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Hepatocellular carcinoma (HCC) is a highly frequent malignancy worldwide. The

occurrence and progression of HCC is a complex process closely related to the

polarization of tumor-associated macrophages (TAMs) in the tumor

microenvironment (TME). The polarization of TAMs is affected by a variety of

signaling pathways and surrounding cells. Evidence has shown that TAMs play a

crucial role in HCC, through its interaction with other immune cells in the TME.

This review summarizes the origin and phenotypic polarization of TAMs, their

potential impacts on HCC, and their mechanisms and potential targets for

HCC immunotherapy.
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1 Introduction

Primary liver cancer, including hepatocellular carcinoma (HCC) (comprising 75%–

85% of cases) and intrahepatic cholangiocarcinoma (10%–15%), as well as other rare types,

is one of the most frequent malignancies worldwide, with global morbidity and cancer‐

related mortality ranking sixth and third, respectively (1). In Asia, liver cancer is the fifth

most common cancer and the second leading cause of malignant death. HCC, which is the

most common histological type, accounts for the majority of incidence and mortality of

liver cancer cases (2). The main risk factors for HCC are chronic infection with hepatitis B

virus (HBV) or hepatitis C virus (HCV), aflatoxin-contaminated foods, heavy alcohol

intake, excess body weight, type 2 diabetes, and smoking (3). Although emerging

treatments such as immunotherapies targeting the programmed death receptor 1 (PD-1)

or its ligand (PD-L1) have been approved for the treatment of HCC with a major effect on

patient survival (4), still there are patients who cannot benefit from them. The high
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incidence and mortality of liver cancer place a heavy burden on

patients, economically and mentally.

The tumor microenvironment (TME), placing great emphasis

on tumorigenesis, progression, and metastasis toward HCC, also

strongly contributes to the tolerogenic immune response of HCC

treatment (5, 6). It comprises and can be affected by multiple

components including tumor-associated macrophages (TAMs),

tumor-associated neutrophils (TANs), cancer-associated

fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs),

and regulatory T cells (Tregs) (7, 8). TAMs, which are those

macrophages infiltrating the TME, not only have an impact on

the suppression of antitumor immune responses but also contribute

to tumor immune surveillance and antitumor responses (9–12).

Due to the key role that TAMs play in HCC, hepatic macrophages

have long been considered as potential therapeutic targets for

various HCC treatment modalities. A better understanding of the

impact and mechanism of TAMs in regulating HCC tumorigenesis,

progression, and metastasis is essential for the improvement of

immunotherapy (13).

In this review, we summarize the origin and phenotypic

polarization of TAMs, their potential impacts on HCC, and their

mechanisms and potential targets for HCC immunotherapy.
2 Origin and phenotypic polarization
of TAMs

According to the origin of liver macrophages, they can be

classified into two types: tissue-resident macrophages, also known

as Kupffer cells (KCs), and monocyte-derived macrophages (14).

KCs, which are abundant in normal liver tissue, are developed from

erythromyeloid progenitors (EMPs) in the yolk sac or fetal liver

(15). In the progression of liver cancer, multiple protumorigenic

factors would force KCs to recruit immune cells including the

number of monocytes in the liver to modulate inflammation and

prompt the functional differentiation of KCs since they are

immunogenic in nature (16, 17). Those macrophages continue

infiltrating tumors and eventually differentiate into TAMs (18).

