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Altered metabolic profiles
of dermatomyositis with
different myositis-specific
autoantibodies associated
with clinical phenotype
Nan Wang1,2, Lili Shang2,3, Zhaojun Liang1,2, Min Feng1,2,
Yanlin Wang1,2, Chong Gao4 and Jing Luo1,2*

1Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan,
Shanxi, China, 2Shanxi Key Laboratory of Rheumatism Immune Microecology, The Second Hospital of
Shanxi Medical University, Taiyuan, Shanxi, China, 3Second Clinical Medical College, The Shanxi
Medical University, Taiyuan, Shanxi, China, 4Department of Pathology, Brigham and Women’s
Hospital, Harvard Medical School, Boston, MA, United States
Introduction: Dermatomyositis (DM) is an idiopathic inflammatory myopathy.

Because of clinical heterogeneity, the metabolite profile of DM patients with

different myositis-specific autoantibodies (MSAs) remains elusive. This study

aimed to explore the metabolomics characteristics of the serum in DM with

different MSAs, low or high disease activity, and interstitial lung disease.

Methods: Untargeted metabolomics profiling was performed in the serum of a

discovery cohort (n=96) and a validation cohort (n=40), consisting of DM patients

with MSAs, low or high disease activity, and/or interstitial lung disease (DM-ILD)

compared to age- and gender-matched healthy controls (HCs).

Results: The lipid profile in DM was found to be abnormal, especially

dysregulated glycerophospholipid metabolism and fatty acid oxidation, which

might affect the pathogenesis of DM by disrupting the balance of Th17 and Treg.

We identified potential biomarkers of DM that can distinguish between low or

high disease activity and reflect lung involvement. Two metabolite combinations

including pro-leu, FA 14:0;O can distinguish high disease activity DM from low

disease activity DM and HCs, and five including indole-3-lactic acid,

dihydrosphingosine, SM 32:1;O2, NAE 17:1, and cholic acid can distinguish DM-

ILD from DM without ILD (DM-nonILD). DM with different MSAs had unique

metabolic characteristics, which can distinguish between MDA5+DM, Jo-1+DM,

and TIF1-g+DM, and from the antibody-negative groups. The sphingosine

metabolism has been found to play an important role in MDA5+DM, which

was associated with the occurrence of ILD.
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Discussion: Altered metabolic profiles of dermatomyositis were associated with

different myositisspecific autoantibodies, disease activity, and interstitial lung

disease, which can help in the early diagnosis, prognosis, or selection of new

therapeutic targets for DM.
KEYWORDS

dermatomyositis, metabolomics, biomarkers, interstitial lung disease, anti-MDA5, anti-
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Introduction

Dermatomyositis (DM) is a rare systemic immune-mediated

inflammatory myopathy, which is heterogeneous in the clinic.

Besides the skin, it also involves important organs such as the

lung, and the severity of DM is related to the type of organ

involvement (1). Patients with DM often present with interstitial

lung disease (ILD), with a prevalence of approximately 40% (2–4).

Importantly, ILD has the most severe extramuscular involvement in

DM, which is deeply related to a reduced quality of life and worse

prognosis (3, 5). Therefore, early diagnosis is essential to prevent

irreversible organ damage with DM progression.

Metabolic changes in the body are downstream of genes and

proteins, reflecting the biological phenotype. The discovery of

distinct DM autoantibodies and their correlation with specific

clinical phenotypes have transformed patient categorization (6),

especially myositis-specific antibodies (MSAs). Whether and how

each autoantibody influences downstream metabolic processes of

disease has rarely been studied. MSAs, including anti-Mi2, anti-

MDA5, anti-NXP2, anti-TIF1-g, and anti-SAE antibodies, may be

associated with different DM subtypes in terms of skin

manifestations, systemic involvement, and cancer risk (7). For

example, muscle disease and arthritis are more common in

patients with anti-Jo-1 antibodies (8), and tumors are more

common in patients with anti-TIF1-g (9); however, patients with

anti-MDA5 autoantibodies can develop rapidly progressive ILD

(2, 3, 5, 10), and their related mortality is very high.

As a new system biology method, metabolomics is increasingly

used to evaluate metabolic disorders in human diseases, which has a

good prospect of finding new disease biomarkers, clinical diagnosis,

and efficacy prediction (11, 12). A study based on an untargeted

metabolomic approach found that glutamine, methionine,

isoleucine, tryptophan, glutamate, indole, protocatechuic acid,

and phenylalanine were potential biomarkers for the diagnosis of

DM in terms of sensitivity and specificity (13). Some studies have

also found that abnormal lipid changes through metabolomics had

a potential role in the diagnosis and treatment of DM (14, 15).

These studies implied that metabolomics might be a potentially

critical means in the future in terms of early diagnosis and novel

therapeutic targets of DM. However, the research of metabolomics
02
and lipidomics on disease activity, organ involvement, and antibody

typing for the diagnosis of DM is limited.

