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a call for investigation
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and Zhi Li 1*

1I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian
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Pradesh, India, 4Laboratory of Chemical Biology, Department of Studies in Organic Chemistry,
University of Mysore, Mysore, Karnataka, India
Ferroptosis induces significant changes in mitochondrial morphology, including

membrane condensation, volume reduction, cristae alteration, and outer

membrane rupture, affecting mitochondrial function and cellular fate. Recent

reports have described the intrinsic cellular iron metabolism and its intricate

connection to ferroptosis, a significant kind of cell death characterized by iron

dependence and oxidative stress regulation. Furthermore, updated molecular

insights have elucidated the significance of mitochondria in ferroptosis and its

implications in various cancers. In the context of cancer therapy, understanding

the dual role of anastasis and ferroptosis in chemoresistance is crucial. Targeting

the molecular pathways involved in anastasis may enhance the efficacy of

ferroptosis inducers, providing a synergistic approach to overcome

chemoresistance. Research into how DNA damage response (DDR) proteins,

metabolic changes, and redox states interact during anastasis and ferroptosis can

offer new insights into designing combinatorial therapeutic regimens against

several cancers associated with stemness. These treatments could potentially

inhibit anastasis while simultaneously inducing ferroptosis, thereby reducing the

likelihood of cancer cells evading death and developing resistance to

chemotherapy. The objective of this study is to explore the intricate

interplay between anastasis, ferroptosis, EMT and chemoresistance, and

immunotherapeutics to better understand their collective impact on cancer

therapy outcomes. We searched public research databases including google

scholar, PubMed, relemed, and the national library of medicine related to this

topic. In this review, we discussed the interplay between the tricarboxylic acid

cycle and glycolysis implicated in modulating ferroptosis, adding complexity to
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its regulatory mechanisms. Additionally, the regulatory role of reactive oxygen

species (ROS) and the electron transport chain (ETC) in ferroptosis has garnered

significant attention. Lipid metabolism, particularly involving GPX4 and System

Xc- plays a significant role in both the progression of ferroptosis and cancer.

There is a need to investigate the intricate interplay between anastasis,

ferroptosis, and chemoresistance to better understand cancer therapy clinical

outcomes. Integrating anastasis, and ferroptosis into strategies targeting

chemoresistance and exploring its potential synergy with immunotherapy

represent promising avenues for advancing chemoresistant cancer treatment.

Understanding the intricate interplay among mitochondria, anastasis, ROS, and

ferroptosis is vital in oncology, potentially revolutionizing personalized cancer

treatment and drug development.
KEYWORDS

anastasis, ferroptosis, chemoresistance, mitochondria, chemoresistance, EMT
1 Introduction

Chemoresistance promotes cancer stemness by facilitating the

release of exosomes containing peptides, nucleic acids, and various

small molecules in multiple cancer types. This process converts

drug-sensitive cells into cancer stem cells (1, 2). These cells

represent a distinct subpopulation within tumor tissues,

exhibiting self-renewal capabilities and giving rise to diverse

tumor cell phenotypes (3). Chemoresistance could induce tumor

heterogeneity (4–7), contributing significantly to tumor progression

(8, 9). Chemoresistance can be modulated by the ferroptosis (9).

Cell death is a critical event within the physiological milieu and

ferroptosis represents a significant kind of iron-dependent regulated

cell death (RCD), distinct from established mechanisms such as

apoptosis, pyroptosis, necrosis, and autophagy (10, 11). Ferroptosis

is characterized by the generation of ROS and iron ion-dependent

lipid peroxidation. Within cellular environments, ferroptosis is

mediated by compounds like erastin or rat sarcoma virus

oncogene homolog-selective lethal 3 (RSL3), which inhibit the

expression of glutathione peroxidase 4 (GPX4) (12, 13). GPX4 is

a selenoprotein that specifically catalyzes the conversion of lipid

peroxide into lipids using glutathione. Consequently, reduced

GPX4 levels disrupt the cellular oxidation balance. The Fenton

reaction between ferrous ions and endogenous hydrogen peroxide

generates hydroxyl radicals, which, in conjunction with

polyunsaturated fatty acids, undergo multi-step free radical chain

reactions, resulting in the formation of lipid peroxides (14). In a

complete cellular system, ROS can stimulate mitochondria to open

the permeability transition pore, amplifying the ROS signal through

positive feedback. This positive feedback loop can be potentially

regulated by mitochondria (15, 16). Consequently, when
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mitochondrial membrane integrity is compromised, the

regulatory mechanism becomes impaired, leading to increased

ROS production. After lipid peroxidation, modifications in the

cell membrane is observed subsequently cause the generation of

cytotoxic byproducts including malondialdehyde and 4-

hydroxynonanaldehyde are generated, ultimately leading to the

induction of ferroptotic cell death (17, 18).

When the term “anastasis” was introduced in 2012, it was

associated solely with the reversal of apoptosis. This study explore

novel cellular recovery phenomenon involving the reversal of

ferroptosis in addition to anastasis, chemoresistance in cancer research.

Ferroptosis is a kind of programmed cell death reported in

diseases including cancers (19, 20). Although the regulatory

mechanisms and implications of ferroptosis continue to be

elucidated, its potential resembles that of apoptosis in either

augmenting cell death during cancer therapy or attenuating

cell death to safeguard susceptible cells such as neurons,

cardiomyocytes, and hepatocytes at the time of tissue damage (21).

For a significant duration, cell death was predominantly

categorized into two main types: programmed cell death (PCD),

exemplified by apoptosis mediated by cysteine aspartate-specific

proteinase (caspase), and non-programmed cell death modalities

such as necrosis (22–24) (Table 1). However, with advancements in

molecular research within cell biology, an expanding repertoire of

PCD modalities, including autophagy-dependent cell death,

pyroptosis, and more recently, ferroptosis and cuproptosis, have

been elucidated (47–49). Ferroptosis, a novel variant of

programmed non-apoptotic cell death exerts a crucial regulatory

influence on cancer progression. Growing evidence indicates

ferroptosis induction as a promising avenue for cancer therapy.

In recent years, several experimental reports described the role of

mitochondria in various regulated cell death (RCD) processes,

encompassing apoptosis, necrosis, pyroptosis, and ferroptosis

(Figure 1). Thus, this study of ferroptosis reversibility offers novel
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insights for potential therapeutic interventions aimed at modulating

cell death and survival through its reversible nature.

Mitochondria play dual roles as key contributors to oxidative

phosphorylation and primary generators of intracellular ROS

(50, 51). Furthermore, they function as central hubs for various

metabolic and signaling pathways, particularly fatty acid

metabolism (52). Several studies have demonstrated that

mitochondrial iron content, assessed through selective fluorescent

iron indicators or electron paramagnetic resonance, constitutes a

substantial portion, ranging from 20% to 50%, of the total cellular

iron, depending on cell type (53–55). Mitochondrial iron plays a

critical role in the formation of iron-sulfur clusters and heme

synthesis. Notably, redox-active iron pools within mitochondria

contribute to the accumulation of mitochondrial (MitoROS)

(56–58). A distinctive feature of ferroptosis is its ability to evoke

specific immune responses. During ferroptotic cell death,

intracellular components are released into the extracellular milieu,

triggering an immune reaction (59, 60). This response subsequently

activates neighboring immune cells, such as macrophages, and

facilitates the recruitment of additional immune cells to the site.

It’s noteworthy that other forms of RCD may also induce immune

responses, although the nature of the immune response varies
Frontiers in Immunology 03
depending on the type of RCD involved (61). Induction of

ferroptosis in cells using erastin result in the reduced

mitochondrial size compared to normal cells (62, 63).

In this review, we described a comprehensive exploration of the

complex relationships and interactions between mitochondria, ROS,

and ferroptosis-mediated chemoresistance and subsequently described

the need for investigating the interplay of anastasis, EMT and

mitochondrial ROS-mediated ferroptosis, and comparative efficacy of

anticancer immunotherapeutics in metastatic chemoresistant cancers.

This study is beneficial to several oncologists, molecular biologists,

clinicians to develop personalized cancer treatment strategies to

promote novel drug development.
1.1 Literature search

We undertook a significant literature analysis, sourcing data from

different databases including Pubmed, Medline, eMedicine, Scopus,

Google Scholar, the National Library ofMedicine (NLM), and ReleMed.

Our focus encompassed published reports and articles investigating the

role of mitochondria, ROS, anastasis, ferroptosis-mediated

chemoresistance, and immunotherapeutics in metastatic cancers.
TABLE 1 History of classification and differences of cell death mode implicated in cell physiology.

S.No Mode of
Cell Death

Morphological characteristics Core regulators History References

01 Necrosis Cell volume expands, leading to organelle
swelling and disintegration of the endoplasmic
reticulum. Subsequently, the cells undergo self-
dissolution, resulting in the release of cellular
contents, often accompanied by inflammation in
the surrounding tissues.

TNF, Toll, RIP, RIP1,
MLKL, NPEPL1,
COL4A3BP etc.

Kerr et al., 1972
shrinkage necrosis- Observed in adrenal
cortices of
rats treated with prednisolone
Wyllie et al., 1973
shrinkage necrosis- observed in healthy
neonatal rats
Crawford et al., 1972
Observed in developing vertebral arches of
fetal rats.

