval was carried out using 1 mM

EDTA, followed by a preincubation with 5% goat serum in Tris-

buffered saline to minimize non-specific interactions. The sections

were then probed with a rabbit monoclonal anti-ISG15 antibody

(EPR24482-49, at a 1:500 dilution). Following the application of

horseradish peroxidase-conjugated secondary antibodies,

visualization was achieved with 3,3’-diaminobenzidine substrate,

and the sections were counterstained with hematoxylin for contrast.
Frontiers in Immunology 04
Evaluation of immune cell infiltration,
correlation analysis between biomarker
and infiltrating immune cells

To assess the extent of immune cell infiltration and its relationship

with biomarker in DM, we employ the CIBERSORT algorithm (24) to

interpret the relativeabundanceof22distinct immunecell typeswithin

the tissue. Furthermore,we generate a correlation heatmap to illustrate

the interrelationships amongdifferent immunecell subsetswithin each

sample.Comparativeanalysis of immunecell profiles betweenDMand

healthy tissues is also conducted and presented visually. Next, we

examined and graphically depicted the correlations between the levels

of infiltrating immune cells and the proposed diagnostic biomarker

using Spearman’s correlation coefficient.
Gene set enrichment analysis

GSEA was employed to identify the involvement of ISG15 in

biological processes and KEGG pathways related to DM. We

stratified the samples into two groups based on ISG15 expression:

low expression group (<50%) and high expression group (≥50%).

Reference gene sets from the Molecular Signatures Database were

utilized, namely c5.go.bp.v7.4.symbols.gmt for GO terms and

c2.cp.kegg.v7.4.symbols.gmt for KEGG pathways. To assess

statistical significance, we compared the enrichment scores to

those from 1000 permutations of the dataset. NOM p <0.05 and |

NES|>1 was considered significant enrichment.
Virtual screening for drug repurposing

The molecular structure of target protein was sourced from the

Protein Data Bank (PDB) database (https://www.rcsb.org/). Virtual

screening was performed using the DrugRep server (http://

cao.labshare.cn/drugrep/), an online tool that integrates the

AutoDock Vina algorithm to dock multiple ligands. DrugRep

evaluates and ranks the best-fitting molecular conformers by

calculating their docking scores, binding conformations, and

affinities with the receptor. The server’s receptor-based screening

approach identifies potential binding sites based on the receptor’s

3D structure and conducts high-throughput docking using libraries

of FDA-approved drugs, experimental drugs, and traditional

Chinese medicine (TCM) compounds.
Statistical analysis

Statistical analysis was conducted using the R and Python

software. The significance of differential gene expression was

ascertained using adjusted p-value to correct for the multiple testing

phenomenon, with a significance threshold set at p-value < 0.05.
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Result

Data preprocessing and identification
of DEGs

Microarray data GSE46239 andGSE142807 were obtained from the

GEO database, including samples from 91 DM patients and 9 normal

controls. After merging the two datasets, batch-to-batch variance was

removed from the matrix of gene expression. The density plots in

Figure 2A show substantial differences in sample distributions across

datasets prior to batch effect removal, indicating the presence of batch

effects. After correcting for batch effects, the data distributions among

the datasets became more consistent, with similar means and variances.

Figure 2B depicts UMAP results for the multiple datasets, with different

colors representing different datasets before batch effect removal.

Initially, the two datasets do not overlap, indicating their

independence. Following the removal of batch-to-batch variance, the

sample distributions between datasets became more uniform. After

preprocessing the data, we extracted the DEGs in the gene expression

matrix. Under the criteria of an |LogFC| > 1 and adj.p < 0.05, 292 genes

with significant differential expression were identified in DM cases: 286

were up-regulated and 6 down-regulated. Figures 3A, B display a

volcano plot of DEGs and a heatmap of the top 50 DEGs, respectively.
Function enrichment analysis of the DEGs

The GO and KEGG analyses results demonstrated the

involvement of the DEGs in immune response and inflammation.