In this study, non-targeted metabolomics was used to analyze

the serum metabolic profile of DM. Univariate analysis,

multivariate statistical analysis, and machine learning models

were used to screen key metabolites and identify potential

biomarkers of DM with unique MSAs, which can reflect disease

activity and lung involvement. Meanwhile, the metabolic

characteristics of anti-MDA5, anti-TIF1-g, and anti-Jo-1 positive

DM were studied to explore the key metabolic pathways that

promote the development of the disease. These results are helpful

to understand the occurrence and development of DM at the

molecular level and to realize the early diagnosis, prognosis, and

targeted therapy of DM.
Materials and methods

Patients and serum sample collection

Between January 2016 and July 2021, 96 participants [67

patients with DM and 29 healthy controls (HCs)] were assigned

to the discovery cohort to evaluate biomarkers, and 40 participants

(28 with DM and 12 HCs) were assigned to the validation cohort to

test candidate biomarkers. All patients were in accord with the

American College of Rheumatology (ACR) classification criteria for

DM without the history of other autoimmune diseases. HCs with

matched age and gender were enrolled at the Second Hospital of

Shanxi Medical University. HCs also had no history of autoimmune

diseases. Subjects in any one or more of the following categories

were excluded from our analysis: (1) the presence of type I or II

diabetes, (2) active viral and/or bacterial infection, and (3) received

high-dose glucocorticoid pulse therapy. The disease activity of DM

was evaluated using the Myositis Disease Activity Assessment

Visual Analogue Scales (MYOACT), which was established by the

International Myositis Assessment and Clinical Studies (IMACS)

group, including constitutional, cutaneous, skeletal, gastrointestinal,

pulmonary, cardiovascular, muscle, extramuscular, and a global

score. ILD was diagnosed by a rheumatologist and radiologist based

on HRCT-revealed reticular abnormalities and honeycombing and
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clinical features. This study was approved by the ethics committee

of the Second Hospital of Shanxi Medical University (2019YX266).

Clinical data on comorbidities and therapy that may affect

metabolism profiles were retrieved by retrospective review of

patients’ records. None of the 95 DM patients had diabetes

mellitus. In the discovery cohort, four patients of DM were

diagnosed with hypothyroidism and one patient was combined

with hyperthyroidism, while only one DM patient was combined

with hypothyroidism in the validation cohort. The rest of the

patients had normal serum levels of thyroid-stimulating hormone

(TSH), and thyroid disease was excluded. In the discovery cohort,

33 patients were on treatment with prednisone with a median daily

dose of 15 mg/day. A total of 22 patients had an additional
Frontiers in Immunology 03
immunosuppressive drug (Methotrexate , thal idomide,

leflunomide, or hydroxychloroquine); one patient was treated

with hydroxychloroquine only, and 33 patients were newly

diagnosed with DM or untreated. In the validation cohort, 12

patients were on treatment with prednisone, and 16 patients were

newly diagnosed with DM or untreated at the time of serum

sampling. None of DM patients took carnitine supplements

for treatment.

Fasting serum was collected from each subject with the patient’s

consent and stored at −80°C until use. Clinical data collection for

DM patients was described in the Supplementary methods. The

clinical characteristics of the participants are listed in Table 1;

Supplementary Table S1.
TABLE 1 Demographics and clinical characteristics of DM patients and health controls.

Characteristic
Discovery set (n=96) Validation set (n=40)

DM (n=67) HC (n=29) DM (n=28) HC (n=12)

Sex, female (%) 55 (82.09%) 23(79.31%) 22 (78.57%) 10(83.33%)

Age (years) 49.09 ± 15.34 52.48 ± 13.30 49.04 ± 15.92 53.33 ± 13.45

BMI (kg/m2, mean ± SD) 24.09 ± 5.27 23.27 ± 3.4

Age at onset (years) 46.33 ± 15.35 46.04 ± 17.71

Disease duration (median mouth, IQR) 7 (2, 27) 2.5 (1, 39)

LDH, U/L 482.63 ± 372.11 462.09 ± 299.03

Cr, mmol/L 48.55 ± 10.66 49.14 ± 13.84

CK, mmol/L 1177.12 ± 3670.0 932.14 ± 2123.2

AST, U/L 83.25 ± 104.73 86.17 ± 98.98

ALT, U/L 69.37 ± 72 100.81 ± 184.06

TC, mM/L 4.49 ± 1.23 4.48 ± 0.89

TG, mM/L 1.94 ± 1.08 1.74 ± 0.82

HDL-C, mmol/L 1.14 ± 0.35 1.14 ± 0.40

LDL-C, mmol/L 2.49 ± 0.84 2.6 ± 0.61

Glucose, mmol/L 5.68 ± 1.55 5.91 ± 2.51

ESR, mm/h 44.55 ± 28.37 42.29 ± 32.24

CRP, mg/ 29.40 ± 39.26 31.72 ± 61.10

ANA (1:80), (n, %) 33 (49.25%) 15 (53.57%)

MYOACT 10.80 ± 4.76 10.86 ± 5.13

MYOACTmuscle 3.49 ± 2.23 3.80 ± 2.71

MYOACTextramuscular 7.31 ± 4.08 7.05 ± 3.36

Skin lesions, n (%)

Gottron’s papules or sign 25 (37.31%) 14 (50%)

Heliotrope rash 59 (88.06%) 24 (85.71%)

Mechanics hand 7 (10.45%) 2 (7.14%)

Cutaneous ulcerations 9 (13.43%) 3 (10.71%)

(Continued)
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Untargeted metabolomic profiling

Untargeted metabolic profiles of serum samples from DM

patients and HCs were measured by ultra-high-performance

l iquid chromatography-composed time-of-fl ight mass

spectrometry (UPLC-TOF-MS), and exhaustive metabolite

extraction and LC-MS analysis methods were described in

Supplementary methods. The raw data were imported to XCMS

(version 3.6.3) for automatic data prepossessing including peak

picking and retention time correction. Subsequently, the

substances with detection rate <50% or relative standard

deviation >30% were filtered. Then, the resulting data matrixes

were imported into SIMCA 14.0 software (Umetrics, Sweden) for

multivariate data analysis, including principal component analysis

(PCA) and orthogonal partial least square discriminant analysis

(OPLS-DA). The variable importance in the projection (VIP)

values from OPLS-DA models, fold change (FC), and p-value or

false discovery rate (FDR) correction were performed to screen the

differential metabolites. The metabolites were identified by OSI/

SMMS software (Dalian ChemData Solution Information
Frontiers in Immunology 04
Technology Co., Ltd., China), MSDIAL (version 5.1.221218),

and other online databases, including Human Metabolome

Database (http : / /www.hmdb.ca/) , Lipidmaps (https://

lipidmaps.org/), and LipidBlast (https://fiehnlab.ucdavis.edu/

projects/lipidblast).
Statistical analysis

Statistical analysis of clinical data and differential metabolites

was performed using the SPSS 22.0, GraphPad Prism 8.0, and

MetaboAnalyst 5.0. Categorical and quantitative variables were

described as frequencies, percentage, mean ± standard deviation,

or median (Q25, Q75). Data of demographic and clinical features

were compared between groups by the non-parametric Mann–

Whitney U-test or independent sample t-test, as appropriate.