(25–31)

02 Apoptosis The cell membrane remains undamaged, with a
decreased volume, leading to the formation of
apoptotic bodies. There is no autolysis of the
cells, no release of cellular contents, and no
associated inflammatory response.

p53, Bax, Bcl-2,
Caspases etc.

Sydney Brenner, H. Robert Horvitz, and
John E. Sulston -2002
Nobel Prize – for demonstrating the role
of genes in modulating tissue and organ
development and programmed cell death.

(32–35)

03 Autophagia Formation of bilayer membrane structure with
no changes of cell membrane.

ATG5, ATG7, Beclin
1, TOR, PI3K etc.

Christian de Duve-1963
Gave the name autophagy
Yoshinori Ohsumi-2016
Nobel Prize – for demonstrating
autophagy in yeast and the role of genes
involved in autophagy

(36–40)

04 Ferroptosis The cell membrane remains intact, but there is a
decrease in mitochondrial volume characterized
by densely packed mitochondrial membranes, a
reduction or disappearance of mitochondrial
cristae, and the occurrence of ruptures in the
outer mitochondrial membrane.

GPX4, VDAC2/3, Ras,
FANCD2, TFR1, p53,
CISD1, SLC7A11,
HSPB1 etc.

Dolma et al., 2003
Erastin- Kill tumor cells with Ras gene
mutation; Irreversible by caspase inhibitor.
Yang et al.,2008
RSL3, RSL5- Irreversible by iron-chelate
agent DFOM and Vitamin E;
ROS abnormality.
Dixon et al.,2012-
Ferroptosis official nomination- Caspase-
independent; RPL8, IREB2, ATP5G3, CS,
TTC35, ACSF-mediated mechanism;
controlled by iron-chelate agent
and antioxidant.

(19, 41–46)
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2 Recent reports on intrinsic cellular
iron metabolism & ferroptosis

Iron in dietary sources primarily exists as Fe (III) form, which

undergoes reduction to Fe (II) within the intestinal lumen facilitated

by brush-border membrane ferrireductase, duodenal cytochrome b

(DCYTb), and other iron-reducing enzymes (64, 65). The resulting

Fe (II) is then transported across the apical membrane of small

intestinal epithelial cells (IECs) via divalent metal transporter 1

(DMT1/SLC11A2) and is subsequently sequestered within the labile

iron pool (LIP) (66, 67). Intracellular Fe (II) is exported from IECs

into the bloodstream via basolateral membrane ferroportin (FPN/

SLC11A3), promoted through poly(rC)-binding proteins, and re-

oxidized to Fe (III) by hephaestin (HEPH) (68, 69). Fe (III) is then

bound to transferrin (TF) to form transferrin-bound iron (TBI)

complexes, enabling circulation for transport to various tissues and
Frontiers in Immunology 04
organs. Within cells, TBI binds to transferrin receptor 1 (TfR1) and

undergoes endocytosis, where Fe (III) is released into the cytoplasm,

reduced back to Fe (II) by six-transmembrane epithelial antigen of

prostate (STEAP3), and transported via DMT1/SLC11A2.

A portion of cytoplasmic Fe (II) is stored in ferritin (FT) as the

Fe2+-FT complex, while the remainder contributes to the LIP. Heme

also plays a significant role in iron metabolism, entering cells

through heme carrier protein 1 (HCP1) and feline leukemia virus

subgroup C receptor 2 (FLVCR2), with subsequent release of Fe (II)

catalyzed by heme oxygenase 1 (HO-1) for transport to the LIP

(69–72). In addition, non-transferrin-bound irons (NTBI) in the

cytoplasm of different tissues are transported to the cells through

different NTBI transporters such as Zrt/Irt-like protein 8/14 (ZIP8/

14, SLC39A8/SLC39A14), L-type and T-type calcium channels after

which they are stored in the LIP (73–75). The process of

detachment and release of Fe (II) from FT in Fe2+-FT is referred
FIGURE 1

Schematic depiction of ferroptosis and systemic toxicities. Ferroptosis plays a pivotal role in several diseases across different organs. Ferroptosis has
significant implications in the pathophysiology of chemoresistance and the development of cancer stem cells (CSCs), which yet require future
studies in chemoresistant cancers (?). In the liver, it contributes to the development and progression of hepatocellular carcinoma, liver fibrosis, and
ischemia-reperfusion injury. Within the cardiovascular system, it is implicated in ischemia reperfusion injury, transplantation, and atherosclerosis.
Gastrointestinal system disorders, including gastric cancer and colorectal cancer, are influenced by ferroptosis. In the pancreas, it is associated with
pancreatic cancer and type I diabetes mellitus. In the kidney, ferroptosis is involved in acute kidney injury, ischemia-reperfusion injury, and clear cell
renal cell carcinoma. Lung diseases, such as lung cancer and acute lung injury, typically have ferroptosis-mediated pathophysiology. Hematological
malignancies in the blood system and the suppression of T- cell immunological function in the immune system are also associated with ferroptosis.
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to as ferritinophagy, and it is regulated by nuclear receptor

coactivator 4 (NCOA4). FT has heavy chain (FTH) and light

chain (FTL) subunits. NCOA4 binds specifically to FTH1 and

induces Fe2+-FT degradation, which separates FT from Fe (II)

and thus allows Fe (II) release (76–80). A portion of intracellular

Fe (II) enters the mitochondria through the MFRN1 and MFRN2

channels where they are then involved in the synthesis of heme and

iron-sulfur cluster (ISC). ISC is an important inorganic cofactor

that is widely engaged in a variety of biological functions including

electron transfer which is the fundamental basis for cellular ATP

production and protein synthesis. Meanwhile, recent studies have

shown that ISC is tightly associated with DNA regulation (81–83).

Mitochondrial Ferritin (FtMt) is a protein responsible for iron

storage within cell mitochondria, sharing structural and functional

similarities with cytoplasmic H-ferritin (84, 85). FtMt expression is

confined to the mitochondria of the central nervous system and

select oxygen-dependent tissues. Studies have indicated that erastin

induces upregulation of Voltage-Dependent Anion Channel

(VDAC) proteins on the mitochondrial membrane, thereby

triggering ferroptosis (86–88). However, investigations on FtMt-

SY5Y cells treated with erastin have shown unchanged levels of

VDAC2 and VDAC3, suggesting a specific protective mechanism of

FtMt against ferroptosis (89, 90). Upon erastin treatment, there is

an upregulation of NADPH oxidase (NOX) proteins, critical for
Frontiers in Immunology 05
ROS generation in ferroptosis (91, 92). Interestingly, erastin-treated

cells overexpressing FtMt exhibit a minimal increase in NOX2

levels, indicating inhibition of ROS generation by FtMt during

ferroptosis (92, 93). Additionally, the mitochondrial glutaminolysis-

tricarboxylic acid cycle-electron transport chain (TCA-ETC) axis

plays a pivotal role in initiating ferroptosis. Within this pathway,

ROS generation leads to ferroptosis through lipid peroxidation (94,

95) (Figure 2).

Dolma et al. (45) reported a compound within the erastin class

that exhibited selective cytotoxicity against tumor cells specific for

Ras gene mutations. This compound induced a distinct mode of cell

death not previously documented, which was unaffected by caspase

inhibitors. Subsequently, Yang et al. (46) identified two additional

erastin analogs, RSL3 and RSL5, and demonstrated that changes in

ROS levels could induce cell death. This process could be

counteracted by iron chelators such as deferoxamine and vitamin

E. Dixon et al. (10) formally coined the term “ferroptosis” to

elucidate that this novel form of cell death relies on iron but is

independent of the caspase activity. This study delineated the

ferroptosis regulation by multiple genetic factors and elucidated

its mechanistic association with the cystine/glutamate antiporter

(System Xc-) (Table 1).