Specifically, the GO analysis highlighted broad biological processes

such as immune system processes and defense responses

(Figure 3C). In contrast, the KEGG analysis provided a detailed

view of specific signaling pathways, including NOD-like receptor
Frontiers in Immunology 05
signaling and NF-kappa B signaling, which are critical components

of the innate immune and inflammatory responses (Figure 3D).

These findings suggest a coordinated regulation of immune and

inflammatory responses at both the process and pathway levels by

the DEGs in DM cases. In particular, The GO terms “immune

system processes” and “defense responses” indicate that the DEGs

are likely involved in a broad array of immune activities,

encompassing both innate and adaptive immunity, consistent

with the immunopathological nature of DM. These terms also

suggest that the DEGs may influence defense mechanisms against

infections, inflammation, and tissue damage.

In KEGG analysis, the enrichment of critical immune and

inflammatory pathways such as the “NOD-like receptor

signaling” and “NF-kappa B signaling” pathways was noted. The

NOD-like receptor signaling pathway plays a key role in pathogen

recognition and inflammation regulation, while NF-kappa B

signaling is pivotal in controlling immune responses and

inflammation. The enrichment of these pathways suggests that

our DEGs might influence the disease mechanism of DM by

modulating the activity of these pathways. Overall, the GO and

KEGG analysis results provide compelling evidence that the DEGs

may have a significant impact on the pathogenesis of DM by

regulating immune and inflammatory responses.
Feature selection through
machine learning

Machine learning algorithms includes LASSO regression, SVM-

RFE, and Bayesian ridge were employed to further refine the

selection of candidate genes. LASSO regression identified 11

genes, SVM-RFE ranked 28 genes by importance, and Bayesian

ridge highlighted 49 significant genes, as shown in Figures 4A–C.
FIGURE 2

Data preprocessing of GSE46239 and GSE142807. (A) Density map showing the sample distribution of each data set before batch correction and
after batch correction. (B) UMAP analysis showing the sample distribution of each data set before batch correction and after batch correction.
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Weighted gene co-expression network
construction and identification of clinically
significant modules

A “soft” threshold of b=8 (scale-free, R2 = 0.89) was chosen

based on scale independence and mean connectivity (Figure 5A).

Ten gene co-expression modules (GCMs) were identified,

represented by different colors in Figures 5B, C. The correlation

between DM and GCMs is shown in Figure 5D. Modules with a

correlation coefficient > 0.5 and a p < 0.05 were selected for further

analysis. Specifically, the black module (correlation coefficient=0.57,

p=7.3e-10) and the pink module (correlation coefficient=0.53,

p=1.8e-8) were selected for further analysis. Within these

modules, 178 key genes were identified based on high

connectivity, using a cutoff criterion of module membership

(MM) > 0.8 and gene significance (GS) > 0.1.
Validation of ISG15 as a biomarker for DM

ISG15 was identified by intersecting the genes filtered through

the aforementioned methods, as illustrated in the Venn diagram

(Figure 6A). An independent validation dataset analysis confirmed

the overexpression of ISG15 in DM patients. ROC curve analysis of

ISG15 expression yielded an AUC of 0.950, with a 95% CI of 0.775-

1.000 (Figure 6B), indicating excellent diagnostic performance.
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Furthermore, ISG15 expression was significantly higher in DM

compared to the control group (Figure 6C).
IHC of ISG15 expression

IHC of clinical skin biopsy specimens from the DM group

revealed universally positive expression of ISG15, in contrast to the

negative expression observed in the control group (Figures 7A, B).