Correlation analysis was performed using the Spearman or

Pearson correlation test. Receiver operating characteristic (ROC)

curve analysis was used to evaluate the diagnostic performance

of potential biomarkers. The lasso regression was performed by
TABLE 1 Continued

Characteristic
Discovery set (n=96) Validation set (n=40)

DM (n=67) HC (n=29) DM (n=28) HC (n=12)

Muscle, n (%)

Myalgia 26 (38.81%) 8 (28.57%)

Muscle weakness 53 (79.10%) 22 (78.57%)

Other, no. (%)

Hoarseness or sore throat, dysphagia 36 (53.73%) 10 (35.71%)

Arthralgia 34 (50.75%) 15 (53.57%)

Fever 33 (49.25%) 10 (35.71%)

Interstitial lung disease 27 (40.30%) 6 (21.43%)

Cardiac involvement 10 (14.93%) 0

Myositis-specific antibodies, no. (%)

Negative 20 (29.85%) 9 (32.14%)

MDA-5 9 (13.43%) 2 (7.14%)

TIF-1g 8(11.94%) 0

Jo-1 4 (5.97%) 2 (7.14%)

Mi-2 2 (2.98%) 1 (3.57%)

NXP-2 3 (4.48%) 2 (7.14%)

Ro52 15 (22.39%) 3 (10.71%)

Treatments

Prednisone ≤15 mg/day 17 (25.37%) 7 (25%)

Prednisone >15 mg/day 16 (23.88%) 5 (17.86%)

csDMARDs 23 (34.33%) 6 (21.43%)
BMI, body mass index; LDH, lactate dehydrogenase; Cr, creatinine; CK, creatine kinase; AST, aspartate aminotransferase; ALT, alanine aminotransferase; TC, total cholesterol; TG, triglyceride;
HDL-C, high density lipoprotein cholesterol; LDL-C, low density lipoprotein cholesterol; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; MYOACT, myositis disease activity
assessment visual analogue scales.
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R (glmnet package) for screening metabolites, and partial

least squares discrimination analysis (PLS-DA), support vector

machines (SVM) classification model, and random forest (RF)

model were performed in MetaboAnalyst 5.0 to validate the

selected biomarkers.
Results

Serum metabolic profiling of DM

The workflow of research design and data analysis is shown in

Figure 1A. All the serum samples were analyzed by UPLC-TOF-MS.

The PCA model and OPLS-DA model were constructed and

showed a significant difference between the DM and HCs

(Supplementary Figures S1, S2). The repeatability of metabolic

profiling was evaluated using quality control (QC) samples,
Frontiers in Immunology 05
indicating that the analytical methods were reliable and

acceptable (Supplementary Figure S1).

Subsequently, based on the criteria of VIP>1, FDR<0.05, and

FC>1.5 or FC<0.67, a total of 160 differential endogenic metabolites

were screened between the DM and HC groups. Among them, 17

serum metabolites decreased and 143 increased in the DM group

(Supplementary Table S2). The validation cohort containing 28 DM

and 12 HCs was used to evaluate the reliability of differentially altered

metabolites; the PCA model showed the significant separation of the

metabolic spectra between patients with DM and HCs in the

verification cohort (Supplementary Figure S3). These differential

metabolic features between DM and HCs mainly include lipids,

amino acids, benzene and substituted derivatives, organonitrogen

compounds, carboxylic acids, cinnamic acids, indoles and derivatives,

and other compounds (Figure 1B). Amino acids were detected as the

predominant type of polar compounds, while glycerophospholipids

and fatty acids were the principal types of lipid compounds.
FIGURE 1

Altered metabolic profiles in the serum of dermatomyositis. (A) The workflow of study design and data analysis. (B) The composition and proportions
of differential metabolites between DM and HCs. (C) Pathway analysis of the differentially altered metabolites identified in patients with DM
compared with HCs. (D) Altered differential metabolite involved in different metabolic pathways. (E) Fitting ROC analysis of two biomarkers screened
by lasso regression and multiple logistic regression models. (F) Distribution of two biomarkers in DM and HC in the discovery cohort. (G) Correlation
heatmap of differential metabolites and markers of inflammation and disease activity in 95 patients with DM. (H) Integrative network of associations
reflecting the interactions of differential metabolites and T-cell subpopulation in 95 patients with DM. Network revealed associations (p<0.05)
between differentially abundant metabolites and T-cell subpopulation in DM. * p< 0.05, ** p< 0.01.
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To further explore the pathways possibly related to DM, 160

differential metabolites were used to perform metabolic pathway

analysis between HC and DM groups. As shown in Figures 1C, D,

for DM, the altered metabolites of the fatty acid metabolic pathway

accounted for an important proportion, including a-linolenic acid
and linoleic acid metabolism and arachidonic acid metabolism.

Linolenic acid, linoleic acid, arachidonic acid, and derived oxidized

lipids increased in DM. In addition, there were other metabolic

pathways, such as amino acid metabolism, tricarboxylic acid cycle,

tryptophan metabolism, and glycerophospholipid metabolism, that

have shown important effects on the development of DM.