ROS encompasses a heterogeneous group of oxygen-containing

reactive molecules, including superoxides, peroxide radicals,
FIGURE 2

Mitochondria, iron metabolism, and ferroptosis. The diagram depicts the intricate series of events involved in iron metabolism within the human
body, alongside ferroptosis, a form of regulated cell death. Initially, dietary iron, predominantly in the Fe(III) state, undergoes a sequence of
conversions and transport processes. These processes include its reduction to Fe(II) within the intestinal environment, uptake by small intestinal
epithelial cells, sequestration within the labile iron pool, extracellular release facilitated by ferroportin, and subsequent re-oxidation mediated by
hephaestin. Subsequently, iron complexes with transferrin (TF), form transferrin-bound iron, which circulates in the bloodstream. TBI is internalized
by cells via endocytosis, where it undergoes reduction to Fe(II) and enters the cellular cytoplasm. A fraction of the Fe(II) is stored within ferritin, while
the remaining is reincorporated into the LIP. Heme, another significant iron source, follows a comparable pathway. Additionally, non-transferrin-
bound iron from various tissues penetrates cells and is sequestered within the LIP. Furthermore, an additional reservoir of LIP is replenished through
ferritinophagy, regulated by nuclear receptor coactivator 4. Intracellular free Fe(II) gains access to mitochondria via MFRN1 and undergoes
subsequent biochemical transformations, ultimately leading to the onset of ferroptosis. Furthermore, ferroptosis is characterized by its dependence
on iron and lipotoxicity. It operates by suppressing the activity of the lipid repair enzyme glutathione peroxidase 4 (GPX4), resulting in the
accumulation of lipid hydroperoxides. Genetically, multiple genes modulate ferroptosis. Unlike other types of cell death characterized by
extracellular manifestations, ferroptosis primarily unfolds intracellularly. This leads to distinctive cellular alterations, including reduced mitochondrial
size, heightened membrane density, damaged cristae, fragmentation of the outer membrane without compromising the cell membrane, and
minimal changes in nuclear morphology without chromatin condensation. Biochemically, the deficiency in peroxidation repair capacity primarily
originates from the impairment of the phospholipid peroxidase GPX4. This deficiency triggers the acquisition of reactive iron and the oxidation of
phospholipids containing polyunsaturated fatty acids (PUFA), ultimately inducing ferroptosis. The decrease in intracellular antioxidant capacity
exacerbates lipid ROS accumulation, and cause cellular ferroptosis. Glutathione peroxidase is influenced by various pathways, including the XC
−/GSH/GPX4 system, and the ACSL4/LPCAT3/15-LOX and FSP1/CoQ10/NAD(P)H pathways.
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hydroxyl radicals, and alkoxyl radicals (96–98). Intracellular ROS

are predominantly generated during ATP production within

various cell types, representing normal metabolic byproducts of

the mitochondrial respiratory chain. Furthermore, enzymes such as

NADPH oxidase contribute to ROS production via enzymatic

reactions (99, 100).

Polyunsaturated fatty acids (PUFA) constitute integral

components of cell membrane phospholipid bilayers, crucial for

maintaining membrane fluidity (101). Intracellular iron (II) (Fe

(II)) participates in the Fenton reaction with hydrogen peroxide

(H2O2), yielding hydroxyl radicals (OH•) that subsequently

involved in lipid peroxidation reactions. Fe (II) itself catalyzes

lipid peroxidation, promoting the formation of ROS such as

PUFA-OOH, thereby causing cellular membrane damage

(102–108).

The fundamental mechanism underlying ferroptosis involves

the higher ROS generation, which leads to lipid peroxidation and

disruption of cellular redox homeostasis, ultimately results in cell

death that has significant implications in oncology. Despite the

existence of various upstream regulatory pathways, it is widely

acknowledged that the activity of glutathione peroxidase 4 (GPX4)

directly or indirectly influences the onset of ferroptosis (13,

109–111).
3 Recent updated molecular reports
on mitochondria’s role in ferroptosis
and cancers

The principal morphological hallmark of ferroptosis is the

changes in mitochondrial architecture and function, distinguishing

it from other modes of cell death (112). Mitochondria undergoing

ferroptosis display distinct alterations in morphology. Upon

treatment with erastin, cells lack the characteristic morphological

features typically associated with the absence of nuclear

condensation, fragmentation, and necrotic lysis characteristic of

necrosis; the lack of cellular crumpling, chromatin condensation,

and apoptotic vesicle formation typical of apoptosis are changes

associated with mitochondria-mediated ferroptosis. In response to

erastin treatment, cells exhibit a distinct set of alterations

characterized by a higher mitochondrial potential and membrane

density. Furthermore, there is a reduction or disappearance of

mitochondrial ridges, accompanied by the rupture of the

mitochondrial outer membrane. These distinctive alterations serve

as discernible criteria for distinguishing ferroptosis from apoptosis,

necroptosis, and autophagy (113–118). These morphological

alterations should be explored in various chemoresistant cancers.
3.1 The effect of tricarboxylic acid cycle
and glycolysis on ferroptosis

The tricarboxylic acid (TCA) cycle and glutamine metabolism

play integral roles in ferroptosis. While the precise metabolic

pathways remain elusive, evidence suggests a close association
Frontiers in Immunology 06
between TCA cycle metabolites, enzymes, and ferroptotic cell

death (119–121). In cellular contexts, blocking the cystine/

glutamate antiporter (System Xc (-)) prevents the reverse

transport of cystine and glutamic acid, thereby reducing cystine

uptake, and causing intracellular ROS accumulation, lipid

peroxidation, and initiation of ferroptosis (122). Elevated

extracellular glutamate levels impede System Xc (-) function,

consequently promoting ferroptosis.

Hence, diminishing glutamine (Gln) availability or inhibiting

glutamine metabolism profoundly attenuates ferroptosis. Without

adequate glutamine, mitochondrial damage and cell death induced

by cystine starvation or erastin treatment are impeded (123, 124).

Thus, glutamine is necessary for ferroptosis, and glutamine

synthase (GLS) is a key regulatory factor for glutamine

decomposition. GLS is divided into two isoforms: GLS1 and

GLS2. GLS1 is mainly located in the cytoplasm, while GLS2 is

located in the mitochondria (125–127). GLS1 and GLS2 catalyze the

conversion of Gln to Glu (128, 129). Tal Hirschhorn et al. (130)

found that ferroptosis can be prevented by drugs or gene inhibition

of mitochondrial subtype GLS2. GLS2 has previously been shown to

have activity consistent with tumor inhibition. GLS2 is a

transcriptional target of p53 and upregulates during p53-

dependent ferroptosis (131). Suzuki S et al. (132) found that

GLS2-mediated glutamate can be converted into glutamic acid in

the presence of aspartate aminotransferase (GOT) and glutamate

dehydrogenase 1 (GLUD1). a - KG increases the production of ROS

to downregulate the antioxidant defense function of cells, increase

their sensitivity to iron-dependent cell death, and thus promote

iron-dependent cell death. Downstream products of a-KG, such as

succinic acid and fumaric acid, can also enhance cysteine depletion

and cause cell ferroptosis (133). Several enzymes in the TCA cycle

are necessary for iron-mediated ferroptosis caused by cystine

starvation or erastin therapy, such as fumarate hydroxylase (FH),

aconitase, and citrate synthesis (CS) (134–137). Therefore, reducing

glutamine or blocking the glutamine decomposition typically

impairs CDI ferroptosis. Without glutamine, cysteine starvation

or erastin treatment cannot induce mitochondrial damage and

subsequent cell death (123, 124).

Glycolysis serves as a crucial pathway for cells undergoing

anaerobic respiration to generate energy. In tumor cells,

metabolic rates are typically increased to sustain their rapid and

uncontrolled proliferation. Metabolic shift is one of the significant

physiological activities occurring in tumor cells to foster

uncontrolled proliferation. Mainly, malignant cells rely on

glycolysis to fulfill their energy demands while maintaining redox

homeostasis to prevent ferroptosis (119, 138, 139). Ibtissam et al.

(140) described that glycolytic cells exhibit significant inhibition of

mitochondrial OXPHOS activity, mitigating ROS stress. However,

this inhibition is reversible, and when glycolysis is suppressed,

metabolic reconfiguration toward OXPHOS elevates cellular ROS

levels, subsequently disrupting iron homeostasis and promoting

lipid peroxidation, thus rendering tumor cells more sensitive to

conventional chemotherapeutic agents and ferroptosis inducers.

Hence, it is crucial to develop novel ferroptosis inducers to

modulate the mitochondrial OXPHOS mainly to inhibit the

development of CSCs in TME.
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The altered function of VDACs may contribute to glycolytic

alterations. Specifically, the opening of VDACs enhance

mitochondrial substance exchange, subsequently increasing aerobic

respiration efficiency (141, 142). VDACs, comprising VDAC1,

VDAC2, and VDAC3 isoforms typically facilitate ATP, adenosine

diphosphate, and mitochondrial-cytoplasmic exchanges (141, 142).

Studies have indicated (143–145) that VDAC closure by microtubule

proteins in a quiescent state restricts respiratory substrate influx into

mitochondria, promoting glycolysis in cancer cells (Warburg effect),

and this mechanism is yet to be studied in chemoresistant cancer

cells. Yagoda et al. (146) revealed that cells activated by the RAS-

RAF-MEK pathway can bind to certain VDAC ligands, subsequently

enhancing susceptibility to erastin, a pivotal factor in cancer cell

development. This heightened sensitivity prevents and reverses

VDAC blockade by cytoplasmic free microtubule proteins, leading

to VDAC opening and subsequent non-apoptotic cell death.

Furthermore, intracellular free microtubulin abundance inhibits

VDAC conductivity. N. DeHart et al. (86) described a novel

mechanism of cell killing induced by erastin and erastin-like

compounds, where the reversal of microtubulin-dependent VDAC

inhibition fosters mitochondrial hyperpolarization and oxidative

stress, culminating in mitochondrial dysfunction, dissipation of

mitochondrial membrane potential (DYm), and cell death. These

mitochondrial mechanisms pertinent to the ferroptosis in

chemoresistant tumor cells in other different cancer types should

be explored typically by several preclinical studies.
3.2 Regulatory role of ROS and electron
transport chain in ferroptosis

Mitochondria is the primary site for oxidative respiration

within cells, where ETC activity not only facilitates ATP

production but also plays a crucial role in generating ROS

necessary for triggering cellular ferroptosis (147–149). For

instance, glucose-dependent mitochondrial bioenergetic processes

involve the transfer of electrons from complexes I and III in the

ETC to molecular oxygen, resulting in ROS generation during

catabolism (150–153). ROS, including hydrogen peroxide,

superoxide anion, hydroxyl radicals, and peroxynitrite, are

predominantly produced via mitochondrial metabolism and act as

mediators of intracellular signaling pertinent to various forms of

cell death including in tumor cells (16).