The macrophage polarization theory indicates that TAMs

undergo M1-like or M2-like activation and are divided into two

types that have contrasting functions: the antitumor M1 phenotype

and the protumor M2 phenotype (19, 20). M1-like macrophages are

induced by interferon‐g (IFN‐g), tumor necrosis factor‐a (TNF‐a),
lipopolysaccharide (LPS), and granulocyte-macrophage colony-

stimulating factor (GM-CSF) (21). Because of their ability in

antigen presentation, M1-like macrophages could promote the

recruitment of type 1 helper T (Th) cells to enhance antitumor

responses, kill tumor cells, and suppress tumors (19, 22, 23). M2-

like macrophages are induced by transforming growth factor

(TGF)-b, macrophage colony-stimulating factor (M‐CSF),

interleukin (IL)-10, and IL-13 (24, 25). Under the influence of

those cytokines, M2-like macrophages suppress effector T-cell

infiltration, activate Th2-type immune responses, and promote

the progression of tumor (19, 26). It should be pointed out that

the polarization of macrophages is joined in a dynamic cycle under
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the impact of the TME (27–29). More importantly, the M1-like/

M2-like dichotomy based on in-vitro experiments may be defective

because of the high plasticity of TAMs in the TME. Increasing

evidence based on single-cell RNA sequencing (scRNA-Seq) has

revealed that an M1-like/M2-like paradigm could not classify the

complex phenotype of TAMs precisely, and a higher resolution than

M1-like/M2-like is therefore required to categorize the molecular

signatures of TAM subtypes in the TME (30, 31). Taking all these

factors into consideration, TAMs, as a potential target in HCC

immunotherapy, should be accorded great importance. It is

essential for us to understand the role and function of TAMs in

HCC and develop novel immunotherapies. Figure 1 summarizes the

origin and phenotypic polarization of TAMs in HCC.
3 Impact of TAMs on HCC and
their mechanism

TAMs are regulated by multiple factors in the TME of HCC.

The infiltration of TAMs in HCC is related to HCC progression,

therapy resistance, tumor angiogenesis, immunity, and metabolic

alterations. The mechanisms of TAMs in the pathogenesis of HCC

are summarized in Figure 2.
3.1 Regulation of the phenotypic
polarization and infiltration of TAMs
in HCC

In HCC, M1-like macrophages represent anticancer

characteristics, which can suppress tumor progression through

various mechanisms, while M2-like macrophages which are

enriched in HCC tissue, according to The Cancer Genome Atlas

Program (TCGA), are regarded as a protumoral type (19, 32). Liu N

et al. identified that M2 polarization of KCs impairs hepatic

enrichment of CD8+ T cells, while microRNA (miR)-206 drives

M1 polarization of KCs and hepatic recruitment of CD8+ T cells

through C-C motif chemokine ligand 2 (CCL2) production (33).

The high expression of retinoic acid-inducible gene I (RIG-I) and

sirtuin1 (SIRT1) in HCC regulates M1 polarization via the nuclear

factor kappa-light-chain-enhancer of activated B-cell (NF-kB)
pathway (34, 35). Studies conducted by Zhang Y et al. revealed

that matricellular protein spondin2 (SPON2) and its integrin

receptor a4b1 facilitate M1-like macrophage recruitment to the

TME to prevent HCC progression (36). In addition, Wang Q et al.

proved that IL-12-overexpressed monocytes could directionally

differentiate into M1-like macrophages through downregulation

of the signal transducer and activator of transcription (STAT) 3

and result in the inhibition of HCC growth (37).

M2-like macrophages could be divided into four subtypes

based on their stimulant factors: M2a, which is induced by Th2

cytokines; M2b, which is induced by immune complexes; M2c,

which is induced by anti- inflammatory cytokines or

glucocorticoids; and M2d, which is induced by IL-6-like

cytokines (38). Tumor acidosis could trigger regulatory
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macrophages and enhance immune evasion (39), which eventually

causes the generation of macrophages with immunosuppressive

properties. Tan S et al. proved that zinc-fingers and homeoboxes 2

(Zhx2) bind to p65 protein and regulate NF-kB activation, while

lactate domesticates macrophages through transcriptional

regulation of Zhx2, reduces Zhx2 expression in TAMs and, in

turn, attenuates the immunogenic M1-like activation of

macrophage, increases the polarization of M2-like macrophages

induced by IL-4, and fosters the liver tumor progression in an NF-

kB–Irf1-dependent manner (40). Lu Y et al. identified that loss of

xanthine oxidoreductase (XOR) increases a-ketoglutarate
generation in monocyte-derived TAMs by increasing the activity