Additionally, the immunostaining was primarily observed in the

perivascular regions and lymphocytes within the skin

tissue (Figure 7C).
Immune cell infiltration analysis

We employed CIBERSORT to assess the infiltration of 22

immune cell types in DM compared to normal tissues. The

histograms in Figure 8A display the proportional representation

of these cells in each sample, with the sum of proportions in each

histogram equaling 100%. Our analysis identified that M1

macrophages, M2 macrophages, and resting mast cells were

present in all DM samples. T follicular helper cells and CD8 T

cells were also highly prevalent, found in 88% and 87% of the

samples, respectively. Figure 8B presents a comparative analysis

that shows a notable increase in several immune cell types in DM
FIGURE 3

Identification of DEGs for DM. (A) Volcano plots showing DEGs between DM and normal group, red and green plot triangles represent DEGs with
upregulated and downregulated gene expression, respectively. (B) Cluster heatmap showing the top 50 significantly upregulated and down-
regulated DEGs, each row shows the DEGs, and each column refers to one of the samples of DM cases or controls. The red and blue represent
DEGs with upregulated and downregulated gene expression, respectively. (C) Top 10 of GO biological processes analysis. (D) Top 10 of KEGG
pathway analysis.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1429817
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1429817
FIGURE 4

Machine learning in screening candidate diagnostic biomarkers for DM. (A) Biomarkers screening in the Lasso model. The number of genes (n=11)
corresponding to the lowest point of the curve is the most suitable for DM diagnosis. (B) Based on SVM-RFE to screen biomarkers. (C) Biomarkers
identified by Bayesian Ridge, genes are ranked based on the importance score.
FIGURE 5

Identification of modules associated with the clinical traits of DM based on WGCNA analysis. (A) The soft threshold power (left) and mean
connectivity (right) of WGCNA network. (B) Gene co-expression modules represented by different colors under the gene tree. (C) Clustering
heatmap of module feature vector. (D) Heatmap of the correlation between module eigengenes and clinical traits of DM.
Frontiers in Immunology frontiersin.org07
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FIGURE 6

Diagnostic effectiveness and dataset validation of the hub gene for DM. The Venn diagram of the intersection of DEGs, module genes of WGCNA,
LASSO, SVM-RFE and Beyasian ridge analysis. (B) ROC curve to assess the diagnostic efficacy of ISG15. (C) Data validation of ISG15 by GSE128314.
FIGURE 7

Immunohistochemical analysis of ISG15 expression in clinical skin samples. (A) Immunohistochemical analysis of ISG15 expression in DM group (X10).
(B) Immunohistochemical analysis of ISG15 expression in control group (X10). (C) Immunohistochemical analysis of ISG15 expression in perivascular
regions and lymphocytes of DM group (X40). (D) Immunohistochemical analysis of ISG15 expression in control group (X40).
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https://doi.org/10.3389/fimmu.2024.1429817
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1429817
tissues versus controls, including resting dendritic cells, M0

macrophages, plasma cells, activated memory CD4 T cells, CD8 T

cells, and naive CD4 T cells. This indicates a unique immune profile

in DM, characterized by the involvement of both innate and

adaptive immune responses in the tissue pathology.
Correlation between ISG15 and
immune cells

Spearman correlation analysis was conducted to explore the

relationship between ISG15 expression and immune cell abundance.

Figure 8C reveals statistically significant negative correlations between

ISG15 expression and several immune cell populations, including

resting dendritic cells, M0 macrophages, activated and resting mast

cells, plasma cells, naive CD4 T cells, CD8 T cells and naive B cells. In

contrast,M1macrophages,monocytes, restingmemoryCD4T cells, T

follicular helper cell and dendritic cells exhibited a positive correlation.