Electron leakage from ETC complexes I and III generates O2·-,

which is consequently converted to H2O2 by disproportionation in

the presence of superoxide dismutase. H2O2 reacts with Fe2+ to

form hydroxyl radicals, initiating a chain reaction with PUFAs to

induce cell death via the production of PUFA hydroperoxides

(PUFA ⁃OOH) (154). Studies by Feng et al. (155) demonstrate

that COX7A1, a cytochrome C subunit, inhibits mitochondrial

autophagy and promotes susceptibility to ferroptosis in NSCLC

cells by modulating the TCA cycle, ETC complex IV activity. This

mechanism should be explored in several other cancer types.

Additionally, the inhibition of ETC mitochondrial complexes I,

II, III, and IV attenuates ROS accumulation and ferroptosis induced

by cysteine starvation or erastin et al. (134). Inhibition of
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mitochondrial complex III function with S3QEL significantly

reduces lipid peroxidation and ferroptosis induced by cysteine

starvation, highlighting the crucial role of superoxide produced by

complex III in cysteine starvation-induced ferroptosis (156). The

implications of cysteine depletion-induced ferroptosis in CSCs

should be explored vividly by exploring the different cell

signaling mechanisms.

Furthermore, ETC activity could influence the regulation of

energy sensor adenosine 5’⁃monophosphate (AMP) and ROS levels.

Mitochondrial electron transfer via the ETC complex generates a

proton concentration gradient that powers ATP synthesis via ATP

synthase. ATP production inhibits AMP-dependent protein kinase

(AMPK) activity (157), promoting cellular ferroptosis by decreasing

phosphorylation of acetyl-coenzyme A carboxylase (ACC) and

increasing lipid synthesis, thereby influencing cellular

susceptibility to ferroptosis (157).
3.3 Lipid metabolism and GPX4/system Xc-

in ferroptosis and cancers

Lipids form the structural basis for cell membranes and organelles

(mitochondria, endoplasmic reticulum), with lipid metabolism closely

linked to cellular ferroptosis sensitivity via multiple pathways (47).

System Xc- functions as a reverse cystine/glutamate transporter,

comprising the transmembrane transporter proteins SLC3A2 and

SLC7A11 (xCT). It transports intracellular glutamate and extracellular

cystine, with intracellular cystine being converted to cysteine. Cysteine

plays a crucial role in glutathione synthesis, primarily existing as

reduced glutathione (GSH) and oxidized glutathione (GSSG),

dynamically balanced within cells (158–161). GPX4, a selenoprotein,

plays a pivotal role in maintaining this balance by catalyzing the

conversion of glutathione to GSSG (122, 162). It effectively reduces

phospholipid peroxides, decomposes H2O2 to water with GSSG, and

inhibits arachidonic acid activation, thereby suppressing lipid

peroxidation and ROS generation (22–24). As we discussed above,

PUFAs are major substrates for lipid peroxidation during ferroptosis,

damaging membrane structure and function. Enzymes involved in

binding PUFA to phospholipids, such as acyl coenzyme A synthetase

long-chain family member 4 (ACSL4), are integral to ferroptosis.

ACSL4, besides being a sensitive indicator of iron-dependent cell

death, regulates lipid metabolism by linking free fatty acids to CoA

linkage, ultimately exchanged for phospholipids (163). ACSL4

specifically binds to substrates like arachidonic acid (AA) and

adrenergic acid (ADA) (164) leads to the generation of fatty acyl

CoA esters, esterified by lysophosphatidylcholine acyltransferase 3

(LPCAT3) into phospholipids like phosphatidyl ethanolamine (AA-

ETA), predominantly found in the endoplasmic reticulum. Subsequent

oxidation of AA-PE and ADA-PE by 15-lipoxygenase (ALOX15)

produces lipid hydroperoxides, and other signaling molecules

promoting ferroptosis (162, 165, 166). Recent studies highlight

alternative pathways to ferroptosis, indicating that ACSL4/LPCAT3/

15-LOX or p53/SLC7A11/12-LOXmay cause lipid peroxidation during

this process (167, 168). This underscores the complexity of ferroptosis

regulation, offering potential therapeutic avenues for modulating cell

death pathways to ameliorate chemoresistant-cancers (Figure 3).
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4 Need for investigating the interplay
between anastasis, ferroptosis, and
chemoresistance and metastasis

Although both ferroptotic and apoptotic modes of cell death

processes can be reversed, the underlying mechanisms facilitating

these cell recovery phenomena remain to be fully elucidated in

distinct cancer types. Primarily, both modes of cell death are

typically different suggesting that different mechanisms may be

required to halt the respective cell death mediators and repair the

distinct types of damage for cell recovery. For instance, apoptosis

involves the activation of proteases that can cause cleavage of distinct

functional proteins, along with DNases like endonuclease G and

DNA fragmentation factors, resulting in genomic destruction (169–

171). Upon cessation of apoptotic stimulus, the cells that are

undergoing recovery could induce upregulation of heat shock

proteins and XIAP to impair stimulation of caspases, whereas the

ICAD/DFF45 could cause inhibition of DNase activity, and PARP (a

DNA repair enzymatic protein) to foster genome repair (172–174). In

contrast, ferroptosis is characterized by the accumulation of ROS

beyond the cell’s redox balance, which can cause lipid peroxidation

followed by cell death (175). Administration of compounds like

glutathione (GSH) or Fer-1 can facilitate ferroptosis reversal,

potentially by enhancing GPX4 activity to mitigate ROS

accumulation (176), while Fer-1 acts as a ROS scavenger to

eliminate excessive cytosolic and lipid ROS, which could confer to

the redox homeostasis and enabling cell recovery (177, 178).
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Though glutathione (GSH) and Fer-1 are considered as

inhibitors of ferroptosis, not all ferroptosis inhibitors possess the

capacity to facilitate its reversal. For instance, compounds like

aminooxyacetic acid (AOA), the iron chelator deferoxamine

(DFO), dopamine, and vitamin C are known to inhibit ferroptosis

initiation but do not promote cell recovery once ferroptosis has

initiated. This limitation may stem from their targeting of upstream

pathways involved in ferroptosis initiation, instead of conferring to

the modulation of other downstream signaling pathways

responsible for cell death. DFO functions as an iron chelator,

depleting iron levels and hindering the iron-dependent

accumulation of lipid ROS (19). Similarly, AOA inhibits

transaminase activity, thereby blocking glutamine metabolism to

alpha-ketoglutarate implicated predominantly involved in fatty acid

synthesis (179). Dopamine prevents GPX4 degradation, while

vitamin C scavenges free radicals in the aqueous phase (180–182).

Previous studies (178) on the ferroptosis reversal through GSH and

Fer-1 implicate regulators linked to GPX4 activity and lipid

peroxidation as potential compounds that can induce ferroptosis

reversibility. Unlike GSH and Fer-1, which act on mechanisms

associated with removing lipid ROS, these inhibitors predominantly

target the initiation of lipid peroxidation. This suggests potential

differences in the regulation of preventing reversal of ferroptosis

that warrant further investigation.

Several previous studies described the reversal of apoptosis

when the removal of apoptotic stimuli is induced in vitro and in

vivo studies (172–174, 178, 183–188). In contrast, another study

(178) reveal that simply removing ferroptosis-inducing stimuli,
FIGURE 3

System Xc- and lipid metabolism. System Xc- is a transmembrane transporter composed of SLC3A2 and SLC7A11 (xCT) proteins. It transports
intracellular glutamate and extracellular cystine, which is converted into cysteine. Cysteine plays a pivotal role in synthesizing the antioxidant
glutathione. Glutathione exists mainly in reduced (GSH) and oxidized (GSSG) forms, maintained in balance by various mechanisms. GPX4, a
selenoprotein, converts glutathione to GSSG and efficiently reduces phospholipid peroxides while decomposing H2O2. GPX4 also inhibits
arachidonic acid activation and lipid peroxidation (ROS). Long-chain acyl-CoA synthetase 4 (ACSL4) activates arachidonic acid and adrenic acid into
their CoA forms, promoting the activation of polyunsaturated fatty acids (PUFA) mediated by LPCAT3. Intracellular Fe(II) undergoes the Fenton
reaction with H2O2, generating hydroxyl radicals (OH·), contributing to lipid peroxidation and ROS production, causing cell membrane damage.
Note: The complete pathways explanation was given in subheading 3.
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including ‘erastin’ from HT-1080 cells or ‘erastin/glutamate’ from

HT-22 cells, is insufficient to cause recovery of these ferroptosis-

initiated cells. In this study (178), authors demonstrated the need to

explore the possibility that certain types of dying cells with robust

redox balance restoration capabilities may recover without the

supplementation of GSH or Fer-1, a possibility that requires

further investigation.