Then, we used lasso regression to further screen the altered

endogenous differential metabolites, with passing 10-fold cross-

validation and adjusting the parameters l. Nine metabolites were

identified as potential biomarkers for DM (Supplementary Table S3),

including tetrahydroaldosterone-3-glucuronide, carnitine, choline,

LPC 16:0, a-curcumene, glutamic acid, glycerol-2-phosphate, 2-

hydroxybenzothiazole, and DG 41:10. To further improve the

diagnostic efficiency of DM, the forward stepwise regression model

was performed, and a panel consisting of tetrahydroaldosterone-3-

glucuronide and glycerol-2-phosphate showed that high specificity

and sensitivity with the area under the curve (AUC) was 1.0

(Figure 1E). The discriminant ability of two biomarkers in the

discovery cohort and the validation cohort were analyzed using RF,

SVM, and PLS-DA models. The results showed that the accuracy of

the two biomarkers in distinguishing the HC and DM groups reached

more than 90% in the three models (Supplementary Figure S4), and

the changing trend of the two biomarkers in the validation cohort was

consistent with that in the discovery cohort (Figure 1F). To sum up,

the serum endogenous metabolites, tetrahydroaldosterone-3-

glucuronide and glycerol-2-phosphate, had good discrimination

ability for DM.
Correlation between the DM differential
metabolites and clinical features

To explore the possible impact of altered metabolites on disease

development, we analyzed the correlation between these

metabolites and the clinical features of DM. The results showed

that the elevated metabolites in the serum of DM patients were

related to disease activity (Figure 1G); for example, pro-leu, 2-

hydroxybutyric acid, phenylalanine, indoline, trans-cinnamic acid,

and 11-HpODE were positively correlated with MYOACT (R=0.2–

0.39, p<0.05). Kynurenine, pro-leu, glutamic acid, and

tetrahydroaldosterone-3-glucuronide were weakly associated with

muscle enzyme indexes CK, CKMB, LDH, and HBDH (R=0.2–0.39,

p<0.05), while sphinganine 1-phosphate, indoleacetic acid, and LPE

were negatively correlated with inflammatory indexes (ESR

and CRP).

In addition, previous research had found that the number of

CD4 + T-cell subsets in the DM was imbalanced, especially the

decrease in peripheral Treg cells and increase in Th17/Treg ratio

(16). In our study, multiple metabolites were found to be weakly

associated with CD4+T cells subsets (|R|>0.2, p<0.05, Figure 1H).
Frontiers in Immunology 06
Increased oxidized lipids and amino acids in DM were negatively

correlated with the absolute number of Treg, while increased LPC

and amino acids were positively correlated with the absolute

number of Th17. Linoleic acid and derivatives, arachidonic acid

and derivatives, amino acids, glycerophospholipids, and indoles

were related to the ratio of Th17/Treg.
Serum metabolic profiling associated with
disease activity of DM

DM was divided into low disease activity DM (L-DM,

MYOACT<10) and high disease activity DM groups (H-DM,

MYOACT≥10) according to the median MYOACT of all patients

with DM. The demographics and clinical characteristics of the two

groups are listed in Supplementary Table S4. The OPLS-DA models

of metabolome showed differences between L-DM and H-DM in

positive and negative ions models (Supplementary Figure S5).

Subsequently, a total of 15 differential endogenous metabolites

based on the criteria of VIP>1, p<0.05, and FC>1.2 or FC<0.8

were determined between L-DM and H-DM; 13 differential

metabolites were enriched in H-DM and two were enriched in L-

DM (Figure 2A). To distinguish H-DM from L-DM and HCs, the

methods of the forward stepwise regression were used to select the

altered metabolites. A panel consisting of pro-Leu and FA 14:0;O

showed the best predictive efficiency with AUC of 0.751 in the

combined for ROC analysis (Figure 2B).

Furthermore, we analyzed the correlation between differential

metabolites of L-DM and H-DM groups and disease activity in all

DM patients using the Spearman’s correlation (Figure 2C). The

results showed that pro-leu, 9-OxoODE, 2-hydroxybutyric acid, FA

14:0;O, FA 20:5;O2, and 11-HpODE were significantly and

positively correlated with MYOACT of DM (R=0.2–0.39, p<0.01).

Meanwhile, pro-leu and creatine were weakly and positively related

to muscle enzyme indices (CK, CKMB, LDH, and HBDH), while

elemicin was moderately and negatively related to the LHD and

HBDH (|R|=0.4–0.5, p<0.001). Linear regression results (Figure 2D)

indicated that pro-leu, FA 14:0;O, creatine, and 2-hydroxybutyric

acid had certain positive linear correlation with MYOACT of DM,

implying that the four metabolites might play roles in promoting

the occurrence and development of DM. Additionally, creatine

levels were positively associated with muscle disease activity

(MYOACTmuscle, R=0.369, p<0.001) in DM patients. Serum

creatinine (Cr) is the primary metabolite of creatine in muscle,

who were negatively correlated with MYOACTmuscle in DM

patients (R=−0.274, p=0.008), although not with MYOACT.

In addition, the absolute number of peripheral Treg cells in the

H-DM group was significantly lower than that in the L-DM group

(Supplementary Table S4). Meanwhile, we found that elevated

metabolites in H-DM, such as 2-hydroxybutyric acid, 11-HpODE,

9-OxoODE, and FA 20:5;O2, were significantly negatively

correlated with the absolute number of Treg (Supplementary

Figure S6). These results suggested that the altered metabolites

might accelerate the progression of DM by inhibiting the number

of Tregs.
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Serum metabolic profiling of DM-
associated interstitial lung disease

Interstitial lung disease (ILD) is a common complication of DM

and is associated with increased mortality. To investigate

biomarkers of DM-associated with ILD (DM-ILD), we divided all

DM patients into the DM-ILD group and DM without ILD (DM-

nonILD) group according to clinical phenotypes. The

demographics and clinical characteristics of the two groups are

listed in Supplementary Table S5.