of isocitrate dehydrogenase 3a (IDH3a) and drives macrophage

differentiation toward the M2 phenotype (41). Wang Y et al. found

that the circular RNA (circRNA) hsa_circ_0074854 is related to

exosome-mediated M2-like macrophage polarization (42). Yin C

et al. found that HCC cell-secreted miR-146a-5p could be delivered

by exosomes into macrophages and promote macrophages toward

M2-like polarization (43). Yang Y et al. demonstrated that HCC

cell-derived Wnt ligands via Wnt/b-catenin signaling promote

M2-like macrophage polarization (44). In macrophages, Wnt/b-
catenin signaling can be activated by the long non-coding RNA

(lncRNA) LINC00662 through WNT family member 3A (Wnt3a)

secretion in a paracrine manner and further promoted M2-like

macrophage polarization (45). Chen M et al. proved that T

follicular helper (TFH) cells operate via the IL-21–IFN-g
pathways to induce plasma cells and create conditions for M2b

macrophage polarization, while TFH cell induction is based on
Frontiers in Immunology 03
Toll-like receptor (TLR) 4-mediated monocyte inflammation and

subsequent T-cell STAT1 and STAT3 activation (46).
3.2 TAMs affect HCC proliferation, invasion,
and migration

A growing number of studies and lines of evidence have shown

that TAMs are related to HCC proliferation, invasion, and

migration. In the TME, TAMs and tumor cells interact through

mediators such as TGF-b, vascular endothelial growth factor

(VEGF), platelet-derived growth factor (PDGF), M-CSF, IL-10,

chemokine C-X-C motif ligand (CXCL), and extracellular vesicles

(EVs) to affect tumor progression (47). For example, Gunassekaran

G et al. demonstrated that IL-4R-Exo(si/mi) inhibits tumor growth

by reprogramming TAMs into M1-like macrophages and increasing

antitumor immunity (48). Xu M et al. found that TAMs augment

the aerobic glycolysis in HCC cells and their proliferation by the

extracellular exosome transmission of a myeloid-derived lncRNA,

M2 macrophage polarization-associated lncRNA (lncMMPA),

which could not only polarize M2 macrophage but also act as a

microRNA (miRNA) sponge to interact with miR-548 and increase

the mRNA level of aldehyde dehydrogenase 1 family member A3

(ALDH1A3) (49). TAMs could contribute to tumor development

by inducing the expression of hepatocyte growth factor (HGF) (50).

Wan S et al. and Mano Y et al. proved that TAMs could release IL-6

to enhance the expansion of human HCC stem cells, participate in

tumorigenesis, and promote HCC progression via the STAT3
FIGURE 1

The origin and phenotypic polarization of tumor-associated macrophages (TAMs) in hepatocellular carcinoma (HCC). Kupffer cells (KCs) and
monocyte-derived macrophages are the two classifications of liver macrophages. Kupffer cells, residing in tissues, are differentiated from
erythromyeloid progenitors (EMPs) in yolk sac or fetal liver. Under the recruitment of KCs, monocyte-derived macrophages modulate inflammation
in the progression of liver cancer and prompt the functional differentiation of KCs, which continue infiltrating tumors and differentiate into TAMs.
TAMs would undergo M1-like activations through the stimulation of interferon‐g (IFN‐g), tumor necrosis factor‐a (TNF‐a), lipopolysaccharide (LPS),
and granulocyte-macrophage colony-stimulating factor (GM-CSF). On the other hand, the M2-like activations of TAMs are induced by transforming
growth factor (TGF)-b, macrophage colony-stimulating factor (M‐CSF), IL-10, and IL-13. Under the impact of the tumor microenvironment (TME),
the polarization of TAMs is joined in a dynamic cycle.
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signaling pathway (51, 52). M2-like macrophages could be induced