Ferroptosis can be reversed but raises fundamental inquiries that

remain unanswered. For instance, can ferroptosis reversal occur within

live animals? Tracking ferroptosis in vivo presents technical challenges,

as cells recovered from ferroptosis appear morphologically identical to

healthy non-ferroptotic cells. During the reversal of ferroptosis or

apoptosis, cells encounter distinct forms of cellular damage. The

existence of a common master regulator or signaling pathway

triggering anastasis remains to be determined. Additionally, the

broader physiological & therapeutic implications of this cellular

recovery process require further exploration. Ongoing investigations

aim to address these questions and identify the molecular regulators

involved in these pathways. Understanding the signaling mechanisms

and compounds that modulate ferroptosis and the reversal of

ferroptosis could generate new approaches to investigate and

comprehend the cell recovery process of anastasis (178).

Chemotherapy is a widely used treatment strategy aimed to

ameliorate cancer cell proliferation (189, 190); however, some cells

can survive chemotherapy, leading to cancer recurrence and

metastasis (191–193). Even though various mechanisms, such as

alterations in chemotherapeutic metabolism, changes in gene

expression, metabolic reprogramming, stemness development,

and changes in cell death pathways are significant influential

factors which have been implicated in chemotherapy resistance

(194–196), however, the precise underlying mechanisms

remain unclear.

Apoptosis, a key mechanism targeted by chemotherapy,

involves the activation of caspases, a group of cysteine proteases,

ultimately leading to cell death. Previously, activation of executioner

caspases was thought to be irreversible, marking a “point of no

return” in apoptosis (197–199). Previous reports revealed anastasis

process, wherein cells could refrain from apoptotic stress although

executioner caspase activity is evident (174, 184, 200). Anastasis, or

cellular survival following stress-induced activation of executioner

caspases, has been documented in a subset of mammalian cell

lines following exposure to various chemical stressors and

chemotherapeutic agents (172, 173, 184, 201–204).

Studies on different cancer cell types, including breast (108,

205–208), melanoma (117), cervical, and ovarian cancers (209),

have shown that anastasis confers new traits upon cancer cells, such

as increased drug resistance and migration (172, 173, 201–204,

210). For instance, anastatic breast and cervical cancer cells are

associated with enhanced chemoresistance and migration

capabilities (203). Similarly, melanoma cells surviving executioner

caspase activation caused through the upregulation in the

expression of transient tBid or exposure to the dacarbazine (a

chemotherapeutic drug) demonstrate elevated cell migration in

vitro and increased metastasis in vivo.

According to previous reports (202), a lineage tracing system

was employed to identify and isolate cells undergoing executioner
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caspase activation and their progeny. These studies suggest that

anastatic colorectal cancer cells exhibit a higher metastasis, and

chemoresistance due to increased upregulation in the expression of

cIAP2 and NF-kB activity. According to this study, NF-kB
activation and cIAP2 expression conferred by chemotherapeutics

are crucial for anastasis (202). Exposure to chemotherapeutic drugs

triggers NF-kB activation and upregulation of cIAP2 expression in

colorectal cancer cells, promoting anastasis. Therefore, activated

NF-kB and cIAP2 establish a positive feedback loop within

anastatic cells, further enhancing migration and metastasis (202).

Thus, anastasis cause colorectal cancer cells with heightened

migratory potential. Similar observations of higher metastasis

following survival from stress-induced executioner caspase

activation were evident in various tumor types, including cervical

(173), breast (203), melanoma (202), and ovarian cancers (204),

suggesting that a higher migration may represent a typical

phenotypic alteration associated with anastasis. Furthermore,

apoptosis and executioner caspases are typically involved in

mediating the metastasis of lymph nodes (211–213). However,

anastatic cells maintained enhanced migration independently of

apoptotic cells, suggesting that executioner caspase activity is

dispensable for sustaining increased migratory capacity in

anastasis (214, 215). This observation aligns with previous reports

on melanoma cells (202).

Various cancer cells exhibit increased migration following

anastasis, with diverse underlying molecular mechanisms.

Inhibition of TGF-b signaling moderately mitigated anastasis-

induced migration in HeLa cells following brief ethanol exposure

(173). Another report showed that the blocking of nuclear export

reversed heightened migration in anastatic breast cancer cells (203).

Similarly, a previous study (202) concluded that melanoma cells

surviving executioner caspase activation resulted in augmented

motility through the JNK hyperactivation.

Ru Wang et al., 2013 (216) revealed that cIAP2 enhances

migration in anastatic colorectal cancer cells in an NF-kB-
dependent manner, emphasizing role of cIAP2 as a positive

regulator of migration. According to previous reports, NF-kB has

a significant role in proliferating cancer cells and promotes

migration or metastasis by modulating the downstream signaling

cascades including STAT3 and MMPs (217–219). cIAP2 has

previously been associated with drug resistance in pancreatic

cancer, colorectal cancer (220, 221), and oral squamous cell

carcinoma (222, 223), further supporting its role in mediating

chemoresistance. A positive feedback loop between cIAP2 and

NF-kB fostered levels of cIAP2 expression and NF-kB activity in

anastatic cells, enhancing their migratory potential. Thus, cIAP2/

NF-kB signaling and anastasis are critical regulators of post-

chemotherapy metastasis (216). Additionally, Ru Wang et al.,

2013 revealed (216) demonstrated a cIAP2-dependent increase in

chemoresistance in anastatic colorectal cancer cells.

Studies on Drosophila notum epithelium demonstrated that

(224) the ability of stressed cells to undergo anastasis may be

relied upon executioner caspase activation. By inhibiting caspase-

3 and 7, cIAP2 can foster a higher executioner caspase activity (225,

226), thereby promoting anastasis. Molecular mechanisms

governing the anastasis regulation through cIAP2, NF-kB, and
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regulators which were already investigated in previous studies

warrant further elucidation in future research for several other

chemoresistant cancers.
5 Integrating ferroptosis
with chemoresistance

Drug-resistant cancer cells, along with neighboring stromal cells,

may create a protective environment, allowing vulnerable cancer cells

to evade ferroptosis and chemotherapy. For example, cancer-

associated fibroblasts (CAFs) could foster a reduction in cisplatin

accumulation, subsequently conferring resistance to both

chemotherapy and ferroptosis (21). Ferroptosis is intricately

controlled by a multifaceted network involving epigenetic, pre-

transcriptional, post-transcriptional, and post-translational

modifications (227). Tumor cells, characterized by heightened

sensitivity to signals regulating cell survival and death,

consequently cause increased susceptibility to ferroptosis. Various

factors that promote tumor growth, the buildup of iron, enhanced

lipid synthesis, or undergoing epithelial-to-mesenchymal transition

(EMT), can augment susceptibility of tumor cells to ferroptosis.

Additionally, numerous chemotherapeutic agents elicit anti-cancer

efficacy through the induction of oxidative stress, disrupting the

anabolism of genetic components thereby synergizing with

ferroptosis to ameliorate cancers. Nonetheless, the precise targeting

of tumor cells by promoting ferroptosis induction remains a

challenging task in current oncological strategies (9). Tumor drug

resistance encompasses several intricate mechanisms, with disruption

of redox homeostasis emerging as a pivotal contributor. Tumor cells

exhibit greater resistance to oxidative stress by modulating ROS

generation, thereby acquiring drug resistance (228). Ferroptosis

typically linked with mitochondrial oxidative stress and ROS

production, plays a significant role. Alterations in oxidative stress

regulation can modulate ferroptosis, consequently influencing tumor

cell sensitivity to chemotherapeutics. This association depends upon a

nuanced balance between lipid peroxidation and the accumulation of

ROS promote ferroptosis, thereby suppressing tumor proliferation; as

we discussed the reduction of lipid peroxidation and ROS levels

facilitates tumor cell survival, promoting resistance to anti-tumor

agents. The dynamic interplay between ROS generation and

scavenging mechanisms lies at the core of this relationship, which

require future studies pertinent to several chemoresistant cancers (9).

As we discussed previously, chemotherapy remains a significant

therapeutic modality treating numerous solid malignancies, but the

challenge of chemoresistance significantly limits its effectiveness

(229). Interestingly, a significant link has been observed between

resistance to cisplatin and resistance to ferroptosis within tumor

environments. Malignant cells resistant to cisplatin often exhibit

increased expression of genes associated with ferroptosis resistance

(230–232). For instance, cisplatin-resistant cancer cells overexpress

the Wnt pathway membrane receptor, frizzled homolog 7 (FZD7),

leading to activation of TP63 and subsequently enhanced GPX4

expression (233, 234). Various cancer types develop cisplatin

resistance by upregulating system Xc− expression and maintaining

high levels of GSH (235–237). Recent studies indicate that cisplatin
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treatment could induce ferroptosis in tumor cells, suggesting the

significant efficacy of chemotherapy in triggering ferroptosis

(238, 239).