In the OPLS-DA models of the metabolome, DM-ILD and DM-

nonILD groups could be separated at positive and negative ions

models, and 200 permutations were tested and the discriminant

models did not overfit (Supplementary Figure S7). Subsequently, a
Frontiers in Immunology 07
total of 22 differential metabolites based on the criteria of VIP>1,

p<0.05, and FC>1.2 or FC<0.8 were determined between DM-ILD

and DM-nonILD, of which seven were decreased and 15 were

increased in DM-ILD group (Figure 3A).

The variation in differential metabolites in DM-ILD was greater

than in DM-nonILD as compared to HCs (Figure 3B). To distinguish

DM-ILD fromDM-nonILD, themethod of forward stepwise regression

was used to select the potential biomarkers. A panel consisting of

indole-3-lactic acid, dihydrosphingosine, SM 32:1;O2, NAE 17:1, and

cholic acid showed the best predictive efficiency with AUC of 0.846 in

the combined ROC analysis (Figure 3C). The distributions of five

biomarkers are shown in Figure 3D, indole-3-lactic acid and NAE 17:1

was reduced in DM-ILD, while dihydrosphingosine, SM 32:1; O2, and

cholic acid increased in DM-ILD.
FIGURE 2

Analysis of serum differential metabolites between low activity DM (L-DM) and high activity DM (H-DM). (A) Comparison of the abundance of 15
differentially altered metabolites between L-DM and H-DM. (B) ROC curves for differentiating L-DM and H-DM based on combined pro-leu and FA
14:0;O. (C) Correlation heatmap of differential metabolites (L-DM vs. H-DM) and clinical features. (D) Linear correlation between key metabolites
(pro-Leu, FA 14:0;O, creatine and 2-hydroxybutyric acid) and MYOACT. * p< 0.05, ** p< 0.01, *** p< 0.001.
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Characteristic metabolites in different
antibody-positive DM

When comparing the clinical characteristics of low- and high-

activity DM or DM-ILD and DM-nonILD, it was found that the

positive rate of myositis-specific autoantibodies (MSAs) in H-DM

or DM-ILD was higher than that in L-DM or DM-nonILD

(Supplementary Tables S4, S5). We studied the metabolic

characteristics of DM with different antibody to explore MSAs

influence and role on the disease progression. We tested the serum

antibodies of all participants and screened out the antibody-

negative DM group (control, n=21), the anti-MDA5+DM group

(MDA5+DM, n=10), the anti-TIF1-g+DM group (TIF1-g+DM,

n=8), and the anti-Jo-1+DM group (Jo-1+DM, n=6). The

demographics and clinical characteristics of four groups are

shown in Supplementary Table S6. The metabolic profile of each

antibody-positive group was respectively compared with the control

group by the OPLS-DA model, suggesting that MDA5+DM, TIF1-
Frontiers in Immunology 08
g+DM, Jo-1+DM, and control groups could be separated,

respectively (Supplementary Figures S8–S10).

Using VIP>1, p<0.05, and FC>1.2 or FC<0.8 as screening

conditions, the differential metabolites between the MDA5+DM,

TIF1-g+DM, and Jo-1+DM groups and control were identified

(Supplementary Figure S11). A total of 26 differential metabolites

between the MDA5+DM and control groups were identified, of

which 13 metabolites were enriched in the MDA5+DM group; 20

different metabolites between TIF1-g+DM group and control

group were found, of which 10 metabolites were enriched in

TIF1-g+DM group; and 23 differential metabolites between the

Jo-1+DM and control groups were screened, and only eight

metabol i tes were enriched in Jo-1+DM (Figure 4A).

Furthermore, the metabolic pathways involved in the differential

metabolites of each group were analyzed by MetaboAnalyst 5.0. As

shown in Figure 4B, the most important metabolic pathways for

the MDA5+DM were retinol, sphingolipid metabolism, citrate

cycle, glycerophopholipid metabolism, and purine metabolism,
FIGURE 3

Analysis of serum differential metabolites between DM-ILD and DM-nonILD. (A) Bar graph reflecting the fold change (FC) of differential metabolites
between DM-ILD and DM-nonILD. (B) Dumbbell plot of the distribution of altered metabolite expression levels in the DM-ILD, DM-nonILD, and HCs
groups. (C) ROC curves for differentiating DM-ILD and DM-nonILD based on combined indole-3-lactic acid, dihydrosphingosine, SM 32:1;O2, NAE
17:1, and cholic acid. (D) Scatter plot presenting levels of indole-3-lactic acid, dihydrosphingosine, SM 32:1;O2, NAE 17:1, and cholic acid between
DM-ILD and DM-nonILD. * p< 0.05, ** p< 0.01, *** p< 0.001.
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differencing from TIF1-g+DM and Jo-1+DM, whose differential

metabolic pathways involved D-glutamine and D-glutamate

metabolism; alanine, aspartate, and glutamate metabolism; and

arginine biosynthesis.
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The differential metabolites between DM with different