by HCC-derived IL-8 and promote a pro-oncogenic inflammatory

microenvironment, which would directly promote epithelial–

mesenchymal transition (EMT) of HCC cells and stimulate their

invasive potential (53). M2-like macrophages are also considered to

promote HCC migration via the TLR4/STAT3 signaling pathway

(54). Despite M1-like macrophages being thought to be tumoricidal,

Zong Z et al. proved that M1-like macrophages secreted IL-1b to

induce PD-L1 expression through the transcription factors

interferon regulatory factor 1 (IRF1) and NF-kB in HCC cells,

supporting the protumor progression role of M1 macrophages (55).

miRNAs are small non-coding molecules that can regulate gene

expression at the post-transcriptional level and exhibit important

regulatory roles in mediating the effects of TAMs on HCC

progression. It has been proven that miR-23a-3p, highly

expressed in M2 TAM-derived exosomes, enhances HCC

metastasis by targeting phosphatase and tensin homolog (PTEN)

and tight junction protein 1 (TJP1) (56). MiR-146a-5p, enriched in

HCC exosomes, can be regulated by the transcription factor Sal-like

protein-4 (SALL4) and is demonstrated to promote infiltration of

M2 TAMs, which results in T-cell exhaustion and HCC progression

(43). On the other hand, MiR-148b deficiency promoted HCC

growth and metastasis through colony-stimulating factor 1 (CSF1)/

CSF1 receptor (CSF1R)-mediated TAM infiltration (57). Ning J

et al. found that the miR-17–92 cluster, originating from the

extracellular EVs of M2-like macrophages, stimulated the

imbalance of TGF-b1/BMP-7 pathways in HCC cells by inducing

TGF-b type II receptor (TGFBR2) post-transcriptional silencing

and inhibiting activin A receptor type 1 (ACVR1) post-translational

ubiquitylation by targeting Smad ubiquitylation regulatory factor 1
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(Smurf1), thus improving HCC cell growth and metastasis (58).

Zhang J et al. demonstrated that TAM-derived prostaglandin E2

(PGE2) stimulates ubiquitin-like, containing PHD and RING finger

domains 1 (UHRF1) expression by repressing miR-520d that targets

the 3′-UTR of UHRF1 mRNA, while UHRF1 induces DNA

hypomethylation of the CSF1 promoter and promotes CSF1

expression, thereby leading to TAM recruitment and activation

which sustains PGE2 production in a self-enhancing oncogenic

microenvironment to improve HCC progression (59). On the other

hand, Wang L et al. proved that miR-628–5p, derived from M1-like

macrophages, could inhibit the m6A modification of circFUT8,

inhibiting HCC development (60).

Recently, Wu L et al. identified a 500-µm-wide zone centered

around the tumor border in patients with liver cancer through

nanoscale resolution-SpaTial Enhanced Resolution Omics-

sequencing (Stereo-seq), referred to as “the invasive zone,” where

overexpression of CXCL6 could induce activation of the JAK–

STAT3 pathway, which causes SAAs’ overexpression and leads to

the recruitment of macrophages and M2-like polarization, resulting

in the formation of a local immunosuppressive microenvironment

and the promotion of HCC invasion and migration (61).
3.3 Impact of TAMs on resistance to
HCC treatment

Following the Barcelona Clinic Liver Cancer (BCLC) staging

system, those with advanced-stage HCC tumors will first receive

systemic therapies (62, 63). Although systemic therapies have

substantially improved the reported natural history of untreated
FIGURE 2

Mechanisms of TAMs in the pathogenesis of HCC. TAMs affect the progression of HCC by promoting or suppressing HCC proliferation, invasion, and
migration; generating immune checkpoint blockade (ICB) therapy resistance; affecting HCC angiogenesis; regulating immune functions of various
types of T cells; and altering metabolism.
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cases at advanced-stage HCC, with median survival times of ~6