CAFs have been implicated in reducing cisplatin accumulation,

thereby promoting resistance to both chemotherapy and ferroptosis

by supplying glutathione (GSH) and cysteine to ovarian cancer cells

(240). Another study described that upregulation of miR-4443 in

NSCLC cells, and undergoes exosomal transfer to sensitive cells,

and enables upregulation of FSP1 expression. This elevated FSP1

expression is crucial to evade ferroptosis. Conversely, CD8+ T cells

induce the generation of IFN-g subsequently reduces system Xc−

activity in cancer cells, thus fostering reduction in cisplatin

resistance through modulation of the JAK/STAT pathway (240).

The significant interplay between chemoresistance and the

underlying ferroptosis mechanisms is yet to be explored vividly to

develop novel therapeutic modalities against ferroptosis-resistant

tumor cells (239). Combinatorial administration of GPX4 inhibitors

and system Xc− inhibitors & cisplatin has been shown to overcome

chemotherapy resistance, enhancing the anti-cancer response in

various tumors (238, 241, 242). However, these mechanisms require

future studies in several other chemoresistant cancer types.

Chemoresistance specific to the anti-glioma agent, temozolomide

(TMZ) is typically linked to resistance to ferroptosis induced by the

overexpression of system Xc− and GSH (243, 244). Moreover, cancer

cells can alter the iron homeostasis by lipocalin-2, subsequently

causing ferroptosis resistance to 5-fluorouracil (245). The

phenotypes of chemoresistant tumors closely mimic resistance to

ferroptosis, particularly focusing on crucial targets such as GPX4,

system Xc−, FSP1, and NRF2 (6, 246–249). Hence, it is crucial to

profile these ferroptosis targets in chemoresistant tumors (Figure 4).

Yet, the adaptive reaction to chemotherapeutics includes the

activation of MTDH gene, promoting the mesenchymal phenotype

of tumors and augmenting chemoresistance. However, diminishing

the expression of GPX4 and system Xc− can increase susceptibility

to ferroptosis. Thus it has been demonstrated that the ferroptosis

resistance emerges as a new rationale underlying tumor recurrence

following chemotherapy (21).

The surgical intervention combined with adjuvant multi-drug

chemotherapy is another strategy of therapeutic modality for

patients diagnosed with pancreatic ductal adenocarcinoma to

enhance survival rates. However, the persistence of gemcitabine

resistance in PDAC cells, continues to challenge clinicians (251).

Recent insights suggest a correlation between gemcitabine

resistance (252, 253) and ferroptosis resistance, primarily driven

by the hyperexpression of system Xc−. Notably, inhibiting system

Xc− in PDAC cells leads to glutathione (GSH) depletion in vitro,

triggering ferroptosis and restoring sensitivity to both gemcitabine

and cisplatin (254).

Changes in apoptosis-regulating genes are common in cancer,

promoting activation of pro-proliferation and pro-survival pathways,

leading to resistance against apoptosis. Contrary to apoptosis

irreversibility, emerging evidence suggests its potential reversibility,

termed anastasis, enabling cells to evade apoptotic signals even at

advanced stages, challenging chemotherapy development (178, 250).

It is crucial to explore the multifaceted role of survival mechanisms,

metastasis, EMT, and DNA damage repair in facilitating anastasis. It
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also explores the interplay between ferroptosis reversal and anastasis

in modulating chemoresistance, highlighting implications for drug

resistance and therapeutic strategies. Future studies are warranted to

examine ferroptosis reversal, and the interaction between pro-

ferroptosis reversal and pro-ferroptosis pathways. The schematic

representation Figure 4 delineates structural and molecular changes

during anastasis, with cancer cells activating anastasis to recover from

apoptosis, acquiring mesenchymal features, and molecular alterations

promoting survival, metastasis, and angiogenesis. Genes linked to

anastasis-mediated drug resistance, such as ATF3, c-FOS, c-JUN,

INBHA, SNAIL-1, ANGPTL4, and SOX-9, are emphasized (178,

250). Cells recovering from apoptosis via anastasis undergo notable

structural changes, altering focal adhesion kinases, activating genes

associated with the actin cytoskeleton, and increasing

chemoresistance-associated proteins. Additionally, exploring the
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interplay between anastasis and mitochondrial-ROS modulated

ferroptosis mechanisms can elucidate underlying mechanisms of

chemoresistance with anastasis and ferroptosis reversal (178, 250)

Intricate interplay pertinent to the anastasis, chemoresistance,

and ferroptosis resistance in tumors require studies related to

therapeutic efficacy of several therapeutic strategies. The

recurrence of tumors following chemotherapy may, in part, be

attributed to ferroptosis resistance. This underscores the significant

chemotherapeutic efficacy of combinatorial regimens. In this

context, targeting the tumor microenvironment (TME) and

metabolic pathways to enhance ferroptosis sensitivity in

malignant cells could emerge as a significant therapeutic strategy

for overcoming the challenges posed by chemoresistance (21).

Emerging evidence indicates that ferroptosis can mitigate

acquired resistance to several targeted therapies, including
FIGURE 4

Schematic depiction of genomic variations within genes regulating apoptosis are evident in cancer and contribute to the activation of pro-
proliferation and pro-survival pathways, leading to apoptosis resistance. Upper Panel: While apoptosis has traditionally been regarded as irreversible,
emerging evidence suggests its potential reversibility, termed anastasis, wherein cells can escape apoptotic signals even after reaching advanced
stages. Anastasis poses challenges for chemotherapy development and utilization. This figure demonstrates the multifaceted role of survival
mechanisms, metastasis, epithelial-mesenchymal transition (EMT), and DNA damage repair in facilitating anastasis, and the mechanistic interplay
between ferroptosis reversal and anastasis to modulate chemoresistance, (?) emphasizing its implications for drug resistance and therapeutic
strategies. Lower Panel: A proposed model illustrates the reversal of ferroptosis, and the interplay between pro-ferroptosis reversal pathways and
pro-ferroptosis pathways is discussed. The schematic representation depicts structural and molecular changes during anastasis, showing cancer
cells recovering from apoptosis by activating anastasis and acquiring mesenchymal features and molecular alterations promoting survival, metastasis,
and angiogenesis. Genes associated with anastasis-mediated drug resistance, including ATF3, c-FOS, c-JUN, INBHA, SNAIL-1, ANGPTL4, and SOX-9,
are highlighted. Cells recovering from apoptosis through anastasis exhibit pronounced structural changes, alter focal adhesion kinases, activate
genes related to the actin cytoskeleton, and elevate proteins associated with chemoresistance. In addition, the interplay between the anastasis, and
mitochondrial-ROS modulated ferroptosis proposed mechanisms should be explored to demonstrate the underlying mechanisms pertinent to
chemoresistance with anastasis, and ferroptosis reversal (178, 250).
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lapatinib, erlotinib, trametinib, dabrafenib, and vemurafenib (255–

257). Notably, tumor cell lines resistant to these targeted drugs often

exhibit markers of EMT and display heightened susceptibility to

ferroptosis (255–257). EMT, characterized by the loss of epithelial

characteristics and acquisition of mesenchymal properties, is

known to confer chemoresistance in tumor cells, driven by

transcription factors such as TWIST1 and ZEB1. For instance, b-
elemene has been shown to sensitize KRAS mutant colorectal

cancer cells to cetuximab through a ferroptotic mode of cell death

while blocking EMT (257). Thus, ferroptosis could modulate

chemoresistance to the chemotherapeutics and appear intricately

linked to EMT processes.

Additionally, agents targeting PD-1 and PD-L1 garnered

approval from the FDA for treating various malignancies. Anti-

PD-L1 antibodies have been observed to foster lipid peroxide-

mediated ferroptosis in proliferating cancer cells, with the efficacy

of anti-PD-L1 antibody therapy being compromised by ferroptosis

inhibitors (258). Combining anti-PD-L1 antibodies with ferroptosis

inducers has shown significant efficacy in inhibiting tumor growth,

attributed to the release of interferon-g by cytotoxic T cells, which

activates STAT1 and inhibits xCT expression, thereby promoting

ferroptosis (258). Implicating ferroptosis inducers that stimulate

STAT1 activation may overcome tumor resistance to

immunotherapy, providing a wide range of potential for the

clinical implementation of ferroptosis inducers in combination

with immune checkpoint inhibitors (ICIs) (9).
6 Integrating anastasis with EMT
and chemoresistance
and immunotherapeutics

Cancer stem cells (CSCs) pose significant challenges for

developing new therapies due to their strong association with

tumor relapse and chemoresistance (259, 260). Cells that are

undergoing anastasis exhibit resistance to various apoptotic

phases. Previous reports in cancer metastasis demonstrated that

cells recovering from apoptotic phase show a higher CD44

expression, a key marker that signifies chemoresistance, and these

cells exhibit properties similar to CSCs. Additionally, the apoptosis

reversal induces epigenetic modifications in the gene promoters

related to CD44 and CD24 genes (201), further contributing to their

stem-like characteristics. It is crucial to examine functional role of

anastatic mechanisms for the formation and maintenance of CSCs

by the prospective studies. Anastasis harnesses conventional

prosurvival and pro-metastatic factors to impair the apoptosis

process. Actuation of EMT and the related EMT modulators is

considered as crucial aspect to modulate cell survival and for

maintaining stemness (261, 262). For instance, among these

modulators, SOX-9, a gene involved in tumor growth,

angiogenesis, differentiation, and survival, plays a critical role.