These findings suggest that ISG15may play diverse roles in regulating

various immune cells within the DM microenvironment, potentially

influencing the functions and abundance of these cells and further

driving the pathologic processes of DM.
GSEA of ISG15

The GSEA method was employed to explore the biological

processes and signaling pathways affected by ISG15 expression in
Frontiers in Immunology 09
DM. The analyses reveal that ISG15 is implicated in key immune

and inflammatory pathways, including the toll-like and NOD-like

receptor signaling pathways, the JAK-STAT signaling pathway and

ubiquitin-mediated proteolysis (Figure 9A). These pathways are

essential for initiating and regulating immune responses,

maintaining cellular homeostasis, and controlling the proliferation

and activation of immune cells (Figure 9B). These analyses

underscore the multifaceted role of ISG15 in the immune system

and its potential impact on various biological processes.
Drug-gene interaction and molecular
docking analyses

The screening process identified three compounds with significant

docking scores, suggesting a strong binding affinity to ISG15:

paritaprevir, an FDA-approved antiviral drug; voacamine, an

investigational compound; and 3,29-dibenzoyl rarounitriol, derived

from trichosanthes kirilowii maxim. Docking studies were conducted

with the ISG15 protein to assess the binding potential of these

compounds. Figures 10A-C display the 3D docking models,

supporting thepotential interactionbetween ISG15and thesemolecules.
Discussion

The clinical early-stage diagnosis of DM remains challenging

due to its variable manifestations and the symptom overlap with
FIGURE 8

Immune infiltration analysis of DM. (A) The ratio of 22 immune cells of each sample of DM. (B) The immune cell infiltration between DM and normal
controls. (C) The association between ISG15 and different immune cell infiltration in DM. *: P<0.05, **: P<0.01, ***: P<0.001 and term “ns” means no
significance (P>0.05).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1429817
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2024.1429817
other conditions. This is especially true for amyopathic DM, which

often presents with a range of skin symptoms that can be easily

confused with other inflammatory skin diseases and can lead to

misdiagnosis or delayed diagnosis (18). Moreover, DM is associated

with malignancies and severe complications such as pulmonary

fibrosis that may cause death (2, 25). Hence, the identification of

reliable biomarkers for DM is important for early diagnosis

and treatment.

Our study applied a comprehensive suite of bioinformatics tools

and machine learning algorithms to analyze gene expression

datasets, resulting in the identification of ISG15 as a potential

biomarker for DM. To our knowledge, this is the first study to

confirm ISG15 as a robust diagnostic marker for DM in skin

samples, exemplified by the AUC of 0.950 in ROC curve analysis.

Moreover, IHC findings confirmed the universally positive ISG15

expression in DM skin biopsies, particularly in perivascular regions

and lymphocytes, areas known to be involved in DM pathology.

Previous research by Salajegheh et al (12) indicated an overactive

ISG15 conjugation pathway in DMmuscle samples; however, muscle

biopsies are more invasive and often encounter patient resistance due

to the discomfort and potential complications. Detecting ISG15 in

skin lesions may help physicians and patients to identify DM and

distinguish it from other similar-looking inflammatory skin diseases.

It could assist in the early diagnosis of DM, which is crucial for

guiding their treatment and care strategies.

Several biomarkers, including anti-Jo-1 antibodies, anti-TIF-1g
antibodies, and anti-NXP-2 antibodies, are known for diagnosing

DM (2). These markers are detected primarily through serological

testing. However, the most frequently detected antisynthetase

antibody in DM is anti-Jo-1 antibodies with a prevalence of 5–
Frontiers in Immunology 10
20% (26), indicating their limited diagnostic utility. Nevertheless,

these biomarkers play a crucial role in understanding the disease’s

pathophysiology. For instance, anti-Jo-1 antibodies are associated

with associated with classic DM skin lesions, while anti- TIF-1g (27)
and anti-NXP-22 antibodies are correlated with the risk of

malignancy in DM. In comparison with these existing

biomarkers, the strength of ISG15 lies in its high sensitivity and

specificity in skin samples. This makes ISG15 a potentially useful

marker, especially in clinically amyopathic DM or atypical DM

patients, where muscle samples may not be readily available or

exhibit atypical manifestations.