months in patients with well-preserved liver function defined as

Child–Pugh A (according to the Child–Pugh score) and

compensated disease (64–66), there remains a large number of

HCC patients that do not respond to the treatments. Therefore,

uncovering the mechanism of drug resistance and increasing the

sensitivity of those drugs will be of great benefit to further improve

the overall survival (OS) of patients with HCC. TAMs have been

demonstrated to affect immune checkpoint blockade (ICB) therapy,

especially with antibodies against the PD-1/PD-L1 signal (67). At

the cellular level, an increased concentration of extracellular

adenosine as well as the depletion of tryptophan and uncontrolled

activation of the PI3K/AKT pathway induces an immune-tolerant

TME, reducing the response to immune checkpoint inhibitors

(ICIs) (68). Tan J et al. found that the number of triggering

receptors expressed on myeloid cell (TREM)-2+ TAMs is

increased in post-transarterial chemoembolization (TACE) HCC,

causing increased Gal-1 secretion to mediate the overexpression of

PD-L1 in vessel endothelial cells, which turns out to compromise

both the number and function of CD8+ T cells and suppress the

therapeutic efficacy of anti-PD-L1 blockade (69). Wei C et al. found

that protein kinase C alpha (PKCa) phosphorylates zinc finger

protein 64 (ZFP64) at S226 and promotes its nuclear translocation,

thereby transcriptionally activating CSF1, which further induces the

recruitment and M2-like polarization of macrophages, inducing

immune escape and anti-PD-1 resistance in HCC (70). Lu J et al.

revealed that enhanced expression of CD39 on TAMs, which is

induced by HCC-secreted exosomal circTMEM181, could

collaborate with CD73 to fulfill the sequential activation of the

ATP–adenosine pathway, impair CD8+ T-cell function, and build a

PD-1 antibody-resistant tumor environment (71). M2-like

macrophages are also reported to mediate sorafenib resistance in

HCC by secreting HGF (72). On the other hand, TAMs are reported

to cause oxaliplatin-based chemotherapy resistance by triggering

autophagy and apoptosis evasion in HCC tumor cells (73). To

overcome the resistance of TAMs to HCC treatment, research has

been carried out to enhance the sensibility of anti-PD-1 therapy in

HCC. Wang J et al. found that blockage of Calcyclin-Binding

Protein (CacyBP) would inhibit the expression of C-X3-C motif

chemokine ligand 1 (CX3CL1), a key chemotactic factor for the

recruitment of monocyte-derived macrophages to the liver (74),

and thus significantly reduce TAM infiltration and achieve

synergies with anti-PD-1 treatment in HCC (75).
3.4 TAMs affect angiogenesis in HCC

Vasculature induction is regarded as one of the 14 hallmarks of

tumor development (76). The hypervascular nature of most HCC

tumors underlines the importance of angiogenesis in the pathobiology

of HCC (77). The density of the tumor microvessel is positively

correlated with macrophage counts, indicating the key role that

TAMs play in HCC angiogenesis (78). Therefore, it is essential to

understand the mechanism of TAMs affecting angiogenesis in HCC.

MiR-223, a well-documented myeloid-enriched miRNA expressed in

neutrophils, macrophages, and hepatocytes, is reported to attenuate
Frontiers in Immunology 05
hepatocarcinogenesis by blocking hypoxia-driven angiogenesis and

immunosuppression (79). Bartneck M et al. found that C-C

chemokine receptor type 2+ (CCR2+) TAMs are enriched in highly

vascularized HCC, especially those that arise in fibrotic or cirrhotic

livers, and could promote angiogenesis and tumor vascularization in

those livers (80). Zang M et al. found that CD14+ inflammatory

macrophages in HCC tissues could alter macrophage function

through persistent IL-23 generation, which are related to the higher

concentrations of VEGF and the promotion of HCC development after

chronic HBV infection (81). Meng Y et al. identified that the expression

of C-X-C motif chemokine receptor 4 (CXCR4), a novel vascular

marker for vessel sprouting in HCC tissues, can be promoted by

monocytes/macrophages via the ERK pathway in hepatocellular

carcinoma (82). On the other hand, combining zoledronic acid (ZA)