SOX-9 is also linked to chemoresistance against gemcitabine,

underscoring its significance in chemoresistance and the need for

exploring its role in anastasis subsequently to identify targeted

therapeutic strategies to overcome these challenges (263, 264).
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Understanding the molecular signatures of anastasis through

preclinical or clinical studies is a significant aspect in cancer

research (172). Anastasis was observed in mouse models where

primary murine liver cells and NIH3T3 mouse embryonic fibroblast

cells were exposed to ethanol to induce apoptosis. Following the

treatment, cells were subjected to washing and allowed to recovery

phase in apoptosis by exposing them into a fresh media (172, 184).

Transcriptomic analysis from the cells obtained from recovery

phase of this apoptosis revealed a significant upregulation of

genes linked to survival pathways; these genes are BCL-2 family

members (BAG-3, BCL-2, and MCL-1), XIAP, MDM2. In addition,

the genes related to heat shock proteins including Dnajb1,

Hsp90aa1, Hspa1b, and Hspb1 were found to be upregulated in

this recovery phase (172, 184) (Figure 4). Notably, residual

apoptotic markers dissipated during early phase of anastasis

initiation. Inhibiting key survival factors such as Hsp90, MDM2,

XIAP, and BCL-2 significantly impaired anastasis, highlighting the

significant dependency on these cellular survival mechanisms

(172, 184).

Cancer cell survival is not solely dependent on anti-apoptotic

gene expression. It also relies on genes involved in regulating cell

cycle, and DNA repair; In addition, the survival of these

proliferating cancer cells relies on gene expression pertinent to

angiogenesis, migration, and TGF-b modulation, and these genes

are reported to be upregulated at the time of early anastasis phase

(172). Previous reports on HeLa cells recovering from ethanol-

induced apoptosis revealed significant increases in c-Fos, c-Jun,

Klf4, and Snail-1 expression (Figure 4). These findings imply that

the upregulated genes at the recovery phase and post-apoptosis

induction are primarily linked to proliferation and pro-survival

signaling (173). On the contrary, genes activated during late

anastasis predominantly affect actin cytoskeleton rearrangement,

and ribosome biogenesis (Figure 4) (173, 200). At the time of

anastasis, the involvement of several survival factors includes

MDM2 revealing that the p53 signaling implications include

CDKs, expression of E2F and cell cycle factors (265). Other

investigations into the AP-1 transcription factor actuation, which

includes c-Jun and c-Fos; these genes are significantly involved in

mediating pro-apoptotic and pro-survival factor expression. Hence,

their actuation during anastasis offers insights into the balance

between pro-survival and pro-apoptotic signaling which is yet to be

explored vividly (266–268).

Many proteins that play roles in promoting cell proliferation

and preventing apoptosis are also critical for recovering cells from

death, which indicates that cancer cells can trigger survival

mechanisms under stress conditions, resulting in significant

molecular transformations that restore the cell to its normal state

(173, 183). During anastasis, structural changes such as actuation of

focal adhesion kinases and reorganization of the actin cytoskeleton

(173, 183). Due to these changes, recovered cancer cells undergo

migration. Furthermore, Snail-1 expression is significantly

increased during the initial anastasis phase. When Snail-1 is

silenced using shRNA, the recovery process, including migration,

is impaired, leading to increased PARP-1 cleavage and sustained

activation of cell death pathways (173, 183). Early phase of cell

recovery involves the coordinated actuation of TGF-b signaling,
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which is crucial for the survival of the cells followed by migration.

Additionally, MMP-9, MMP-10, MMP-13, VEGF-A, and Angpt-l4

are other EMT and angiogenic factors that could play a significant

functional role in promoting the cell recovery from cell death

(173, 183).

Furthermore, EMT plays a crucial role in modulating the

process of metastasis, anastasis, and stemness, making it a

promising target for combinatorial drug design (81) (250, 269).

Salinomycin, mocetinostat, and metformin could effectively target

EMT and they were studied significantly for their potential to

overcome chemoresistance when used alongside drugs like

doxorubicin, 5-FU, and gemcitabine (270–276). Trichostatin A

and vorinostat are HDAC inhibitors that can inhibit EMT by

downregulating E-cadherin expression and modulating the

expression of HIF-1a and NF-kB (277–280). In cancers with

EGFR mutations, diindolylmethane (DIM) and its analogs have

demonstrated potential in preventing EMT and metastasis,

suggesting their suitability for use in combinatorial regimens

along with DNA-damaging agents (281, 282). Combinatorial

regimen of DIM with camptothecin can prevent drug-induced

EMT in the murine models associated with Apc-floxed colorectal

cancers (283). Recurrent administration of therapies such as

chemo/radio-therapies can cause side effects by co-activating

DNA repair followed by cell survival and EMT pathways, which

are crucial in anastasis. For instance, the nuclear translocation of

nucleases pertinent to apoptosis such as AIF and Endo-G are

evident at the time of anastasis when observed during reversal of

ethanol-mediated DNA damage (283).

Critical involvement of DNA damage response (DDR) proteins

during anastasis yet require future studies for several other cancers.

DDR proteins, such as ATM, ATR, and DNA-PK, are known to

play pivotal roles in detecting and repairing DNA damage, thereby

maintaining genomic stability. Their activation during anastasis

suggests a potential mechanism by which cells recover from near-

death states and restore proliferation (184). Given the established

link between robust DNA repair mechanisms and poor cancer

prognosis (284), it is imperative to further investigate how these

pathways contribute to anastatic processes and chemoresistance.

Elucidating these mechanisms may reveal new therapeutic targets to

improve cancer treatment outcomes, particularly in tumors that

exhibit high levels of DNA repair activity. Studies should focus on

understanding the specific DDR pathways (284) involved in

anastasis and their impact on the efficacy of chemotherapeutic

agents, potentially leading to the development of novel strategies to

overcome resistance.

Cancer cells exert chemoresistance when administered

recurrent cytotoxic chemotherapeutics to several cancer types,

and EMT plays a pivotal role in mitigating drug susceptibility

(270, 285–287). At the time of treating cancer cells with DNA-

damaging agents, specifically epithelial-origin cancer cells start

expressing mesenchymal markers. As previously discussed, EMT

is closely associated with survival factors, in addition, the drug-

induced EMT leads to a significant activation of survival factors

such as NF-kB, c-FLIP, survivin, as well as AKT. Notably, markers

pertinent to early apoptosis were found to occur alongside EMT and

cell survival proteins. Moreover, EMT modulator vimentin was
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shown to hinder process of apoptosis (283). EMT is significantly

higher in drug-induced metastasis than in spontaneous metastasis.

For instance, autochthonous breast cancer murine model was

studied where transgenic mice with a Cre recombinase construct

driven by the Fsp-1 promoter (288) which would express Cre

recombinase in mesenchymal lineage cells undergoing EMT. This

system was designed so that when the Fsp-1 promoter was actuated,

the Cre recombinase could induce knock out of RFP in another

transgenic construct that included GFP (288). Consequently, cells

expressing GFP indicated EMT activation. According to this study,

spontaneous lung metastasis had few GFP-positive cells, whereas

cyclophosphamide-treated mice had significant GFP expression in

metastatic lung nodules (288). GFP-positive cells confined to the

regions of metastasis exhibited a higher chemoresistance than the

GFP-negative cells (288). These findings highlight the complexity of

drug-induced EMT and in vivo actuation of anastasis.

As previously discussed, NF-kB plays a critical role in

promoting cell survival, making it a key target in emerging cancer

therapies. Bortezomib, for instance, inhibits NF-kB by preventing

the degradation of IkB, thereby suppressing NF-kB signaling

pathways. This therapeutic approach in combinatorial regimen

with temozolomide and paclitaxel resulted in promising results

(289). Furthermore, several NF-kB inhibitors such as curcumin,

BMS-345541, and bindarit exhibit significant efficacy (290). These

compounds could be particularly effective when used as

combinatorial regimen with DNA-damaging drug molecules to

counteract anastasis, a process through which cells survive and

recover from apoptosis phases. This combination strategy aims to

enhance the efficacy of cancer treatments by targeting the molecular

mechanisms involved in evading apoptosis and chemoresistance.

Further research and clinical trials are essential to validate these

findings and optimize combination therapies for better

clinical outcomes.
7 Immunotherapy treatment with
ferroptosis and chemoresistance

Previous studies reported the combinatorial regimen of

immunotherapeutics along with novel ferroptosis modulators

against cancers. Anti-cancer immunity is higher with GPX4

inhibitors against triple-negative breast cancers (TNBCs)

specifically LAR subtype. The synergistic effect of GPX4

inhibition and PD-1 blockade demonstrates a higher efficacy

compared to individual therapeutic interventions in vivo settings

(291). In glioma, wherein ferroptosis serves as the predominant

mechanism of programmed cell death (PCD), it fosters an

immunosuppressive tumor microenvironment facilitated by

tumor-associated macrophages, thereby promoting malignant

progression and unfavorable clinical outcomes. Targeting

ferroptosis inhibition is suggested as a promising strategy to

augment the immune checkpoint blockade (ICB) efficacy (292).

