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Mitochondrial dysfunction, a hallmark of immune cell failure, affects the

antitumor effects of immune cells through metabolic reprogramming, fission,

fusion, biogenesis, and immune checkpoint signal transduction of mitochondria.

According to researchers, restoring damaged mitochondrial function can

enhance the efficacy of immune cells. Nevertheless, the mechanism of

mitochondrial dysfunction in immune cells in patients with cancer is unclear.

In this review, we recapitulate the impact of mitochondrial dysfunction on the

antitumor effects of T cells, natural killer cells, dendritic cells, and tumor-

associated macrophage and propose that targeting mitochondria can provide

new strategies for antitumor therapy.
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1 Introduction

Cancer is the leading cause of mortality in both industrialized and developing

countries, generating severe concerns about global public health (1). Following the

approval of the first immune checkpoint inhibitor, ipilimumab, for clinical use in 2011,

immunotherapy for cancer has gradually gained momentum, markedly improving the

survival rate of patients with cancer (2). However, despite remarkable advancements in

immunotherapy, approximately 50% of patients do not benefit from it. There remain

several limitations to immunotherapy, such as biomarker identification, combination of

immunotherapy with other treatment methods, immune escape, and optimization of

treatment endpoint evaluation. This highlights the broad link between cancer and the

immune system, underscoring the inherent complex variability of the immune system (3).

Exploring antitumor immunity is crucial to achieving long-term survival through

immunotherapy in patients with cancer.
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Mitochondria, which, according to the endosymbiotic theory,

originated from a-proteobacteria, are widely recognized as the

“energy factory” of eukaryotic cells (4). Saha et al. have

demonstrated that the anticancer activities of T cells were

increased by the combination of a dual farnesyl transferase and

geranylgeranyl transferase inhibitor (L-778,123) targeting nanotube

production with anti-PD-1 antibody (5). Further, they revealed that

tumor cells acquire mitochondria from immune cells through

nanotubes, prolonging their own viability while inactivating

immune cells, thus evading immune surveillance. In the past

century, the impact of mitochondrial dysfunction on tumor onset,

metastasis, and progression has been clarified, and mitochondria-

targeting has been demonstrated as an effective strategy for

antitumor therapy (6). As more and more patients benefit from

immunotherapy, the significance of the functional status of

mitochondria in immune cells for immunotherapy efficacy in

patients with cancer has garnered growing attention among

researchers. The functions of immune cells are impacted by

dynamic changes in mitochondria, such as fission, fusion, and

metabolism, and enhancing mitochondrial function improves the

efficacy of immunotherapy (7–9). This review focuses on altered

mitochondrial function in immune cells of patients with cancer and

explores treatment strategies targeting mitochondrial dysfunction

to strengthen the antitumor activities of immune cells.
2 Mitochondria in immune cells

Mitochondria are organelles composed of two phospholipid

membranes, the outer mitochondrial membrane (OMM) and inner

mitochondrial membrane (IMM). The main function of the OMM,

which has a high permeability, is to exchange substances between

mitochondria and cytoplasm or endoplasmic reticulum. The IMM

has low permeability and folds inward to form cristae, the main site

of cellular energy conversion. Cristae area determines the rate of

mitochondrial oxidative phosphorylation (OXPHOS) (10).

Mitochondrial metabolism has three main functions: (і)

catabolism, which involves breakdown of nutrients (sugar,

protein, and fat) to generate adenosine triphosphate (ATP) for

cell survival through the electron respiratory chain coupled with

oxidative phosphorylation; (II) anabolism, in which the

tricarboxylic acid cycle (TCA) metabolites in mitochondria are

used for the synthesis of macromolecules; and (III) production of

signaling molecules that control the functional activities of cells,

such as reactive oxygen species (ROS) and cytochrome c (11). As a

dynamic organelle, mitochondria can undergo morphological

adaptations and interconvertibly assume the appearance of long

and short tubules. Mitochondria undergo morphological changes

such as fission and fusion to adapt to their living environment in

cells, which is called mitochondrial dynamics (12). Mitochondrial

fusion involves the fusion of the OMM and IMM (13). Briefly, IMM

fusion is drived by mitofusin 1 and mitofusin 2, and OMM fusion

by optic atrophy 1 protein (OPA1), which provides a structural

basis for cellular anabolism (14). Dynamin-related protein 1

(DRP1) is the mediator of mitochondrial fission and is essential

for preserving the quantity of mitochondria, encouraging their
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movement, and separating damaged mitochondria (15).

Mitochondria are transported in the cytoplasm by microtubules

and actin, depending on the cellular metabolic needs. Mitophagy,

the particular deterioration of damaged mitochondria, is drived by

the PINK/Parkin pathway, which is essential for maintaining

mitochondrial homeostasis and function (16).