with sorafenib could improve the antitumor efficacy by downregulating

the expression of CXCR4 (83).
3.5 TAMs affect immunity in the TME
of HCC

Macrophages are closely related to the immune evasion of HCC

through expressing a series of immunosuppressing molecules including

cytokines, chemokines, and enzymes (84). The interaction between

TAMs and CD8+ T cells produced an immunosuppressive

microenvironment in HCC. Wu Q et al. found that hypoxia-

inducible factor 1a (HIF-1a) induced increased expression of

TREM-1 in TAMs, resulting in the impairment of the cytotoxic

functions of CD8+ T cells and the induction of CD8+ T-cell

apoptosis (85). On the other hand, Xiong H et al. demonstrated that

increased IFN-g signaling following anti-PD-L1 treatment can decrease

Arginase-I (ARG1) expression and remodel the macrophage

compartment by polarizing it toward a more proinflammatory

phenotype to enhance T-cell responses (86). Liao J et al. revealed

that a low dose of type I interferon could effectively reprogram human

monocyte-derived macrophages to upregulate CD169 expression, and

such induced CD169+ macrophages exhibited significantly enhanced

phagocytotic and CD8+ T-cell-activating capacities (87). TAMs can

also cooperate with Tregs in suppressing immunity in the TME of

HCC (85). In addition, activated and exhausted mucosal-associated

invariant T cells (MAITs), represented as an abundant innate-like T-

cell subtype in the human liver, have been proven to be associated with

disease progression and poor outcomes in HCC patients (88). Ruf B

et al. demonstrated that human hepatic CD163+ macrophages inhibit

liver MAIT cell function through a cell-contact and PD-L1-dependent

mechanism (89). Finally, Cheng K et al. proposed that since M2-like

macrophages, Tregs, and MDSCs are the main components of the

immunosuppressive microenvironment, eliminating TAMs may lead

to the compensatory emergence of other protumorigenic immune

cells (90).
3.6 Metabolic alterations of TAMs in HCC

The tumor progression of HCC is closely related to the

alterations of metabolic enzymes, metabolites, and metabolic
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pathways in macrophages (91, 92). TAMs actively take up and

metabolize glucose to acquire immunosuppressive and protumor

functions (93). Shi Q et al. revealed that the TME endowed M2-like

TAMs with a high capability of glucose uptake and utilization,

which enhanced the activity of the hexosamine biosynthetic

pathway to enhance O-GlcNAcylation on cathepsin B (CTSB) in

TAMs, leading to an elevated mature form of CTSB and its

secretion in the TME, which in turn promote tumor metastasis

and chemoresistance (94). On the other hand, fatty acid binding

protein 5 (FABP5), a lipid-binding protein, could promote

macrophage lipid accumulation and foster immune tolerance

formation in HCC (95). Wu L et al. found that downregulation of

receptor-interacting protein kinase 3 (RIPK3) in the TAMs of HCC

facilitated fatty acid metabolism, including fatty acid oxidation

(FAO), and induced M2 polarization in the TME (96). Zhang Q

et al. found that FAO contributes to IL-1b secretion in M2-like

macrophages, which could promote HCC cell migration (97).
4 TAMs in HCC immunotherapy

Immunotherapy is the first‐ l ine treatment for the

comprehensive therapy of patients with advanced HCC in China,

including atezolizumab combined with bevacizumab, sintilimab

combined with a bevacizumab analog, donafenib, rovatinib, and

sorafenib. Currently, the four therapeutic strategies targeting TAMs

are the elimination of TAMs in tumor tissues, inhibition of TAM

recruitment, promotion of TAM phagocytosis, and targeting TAM

receptors (TAMRs), including Tyro3, Axl, and MerTK (98).