DM has traditionally been characterized as a humoral immune

reaction-induced microangiopathy, mediated by complement and

predominantly affecting the skin and muscles (28). The characteristic

immunological profile in DM shows various immune cells around the

blood vessels and within the connective tissue surrounding muscle

fibers, primarily consisting of CD4 T cells, macrophages, and

dendritic cells. While the cytotoxic CD8 T cells are the most

prominent T cell subtype, a significant number of CD4 T cells are

also present (28, 29). The KEGG enrichment of DEGs in pathways

such as NOD-like receptor signaling and NF-kappa B signaling is

consistent with previous findings that implicate innate immunity as a

key player in DM pathophysiology (28). The immune effector

processes and innate immune response highlighted by the GO

analysis align with the known histopathological features of DM,

including perivascular inflammation and the presence of

lymphocytes and complement components in biopsies (30).

Meanwhile, the significant immunostaining of ISG15 observed in

the perivascular regions and lymphocytes within the skin tissue in our

study indicated ISG15’s participation in those processes.
FIGURE 9

Result of Gene Set Enrichment Analysis of ISG15. (A) Biological processes enriched by ISG15. (B) KEGG pathways by ISG15.
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Our immune infiltration analysis revealed an enriched presence

of specific immune cells, notably M1 macrophages and CD8 T cells,

which likely contribute to the inflammatory and cytotoxic

landscape of DM. The results also showed increased infiltration of

resting dendritic cells, M0 macrophages, plasma cells, activated

memory CD4 T cells and naive CD4 T cells in DM versus control

skin samples. These cells likely contribute to DM pathogenesis via

inflammatory and cytotoxic functions. The results consistent with

the disease’s immune-mediated nature. To further understand the

implications of these findings for the pathophysiology of DM, we

delved deeper into the specific roles of these immune cell types in

DM. For instance, M1 macrophages, known for their pro-

inflammatory properties (31), may play a crucial role in tissue

damage in DM, while the high infiltration of CD8 T cells
Frontiers in Immunology 11
underscores the importance of cytotoxic responses (32) in this

condition. Additionally, the increase in resting dendritic cells and

plasma cells may reflect the significant roles of antigen presentation

and humoral immune responses in DM. The relationship between

ISG15 expression and immune cells is also explored. It is found that

ISG15 expression was positively correlated with M1 macrophages,

monocytes, resting memory CD4 T cells, T follicular helper cells

and dendritic cells. The data suggest a dual role for ISG15 in

modulating the immune landscape in DM, in terms of M1

macrophages, when the infection or inflammation is severe

enough to affect an organ, macrophages first exhibit the M1

phenotype to release TNF-a, IL-1b, IL-12, and IL-23 against the

stimulus. But, if M1 phase continues, it can cause tissue damage

(33). Meanwhile, the negative correlation between ISG15 and
FIGURE 10

Molecular docking analysis of drug-gene interaction. (A) Molecular docking between ISG15 and paritaprevir. (B) Molecular docking between ISG15
and voacamine. (C) Molecular docking between ISG15 and 3, 29-dibenzoyl rarounitriol.
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resting dendritic cells and plasma cells may indicate that ISG15

could inhibit antigen presentation and humoral immune responses.

Based on the above analysis, ISG15 may have a dual role in DM: On

one hand, ISG15 may exacerbate the inflammatory response in

pathologic processes of DM progression by promoting the activity

of M1 macrophages. Conversely, when the inflammatory response

is overly pronounced, ISG15 may aid in averting an overactive or

dysregulated immune response by modulating the functionality of

specific immune cells. These findings provide new insights into the

potential roles of ISG15 in DM, but further studies are needed to

validate these hypotheses and elucidate the specific molecular

mechanisms involved.

Furthermore, there’s a significant increase in activity within the

type I IFN pathway, as observed in the muscle tissue and skin

affected by DM1. Moreover, the severity of skin manifestations has

been linked to the presence of a gene signature characteristic of type

I IFN response (34). Among these genes, ISG15 stands out as a

ubiquitin-like modifier that is strongly induced by type I IFN (13).