antibody (MDA5+DM, TIF1-g+DM, and Jo-1+DM) and control

groups were made into Venn maps to obtain unique biomarkers of

different antibody positive DM (Figure 4C). There were 18, 12, or 18
FIGURE 4

Specific metabolites in serum of DM with different antibody positive [MDA5+DM, TIF1-g+DM, Jo-1+DM and antibody negative DM (control)]. (A) The
number of differential metabolites increased or decreased between the positive and control groups for different antibodies. “up” represents the
number of metabolites enriched in the antibody positive group, while “down” represents the number of metabolites enriched in the control group.
(B) Bubble charts representing the characteristic metabolic pathways of three antibody positive groups. (C) Differential metabolites Venn diagrams
among three groups of DM involving different antibody positive. (D) ROC curves for distinguishing MDA5+DM group based on combined
metabolites panel of ST 24:2;O3;S and sphinganine-1-phosphate. (E) ROC curves for distinguishing TIF1-g+DM group based on combined
metabolites panel of pro-leu, glutamine, and sphingosine-1-phosphate. (F) ROC curves for distinguishing Jo-1+DM group based on combined
metabolites panel of CPA (18:0/0:0), glutamic acid, and LPC O-17:1. * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001.
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characteristic metabolites in MDA5+, TIF1-g+, or Jo-1+DM groups,

respectively. Univariate ROC analysis revealed lower AUC for these

specific metabolites in different groups. Furthermore, stepwise

forward logistic regression was used to select altered metabolites

in each group. The panel composed of ST 24:2;O3;S and

sphinganine 1-phosphate can distinguish the MDA5+DM group

from the HC/control/TIF1-g+/Jo-1+DM, with the AUC of 0.962

based on the combined ROC analysis (Figure 4D). A panel

composed of pro-leu, glutamine, and sphingosine 1-phosphate

can distinguish the TIF1-g+DM group from the HC/control/

MDA5+/Jo-1+DM, with the AUC of 0.928 (Figure 4E). A panel

composed of CPA(18:0/0:0), glutamic acid, and LPC O-17:1 can

distinguish the Jo-1+DM group from the HC/control/MDA5

+/TIF1-g+DM, with the AUC of 0.977 (Figure 4F).
Discussion

In this study, we detected the serum metabolic profile of DM

based on high-resolution mass spectrometry combined with

machine learning methods to determine the biomarkers of DM.

Meanwhile, altered metabolic profiles of DM with different MSAs

associated with the disease activity and interstitial lung disease were

studied for the first time, which also helps to understand the

molecular mechanism of the development of DM. Based on above

findings, we summarized the metabolic characteristics of different

types of DM and proposed the potential mechanism of

dysregulation of serum metabolites in the pathogenesis of DM

progression, as shown in Table 2 and Figure 5.

Previous studies have found abnormal lipid metabolism in DM

(14, 15, 20). In this study, serum metabolic profiles can distinguish

DM fromHCs. Among these, the changes in the lipid metabolism of
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DM were the most obvious, especially glycerophospholipids and

unsaturated fatty acids. Here, we found an increase in

lysophospholipids, including lysophosphatidylcholine (LPC),

lysophosphatidylethanolamine (LPE), lysophosphatidic acid

(LPA), lysophosphatidylinositol (LPI), and phosphatidylcholine

(PC) in DM serum.

LPC is one of the most abundant lipids in blood and has been

reported to have inflammatory, anti-hemostatic, and cytotoxic

effects (21). In certain contexts, LPC, such as saturated (16:0 and

18:0) and monounsaturated (18:1) LPC, have been shown to have

pro-inflammatory effects through the upregulation of adhesion

molecules, increased release of chemokines, and production of

reactive oxygen species (ROS) (22, 23). Previous studies have

shown that LPC was elevated in autoimmune-related diseases,

including myositis, psoriasis, and lupus (23). LPC plays a role

through different signaling pathways such as NF-kB, PKC, and
ERK signaling in multiple cell types (such as T lymphocytes,

monocytes, and neutrophils) (24). Besides LPC, LPA, LPE, and

LPI play essential roles in various cellular and inflammatory

responses (23, 24). For example, LPA initiates signaling pathways

or exerts biological effects through different receptor subtypes,

promotes cell growth and differentiation through LPA receptors

1, 3, and PPAR-g, and contributes to mast cell proliferation during

inflammation. LPI activates signaling pathways related to cell

proliferation, migration, and tumorigenesis and plays a vital role

as an active lipid mediator and initiates multiple mechanisms

through its interaction with G-protein-coupled receptor 55

(GPR55) and Ca2+ ion channel mechanisms cell response (24, 25).

In addition, our results showed that unsaturated fatty acids,

especially linoleic acid (LA), arachidonic acid (AA), and their

oxidized derivatives, were elevated in DM serum. AA promoted

in DM has been shown to be converted into various metabolites by
TABLE 2 Metabolic, immune and clinical characteristics of different types of DM.

DM
classification

Altered metabolites Pathways
Immune

characteristic
Clinical phenotype

H-DM
Pro-leu, 9-OxoODE, 2-

hydroxybutyric acid, FA 14:0;O, FA
20:5;O2 and 11-HpODE, creatine↑

Starch and sucrose metabolism;
Propanoate metabolism; Amino acid

metabolism; Aminoacyl-
tRNA biosynthesis

Treg↓
Skin lesions; muscle weakness;

hoarseness or sore throat, dysphagia;
arthralgia;↑ High antibody positive rate

DM-ILD
ILA, dehydroepiandrosterone↓
Sph, dhSph, dhS1P, cholic Acid,

SM 32:1;O2↑

Sphingolipid metabolism;
Androgen and estrogen

Metabolismitryptophan metabolism

Treg↓
Th17/Treg↑

(16)

High antibody positive ratet cardiac
involvementd

Gottron’s papules or sign↑

MDA5+DM
S1P, dhS1P, ST 24:1, ST 24:2↑;
LTB5, 5-HETE, 4-HDoHE, 15S-

HETrE, Succinic acid↓

Sphingolipid metabolism; Citrate cycle;
arachidonic acid metabolism

T cell↓, Th1↓
Skin lesions; ILD; Cardiac involvement

↑ (17)

TIF1-g+DM

Pro-leu, carnitine, glutamine, S1P,
dhS1P↑;