Figure 3 summarizes the current strategies of macrophage-

targeting therapies. Table 1 summarizes the preclinical studies

and clinical trials that focus on macrophage-targeting therapies.
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Colony-stimulating factor 1 receptor (CSF1R)-mediated

signaling is crucial for the differentiation and survival of the

mononuclear phagocyte system, especially macrophages (106).

The intratumoral presence of CSF1R+ macrophages is related to

poor survival in various tumor types (107). Zhu Y et al. found that

blocking CSF1/CSF1R could prevent TAM trafficking and thereby

enhance the efficacy of immune checkpoint inhibitors for the

treatment of HCC (99). Drugs that focus on CSF1R inhibition

include RG7155 and IMC-CS4 (108, 109). On the other hand,

research has found that specific targeting of CD163+ TAMs, a type

of M2-like macrophages, could re-educate the tumor immune

microenvironment and promote both myeloid and T-cell-

mediated antitumor immunity, which illustrates the importance

of selective targeting of M2-like macrophages in a therapeutic

context (110).

Therapeutic blocking of the CCL2/CCR2 axis inhibits the

recruitment of inflammatory monocytes and the infiltration and

M2 polarization of TAMs, resulting in the reversal of the

immunosuppression status of the TME and activation of an

antitumor CD8+ T-cell response (102). However, a phase 2 study

of carlumab, a human monoclonal antibody against CCL2, showed

that carlumab failed to inhibit tumor growth since tumor cells

compensatory increased the expression of CCL2 (111). Dual

antagonists targeting both chemokine receptors simultaneously

might be a strategy that could lead to a more effective TAM

targeting. Chemokine receptors targeting agents need to be

chosen accurately so as not to affect the recruitment of other

immune cells such as natural killer (NK) cells and T cells.

CD47 has been proven to protect host cells from macrophage-

mediated destruction by binding to signal regulatory protein (SIRP)

1a expressed on the surface of macrophages (112). Tang Z et al.

revealed that CD47 could suppress phagocytosis not only by
FIGURE 3

Current strategies of macrophage-targeting therapies. Elimination of TAMs in tumor tissues, inhibition of TAM recruitment, promotion of TAM
phagocytosis, and targeting TAM receptors (TAMR) including Tyro3, Axl, and MerTK compose the main strategies of macrophage-targeting therapies.
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engaging SIRPa but also by masking cell-intrinsic pro-phagocytic

ligands on tumor cells as well (113). Therefore, antibodies blocking

CD47 and SIRPa might become an effective therapeutic strategy.

The anti-CD47 monoclonal antibody B6H12 has been proven to

induce macrophage-mediated phagocytosis, suppress tumor

growth, and augment the efficacy of chemotherapy in HCC (104).

Neutralizing antibodies against CD47 can enhance macrophage-

mediated phagocytosis and activate effector T cells (114). The anti-

CD40 monoclonal antibody selicrelumab is another approach to

reprogram TAMs to an M1-like phenotype and enhance

phagocytosis, whose main mode of action may be the induction

of increased tumor-specific antigen presentation via activation of

antigen-presenting cells, resulting in the production of cytotoxic T

cells directed against the tumor (115–117).

TAMRs, expressed in tumors and various immune cells, exhibit

diverse roles in processes such as cell fate, proliferation, migration,

and regulation of tissue homeostasis and inflammation (118). Since

TAMRs onmacrophages have tumor-promoting roles of promoting
Frontiers in Immunology 07
M2-like polarization and efferocytosis, it is possible that targeting

TAMRs on macrophages will be an effective therapy for treating

different types of cancers (119).
5 Discussion and conclusion

As one of the most frequent malignancies worldwide, HCC is a

serious threat to the lives and health of our people. The occurrence and

development of HCC is a complex, multistep, and multifactor process.