Although the mechanisms leading to the induction of type I IFN in

DM are not fully understood, increasing evidence points to the

involvement of dendritic cells and subsequent Toll-like receptor

(TLR) induction (10). This is consistent with our analysis results

that ISG15 is significantly correlated with TLR signaling pathway

and dendritic cells. ISG15’s role in DM appears to extend its known

functions in immune modulation, as it is implicated in pathways

governing protein turnover and cellular signaling (35). This is

evidenced by its connection to ubiquitin-mediated proteolysis, as

our GSEA analysis results showed, suggesting an active role for

ISG15 in post-translational modifications, notably ISGylation (35).

These pathways are vital for the maintenance of cellular stability

and are believed to be tightly related to the pathogenic mechanisms

of DM. Meanwhile, ISG15’s association with the regulation of

cellular ion homeostasis and transport of cytosolic calcium ions

reinforces its contribution to the complex network of cellular

processes. Dysregulation of these processes could lead to an

aggravated pathogenic state in DM, highlighting the potential of

ISG15 as a biomarker and a therapeutic target in the disease.

Beyond diagnosis, ISG15’s association with various cancers, such

as breast cancer and pancreatic cancer, provides insight intoDM’s link

with malignancies (36). Moreover, our findings suggest that ISG15

could play a crucial role in the pathogenesis of DM, providing a

theoretical foundation for the development of diagnostic or

therapeutic strategies based on ISG15. Firstly, measuring serum

ISG15 levels could aid in the early diagnosis of DM and monitoring

disease activity. Additionally, because ISG15 shows high expression in

skin tissue samples, performing IHC detection of ISG15 during the

early pathological examination of skin tissue can be highly indicative

for early diagnosis, especially in clinically amyopathic DM or atypical

DM patients, helping to avoid misdiagnosis and prevent disease

progression. Modulating ISG15 expression or activity could

represent a novel treatment avenue, especially for patients

unresponsive to standard therapies. Our molecular docking analysis

identified three compounds paritaprevir, voacamine, and 3,29-

dibenzoyl rarounitriol as potential therapeutics, pending further
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validation. Nevertheless, as ISG15 is considered a “double-edged

sword” for human diseases in which its expression is elevated,

targeting ISG15 therapeutically requires caution due to its dual role

in antiviral defense and immuneregulation (35).Therapeutic strategies

must balance diminishing the pathological immune response with

maintaining innate antiviral defenses to minimize the risk of

opportunistic infections. Future clinical studies should focus on

validating these findings and establishing treatment protocols that

ensure a balance between efficacy and safety in targeting ISG15.

However, there are some limitations to consider. First, the reliance

on publicly available datasets introduces potential variability in sample

collection, processing, and data quality. Second, confounding factors

such aspatient age, gender, and disease duration could have influenced

our results. Third, relatively small sample size for the IHC validation is

another limitation, larger cohorts would provide more definitive

evidence of ISG15’s utility as a biomarker. Additionally, our study

primarily focused on an Asian population, necessitating further

validation across diverse populations. Future research should aim to

address these limitations through larger, multi-center studies to

validate ISG15 in skin biopsy samples as well as blood samples from

various ethnic and geographic backgrounds. Moreover, functional

studies, possibly involving animal models, are required to unravel

the role of ISG15 in the inflammatory processes of DM.

Conclusion

Our study not only validates ISG15 as a biomarker for DM but

also sheds light on its potential role in the disease ’s

pathophysiology. Implementing IHC for ISG15 on skin biopsy

specimens from lesions in individuals suspected of DM could

prove to be a valuable diagnostic tool. The correlation of ISG15

with immune cell populations and its involvement in key biological

processes and pathways provide a basis for further investigation

into its utility in clinical practice.
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