9-HOTrE, LTB5, glutamic acid, 12
(S)-HETrE, succinic acid↓

Sphingolipid metabolism; Amino
acid metabolism

T cell↓
Muscle weakness; heliotrope rash;

malignancies
(18, 19)

Jo-1+DM

Glutamic acid↑;
LPA 18:0, LPC 18:0, LPC 18:2, LPC
16:0, LPC 22:4, LPE 18:2, LPE 20:3,

CPA(18:0/0:0)↓

Amino acid metabolism;
Glycerophospholipid metabolism

NK↑, Th1↑, Treg↓
CK↑, Arthralgia↑, Skin lesions↓

(8)
An upward arrow indicates an increase, and a downward arrow indicates a decrease. H-DM, high disease activity DM; ILD, interstitial lung disease; DM-ILD, DM-associated with ILD; FA, fatty
acyls; ILA, indole-3-lactic acid; Sph, sphingosine; dhSph, dihydrosphingosine; dhS1P, dihydrosphingosine-1-phosphate; SM, sphingomyelin; ST, sterols; LTB5, leukotriene B5; LPA,
lysophosphatidic acid; LPC, lysophosphatidylcholine; LPE, lysophosphatidylethanolamine; CPA, cyclic phosphatidic acid; CK, creatine kinase.
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cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450

(CYP450) enzymes, such as prostaglandins and leukotrienes,

triggering different inflammatory responses (26, 27). Although the

effects of LA and its derivatives on inflammation were less studied,

recent studies have demonstrated that its oxidative metabolites

contributed to inflammatory pain in essence (28). LA is an

essential fatty acid that can be oxidized by endogenous enzymes

and reactive oxygen species in the circulation to synthesize a series

of oxidative derivatives that play key roles in regulating

inflammation (29). For example, LA is metabolized by LOX into

hydroxy-octadecene dienoic acid (HODEs) derivatives (such as 9-

and 13-HODE) and is further converted into oxygen-HODE (such

as 9-oxygen-HODE and 13-oxygen-HODE) and epoxy-HODE,

which play a role in inflammation (30). These important pro-

inflammatory biomarker factors, such as 9-HODE and 13-HODE,

were elevated in DM in our study.

The generation of a large amount of oxidized lipids might

indicate an imbalance between oxidation and antioxidant activity in

DM. The reactive oxygen species produced by oxidative stress state

can disrupt different signaling pathways, which are related to the

loss of regulation of immune inflammatory response, especially the

response of Treg (31). Previous literature has shown that oxidative

stress is a key factor in the progression and deterioration of

autoimmune diseases, possibly by further inducing and expanding

the expansion of pro-inflammatory Th17 cells, inhibiting the

differentiation of anti-inflammatory Treg cells, and exacerbating

autoimmune damage (32–34). In summary, lipid metabolism

dysfunction is one of the characteristics of DM, which is

consistent with previous studies (35).
Frontiers in Immunology 11
The altered metabolic profile was also associated with disease

activity. 2-Hydroxybutyric acid (2-HB) was found to have a strong

correlation with disease activity, with higher levels in H-DM. 2-HB,

which is mainly produced during L-threonine metabolism or

glutathione synthesis, is an important regulator, and its

underlying biochemical mechanisms might be involved in lipid

oxidation and increased oxidative stress (36). Low levels of

creatinine and high levels of creatine in the serum of DM patients

were also associated with myositis damage. Under stable kidney

function, the concentration of serum creatinine can reflect skeletal

muscle mass (37). When muscle damage occurs, it can impair the

muscle’s ability to uptake or retain creatine. This impairment leads

to an increased release of creatine, which is predominantly stored in

the muscle tissue, into the serum. Consequently, this results in

elevated serum creatine levels and a decrease in muscle creatine

concentration. This reduction in muscle creatine availability

subsequently leads to a decrease in creatinine production (38).

Moreover, studies had shown that creatine may affect cytokines

through the NF-kB signaling pathway, thereby affecting cytokines,

receptors, or growth factors, and thus having a positive or negative

impact on the immune response (39).

To be emphasized, differential metabolites were also found

between DM-ILD and DM-nonILD in this study, mainly

including glycerolipid, sphingomyelin, and LPE. Lipid

dysregulation has been well described in several lung diseases,

including cystic fibrosis, asthma, and chronic obstructive

pulmonary disease (COPD) (40). A study on the serum

metabolomic profile of ILD in RA patients showed that glycerol

was higher in serum in RA-ILD relative to RA without ILD (41). In
FIGURE 5

Potential mechanisms of dysregulated serum metabolites in pathogenesis of DM progression. Lipid abnormalities associated with DM, such as
peroxidation of unsaturated fatty acids and abnormal metabolism of glycerolipid and sphingolipid, act on the immune system, thereby accelerating
disease progression. The red short arrow indicates upregulation, and the blue short arrow indicates downregulation; the red long continuous line
represents the promoting effect, and the blue long continuous line represents the inhibiting effect; The dashed blue line shows the effect of the
metabolite on the myositis-specific autoantibodies expression. IPA, indolepropionic acid; ILA, indole-3-lactic acid; dhSph, dihydrosphingosine;
dhS1P, dihydrosphingosine-1-phosphate; Sph, sphingosine; S1P, Sphingosine-1-phosphate; AA, arachidonic acid; LA, linoleic acid; S1PRs, G-protein-
coupled S1P receptors; HODEs, hydroxy-octadecene dienoic acid; HETEs, hydroxyeicosatetraenoic acid; LPC, lysophosphatidylcholine; LPE,
lysophosphatidylethanolamine; LPA, lysophosphatidic acid.
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this study, a total of five differential metabolites, including indole-3-

lactic acid, dihydrosphingosine, SM 32:1;O2, NAE 17:1, and cholic

acid, were screened as potential biomarkers to distinguish DM-ILD

from DM-nonILD. Indole-3-lactic acid (ILA) is an indole derivative

that is involved in the metabolism of tryptophan by gut microbiota.