The polarization of TAMs, an important part and main immune cell of

the TME of HCC, is affected by multiple signaling pathways and

surrounding cells. TAMs participate in HCC progression by affecting

HCC proliferation, invasion, and migration; mediating drug resistance;

promoting angiogenesis; being involved in the formation of an

immunosuppressive microenvironment; and reprogramming

metabolic patterns. Owing to the crucial role that TAMs play in

HCC progression, a better understanding of how TAMs regulate

HCC malignancy is essential for the development of more effective

TAM-targeting HCC therapies. The development and manufacture of

highly selective targeting drugs will help promote the further

development of antitumor immunotherapy targeting TAMs to

improve clinical benefits for HCC patients.

Current investigations of TAMs in HCC remain insufficient.

Although the macrophage polarization theory simplified macrophage

biology by the M1-like/M2-like classification, increasing single-cell

transcriptomics studies have captured a more complicated phenotype

of macrophages and revealed the heterogeneous and high plasticity of

TAMs at the transcriptional level. Therefore, further studies combined

with genomics, proteomics, and transcriptomics analyses in both HCC

in situ and metastasis are suggested to provide a more detailed

understanding of the subtypes of macrophages in the TME of HCC

and their corresponding functions in HCC.

Despite the encouraging results of clinical studies on TAMs,

targeting TAMs in HCC treatment still faces some challenges. Most

knowledge on how TAMs affect the TME of HCC is based on

animal models. Considering the heterogeneity of tumor progression

and therapy responses between animal models and humans, it is

essential to explore inhibitors targeting human TAMs as well as

their influence on the immunosuppressive microenvironment of

HCC patients in order to enhance the applications of targeting

TAM therapy strategies and improve outcomes.

In this review, we summarized the origin and phenotypic

polarization of TAMs, their impact and molecular mechanism,

and their potential applications in therapy strategies for HCC

patients. We suggest further studies that focus on 1) identifying

the diversity markers of macrophages to classify TAM subtypes, 2)

revealing the heterogeneity of HCC tumors as well as the

corresponding functions of TAMs in different locations such as

HCC in situ and metastasis, and 3) enhancing the specificity of the

markers for identifying TAM phenotypes. Through a better

understanding of TAMs, future pharmaceuticals targeting TAMs

in the specific immune environment of HCC combined with

traditional immune therapy would provide a safer and more

efficient treatment strategy for HCC patients to prolong survival

and improve prognosis.
TABLE 1 Studies and undergoing clinical trials of drugs targeting TAMs
for HCC treatments.

Study or
clinical
trial
number

Treatment
strategy

Drug
name

Results

Zhu Y
et al. (99)

CSF1R
inhibitor

PLX3397 Blocking CSF1/CSF1R
enhances the efficacy of
immune checkpoint
inhibitors for the
treatment of HCC.

NCT04050462 Blocking
CSF1/CSF1R

Cabiralizumab N/A

NCT03245190 Blocking
CSF1/CSF1R

Chiauranib N/A

Ambade A
et al. (100)

CCL2/
CCR5
antagonist

Cenicriviroc Ameliorates alcohol-
induced steatohepatitis
and liver damage

NCT04123379 CCL2/
CCR5
antagonist

BMS‐813160 N/A

Yao W
et al. (101)

CCR2
antagonist

747 Potentiates the
therapeutic effect
of sorafenib

Li X
et al. (102)

CCR2
antagonist

RDC018 Blockade of CCL2/CCR2
signaling suppresses
murine liver
tumor growth.

Chen J
et al. (103)

CD47‐
SIRPa blocking

Anti‐
CD47‐Ab

Anti-CD47 antibody
treatment enhances the
curative effect of TACE.

Lo J
et al. (104)

CD47‐
SIRPa blocking

Anti‐
CD47‐Ab

Anti-CD47 antibody
treatment enhances the
curative effect
of doxorubicin.

Xiao Z
et al. (105)

CD47‐
SIRPa blocking

CD47mAb CD47mAb enhances the
phagocytosis ability
of macrophages.
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