In melanoma, a predictive model termed the Ferroptosis Score

(FPS) was developed utilizing 32 ferroptosis-related genes to

prognosticate cancer outcomes. Elevated FPS levels are indicative

of a more dynamic tumor immune microenvironment and
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1428920
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cao et al. 10.3389/fimmu.2024.1428920
enhanced responsiveness to immune checkpoint blockade (ICB),

such as PD-1 blockade (293). BEBT-908, an inhibitor targeting

PI3K and HDAC, induces immunogenic ferroptotic cell death in

cancer cells, augmenting ICB therapy efficacy by upregulating MHC

class I expression and activating IFN-g signaling (294). Statins

facilitate immunotherapy by inducing ferroptosis in non-small

cell lung cancer cells while inhibiting PD-L1 expression (295).

Inhibition of Ferroptosis Suppressor Protein 1 (FSP1) significantly

induces ferroptosis in cancer cells and promotes immune cell

infiltration, including dendritic cells, macrophages, and T cells.

Combinatorial therapy with immunotherapy and FSP1 inhibition

typically mitigates hepatocellular carcinoma burden in vivo (296).

Inflammation-associated ferroptosis biomarkers positively correlate

with PD-L1 expression, high microsatellite instability, tumor

mutational burden, and ICB response rates (297). Short-term

methionine starvation synergistically promotes ferroptosis with

CD8+ T cells by stimulating CHAC1 transcription, enhancing

ICB therapy. Combined treatment involving intermittent

methionine starvation, system xc- inhibition and PD-1 blockade

exhibits potent anti-tumor effects (298). Ferritin Light Chain (FTL)

promotes cancer cell ferroptosis in glioblastoma, polarizing tumor-

associated macrophages towards the M2-type, thus fostering a pro-

tumor TME. Inhibiting FTL represents a promising strategy to

sensitize glioblastoma to PD-1 blockade (299). However, further

investigations are warranted to evaluate the efficacy of these ICBs in

combination with ferroptosis modulators against chemoresistant

cancers (21).
8 Conclusions and future prospects

Recent advancements in cancer research and development have

significantly shifted the focus from merely identifying anti-cancer

compounds to unraveling the intricate molecular mechanisms

underpinning cell survival and drug resistance. Current studies

described the molecular signaling pathways between tumors and

their microenvironment, examining how these interactions affect

cellular survival and resistance to therapy-induced apoptosis. This

review highlights various cellular mechanisms that enable cancer

cells to evade apoptosis and acquire oncogenic phenotypes. Two

pivotal concepts emerging from this research are mitochondria-

modulated ferroptosis in cancer cells, anastasis, which introduces a

novel perspective on cancer-related therapies by fostering novel

investigations on chemotherapeutics or immunotherapeutics to

mitigate chemoresistant cancers.

As previously highlighted, ferroptosis is characterized by iron-

dependent toxicity, excessive ROS accumulation, and consequent

lipid peroxidation, disrupting cellular redox balance and

culminating in membrane damage, ultimately triggering cell death

(10, 102, 300). Excessive oxidative stress induces irreversible

damage to mitochondrial function and integrity, leading to energy

depletion and ferroptosis (88). Ferroptosis manifests distinct

morphological, genetic, and biochemical features when compared

to apoptosis, necrosis, and autophagy (12, 108, 301). Numerous

studies have implicated ferroptosis in diverse biological processes

and pathogeneses, prominently in cardiovascular diseases, brain
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lesions, renal impairment, and various malignancies, where it plays

a pivotal regulatory role within the tumor microenvironment (63,

302–307).

Additionally, cancer cells exhibit a higher demand for iron

metabolism compared to normal cells, rendering them more

susceptible to ferroptosis induction (305, 308). Research further

suggests a close nexus between ferroptosis and the inhibition of

tumor cell growth. Activation of ferroptosis can impede cancer cell

proliferation, thereby influencing the efficacy of tumor

immunotherapy and patient prognosis (309–313). Consequently,

targeting or inducing ferroptosis in cancer cells is emerging as a

novel therapeutic strategy (314). This comprehensive review

elucidated the intricate interplay between ferroptosis, mitochondria,

and iron metabolism, underscoring the potential translational impact

of these findings in oncology.

In prostate cancer (PCa), it has been proposed that the

ferroptosis initiators erastin and RSL3 could profoundly inhibit

PCa cell progression without adverse events (315–317). In

pancreatic cancer, gemcitabine is the primary treatment, albeit

with unsatisfactory efficacy (167). Heat shock protein family A5

(HSPA5) has been closely linked to the prognosis of gemcitabine-

treated patients (318). Zhu et al. (318) suggested that HSPA5-GPX4

pathway modulation to contribute to chemoresistance in pancreatic

cancer cells against gemcitabine, and blocking of HSPA5 or GPX4

gene expression potentially reversing this resistance. Ferroptosis has

also been implicated in this process.

In hepatocellular carcinoma (HCC), sorafenib remains the

principal chemotherapeutic drug. Sun et al. (319) found that

sorafenib could induce HCC cell death by increasing oxidative

stress. However, the ferroptosis inhibitor ferrostatin-1 could

counteract this process, indicating the significance of ferroptosis

in the mechanism of action of sorafenib. Furthermore, a

combination of erastin, sorafenib, and haloperidol could induce a

higher intracellular iron concentration, inducing the Fenton

reaction and excessive ROS production, ultimately leading to

HCC cell ferroptosis (320).

In TNBC, Ding et al. (321) demonstrated that the inhibitor

DMOCPTL ubiquitinated GPX4 through EGR1 regulation,

inducing TNBC cell ferroptosis. The fundamental mechanism of

action and clinical value of ferroptosis remain incompletely

understood. Indeed, potential valid ferroptosis-related biomarkers

warrant further investigation. Moreover, it remains unclear in

clinical treatment whether inducing ferroptosis in tumor cells

would impair liver and kidney functions in patients. Developing

ferroptosis-inducing agents capable of selectively eliminating

chemoresistant tumor cells while sparing normal cells remains an

area requiring further exploration. Basic research and clinical

translation of ferroptosis encounters myriad uncertainties and

obstacles. As foundational research on ferroptosis progresses, the

clinical application of ferroptosis inducers and inhibitors may

become viable. Thus, research endeavors focused on ferroptosis

hold considerable potential to confer substantial benefits to cancer

patients with chemoresistance in the future by exploring the

interplay between ferroptosis, anastasis, and chemoresistance.

Specifically, can the reversal of ferroptosis manifest in vivo within

live animals? Tracking ferroptosis in vivo poses technical challenges,
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given the morphological similarity between cells recovered from

ferroptosis and healthy non-ferroptotic cells. Additionally, while

cells undergoing reversal of ferroptosis or apoptosis must address

distinct forms of cellular damage, it is plausible that they may share

a common master regulator or signaling molecule initiating the

process of anastasis. Moreover, elucidating the long-term

physiological, pathological, and therapeutic aspects of anastasis

modulators remains imperative (178).

The fundamental mechanism underlying ferroptosis involves the

interplay of iron metabolism and lipid peroxides. The identification

of FSP1 as a negative regulator expands our understanding of

ferroptosis. Extensive investigations into ferroptosis have unveiled

numerous potential therapeutic targets for combating chemoresistant

tumors. These discoveries hold promise for the development of novel

drugs and treatment modalities targeting these specific pathways.

Presently, resistance to conventional chemotherapy, targeted therapy,

or immunotherapy agents represents a major challenge in the

management of refractory tumors or recurrent malignancies. Given

the ubiquitous nature of chemoresistance mechanisms, tumors that

exhibit resistance to one drug often display varying degrees of

resistance to others within the same class, with some even

demonstrating multidrug resistance, significantly compromising

treatment efficacy and patient survival. Multiple studies have

demonstrated that ferroptosis can enhance tumor cell death

synergistically with anti-tumor drugs, thereby augmenting drug

efficacy and potentially reversing drug resistance, offering a

promising therapeutic avenue for patients with drug-resistant

tumors. Notably, tumor cells exhibit heightened sensitivity to iron

overload and ROS accumulation compared to normal cells, rendering

targeting of iron ions a feasible approach to enhance treatment

efficacy and mitigate side effects.

Integration of cross-disciplinary technologies, such as nano-

vehicle agents (322) combined with ferroptosis, may represent a

more tailored approach to tumor treatment. However, several

challenges must be addressed before clinical application. Firstly,

while numerous in vitro methods exist for assessing ferroptosis and

anastasis, the development of sensitive and accurate in vivo

evaluation techniques remains elusive. Secondly, the specificity

and safety profile of compounds targeting ferroptosis regulators

must be significantly evaluated in preclinical and clinical settings to

minimize adverse effects. Lastly, further elucidation is warranted

regarding which tumor types or characteristics, such as specific gene

mutations, are particularly susceptible to ferroptosis. Nonetheless,

comprehensive investigations into the molecular signaling

underlying ferroptosis, anastasis, and tumor drug resistance hold

considerable significance to revolutionize tumor diagnosis and

treatment, offering new avenues for therapeutic intervention (9).

Continued research is warranted to develop personalized
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combinatorial therapeutic regimens against cancers to modulate

these molecular signaling that optimize therapeutic efficacy and

overall survival.
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