Indole derivatives participate in the differentiation of immune cells

and the synthesis of cytokines through aromatic hydrocarbon

receptors, to regulate immunity and participate in anti-

inflammatory and allergic reactions (42–45). It may directly or

indirectly participate in the immune regulation of lung disease hosts

by stimulating the distal immune response through the “gut–lung

axis” (46–48). In addition, research had reported that

dihydrosphingosine (dhSph) was significantly elevated in the

stratum corneum of the lesional skin in atopic dermatitis and was

associated with skin barrier function, disease severity, and local

cytokine levels (49). In addition, dhSph metabolism forms

dihydrosphingosine-1-phosphate (dhS1P) under the action of

sphingosine kinase, which can increase collagen synthesis in

fibroblasts leading to fibrosis through dhS1P JAK/STAT-TIMP1

signaling (50, 51).

Interestingly, in order to investigate whether metabolic changes are

related to the expression of myositis specific antibodies, we analyzed

the serum metabolic profiles of different antibody-positive DM and

found that DM with different specific antibody expressions had unique

metabolic characteristics. For the MDA5+DM group, we found that a

panel composed of ST 24:2;O3;S and sphinganine-1-phosphate

(dhS1P) can distinguish the MDA5+DM group from the HC/

control/TIF1-g+/Jo-1+DM. Both dhS1P and its analogue

sphingosine-1-phosphate (S1P) have been found to bind to the G-

protein-coupled S1P receptor (S1PR1) to regulate immune responses

(52, 53). Phosphorylation and subsequent internalization of S1PR1 in T

cells modulates the polarization of Th17, thereby inducing a pro-

inflammatory immune response. In addition, dhS1P and S1P can

induce fibroblasts to produce collagen and promote the formation of

fibrosis (51, 54). The expression levels of SIP and dhS1P were higher in

MDA5+DM group than in other groups, and the expression levels of

dhSph (the precursor of dhS1P) were increased in DM-ILD, suggesting

a potential relationship between MDA5+ and ILD, and the important

role of sphingosine metabolism in anti-MDA5+ and ILD. Additionally,

MDA5+DM patients were prone to respiratory failure; the

dysregulation of serum lipid metabolism and citrate cycle in MDA5

+DMmight be related to hypoxia response. The hypoxic environment

could lead to increased accumulation of reactive oxygen species (ROS)

and oxidative stress, which induces the activation of HIF transcription

factors and regulates lipid metabolism through multiple pathways (55–

58). In addition, the upregulation of hypoxia response is associated

with an increase in the infiltration of activated inflammatory cells,

accompanied by an increase in metabolic demand (59).

In addition, among the characteristic metabolites of TIF1-

g+DM, the metabolic pathways involved were mainly amino acid

metabolism, including D-glutamine and D-glutamate metabolism;

alanine, aspartate, and glutamate metabolism; and arginine

synthesis. Glutamine, serine, and glycine have been identified to

function as metabolic regulators in supporting cancer cell growth
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(60). In the Jo-1+DM, there were certain changes in amino acid

metabolism and glycerol phospholipid metabolism. However,

further functional metabolic research is needed to investigate how

these metabolites affect antibody expression and subsequently affect

clinical pathological changes.

The limitations of this study include the small sample size and

the lack of accurate quantitative verification in the external cohort.

Although we have found the characteristic metabolites in the serum

of simple MDA5+DM, Jo-1+DM, and TIF1-g+DM, there were

fewer samples with simple positive antibodies in our study, and

the results obtained need to be verified in the cohorts with a larger

sample size.

In summary, this study identified altered metabolic profiles of

dermatomyositis with different myositis-specific autoantibodies,

which may be associated with the disease activity and interstitial

lung disease. Metabolic biomarkers of different classifications of

DM that can monitor disease activity, predict patient prognosis,

help early diagnosis, and/or select therapeutic targets for DM. At

the same time, the unique metabolic profile of each antibody-

positive DM helps to explore the affected signaling pathway in

the occurrence and development of DM.
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Glossary

2-HB 2-hydroxybutyric acid
Frontiers in Immunol
AA arachidonic acid
AUC area under the curve
COPD chronic obstructive pulmonary disease
COX cyclooxygenase
CYP450 cytochrome P450
dhS1P dihydrosphingosine-1-phosphate/sphinganine-1-phosphate
dhSph dihydrosphingosine
DM Dermatomyositis
DM-ILD DM-associated with ILD
DM-nonILD DM without ILD
FC fold change
FDR false discovery rate
GPR55 G protein-coupled receptor 55
HCs healthy controls
H-DM high disease activity DM
HODEs hydroxy-octadecene dienoic acid
ILA Indole-3-lactic acid
ILD interstitial lung disease
LA linoleic acid
L-DM low disease activity DM
ogy 15
LOX lipoxygenase
LPA lysophosphatidic acid
LPC lysophosphatidylcholine
LPE lysophosphatidylethanolamine
LPI lysophosphatidylinositol
MSAs myositis-specific autoantibodies
MYOACT Myositis Disease Activity Assessment Visual Analogue Scales
OPLS-DA orthogonal partial least square discriminant analysis
PC phosphatidylcholine
PCA principal component analysis
PLS-DA partial least squares discrimination analysis
QC quality control
RF random forest
ROC Receiver operating characteristic
ROS reactive oxygen species
S1P sphingosine-1-phosphate
S1PR1 G-protein-coupled S1P receptor
SVM support vector machines
UPLC-TOF-MS ultra-high performance liquid chromatography-composed

time-of-flight mass spectrometry
VIP variable importance in the projection
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