Mitochondrial morphology and energy metabolism are serially

connected (17). For example, in T cell differentiation, immature T

cells (Tn) in a long-term quiescent state rely on the TCA cycle and

OXPHOS for oxidative capacitation. When activated by antigens

and other substances, Tn rapidly differentiates into effector T cells

(Te), and mitochondria respond immediately. The metabolic

reprogramming of mitochondria through fission promotes

anabolism and a metabolic shift to glycolysis and glutaminolysis

(18). This metabolic pattern in immune cells, in which glycolysis is

favored over OXPHOS with the existence of sufficient oxygen, is

similar to the Warburg effect in tumor cells (19). Although the

general consensus is that mitochondrial metabolic reprogramming

in immune cells occurs because these cells use the byproducts of

aerobic glycolysis for anabolism, some experts believe that immune

cells synthesize ATP through aerobic glycolysis at a higher rate than

through OXPHOS; however, these views are yet to be fully clarified

(20). Meanwhile, some studies have shown that various T cell

metabolic activities influence mitochondrial structure (21). More

studies are needed to confirm the relationship between

mitochondrial morphology and metabolism.

Thus, mitochondria in immune cells involved in anti-tumor

responses actively respond to changes of cells and the body,

constantly changing their morphology and position to achieve

metabolic optimization, while also being influenced by

metabolism to maximize their functions.
3 T cell

Upon recognition of antigens presented bymajor histocompatibility

complex (MHC) and costimulation, T cells undergo positive and

negative selection within the thymus and differentiate into CD4+ T

cells and CD8+ T cells. While CD4+ T cells serve as T helper cells, CD8

+ T cells are cytotoxic T cells. Most research concentrates on the

antitumor activities of CD8+ T cells (22, 23). Reduced responses to

immune checkpoint inhibitors and to adoptive T cell therapy in patients

are closely related to T cell exhaustion, which is a condition of

progressive decline in T cell function due to persistent antigenic

stimulation in the tumor microenvironment or viral. T cell

exhaustion is distinguished by boost in the expression of T cell

inhibitory receptors (including LAG-3, PD-1, and CTLA-4),

decreased effector function, metabolic reprogramming, and altered

epigenetic landscape (7, 24, 25). Mitochondrial function influences T-

cell exhaustion (26) (Figure 1).
3.1 Mitochondrial biogenesis

Mitochondrial biogenesis increases mitochondrial mass and

promotes metabolism to maintain mitochondrial function.
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Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-

alpha (PGC-1a), a crucial component of the mitochondrial

biogenesis signaling cascade, not only promotes central memory

T cell (Tcm) formation but also improves the structural and

metabolic adaptability of CD8+ T cell mitochondria in tumor

microenvironment (TME). PGC-1a was used as a “transfer

station”. The processes of cellular differentiation, metabolism,

structure, and Ca2+ transport are serially connected to persist the

basic function of CD8+ T cells in the TME (26, 27). Scharping

reported CD8+ T cell depletion in an in vitro tumor model

mimicking hypoxia and continuous antigen stimulation. Further,

they found that continuous antigen stimulation enhanced Blimp-1-

mediated inhibition of PGC-1a in mitochondrial biogenesis and

adaptation. This leads to mitochondrial failure, which generates

ROS that cannot be eliminated, inhibits phosphatase, and enhances

Nuclear Factor of Activated T cell (NFAT) activity (26, 28). In non-

small cell lung cancer, MHC-II expressing antigen-presenting

cancer-associated fibroblasts evade immune cell-mediated

apoptosis by antigen-stimulated production of C1q, which

interacts with the complement C1q binding protein (C1QBP) on
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CD4+ T cells, impairing their antitumor effects and contributing to

tumor progression (29). C1QBP is a mitochondrial protein, the

deletion of which increases mitochondrial fission through

Adenosine 5’-monophosphate-activated protein kinase (AMPK)/

PGC-1a signaling and inhibits mitochondrial biogenesis, further

impairing mitochondrial plasticity and metabolism; this affects the

number, depletion, and memory phenotype of tumor-infiltrating

lymphocytes (TILs) (30). However, whether other signaling

pathways of CD8+ TILs in lung cancer and other tumors are

affected by AMPK/PGC-1a signaling remains unclear. Moreover,

determining whether PGC-1a is a single factor is difficult.
3.2 Mitochondrial dynamics

In the TME, changes in mitochondrial dynamics not only affect

the metabolism of CD8+ T cells, but also cell migration (31).

Mitochondrial morphology adapts to changes in cellular

functional status, and changing the morphology of cristae makes

fused mitochondria more conducive to OXPHOS, as in Tn cells
FIGURE 1

Changes in CD8+ T cell mitochondrial function in patients with cancer and anti-tumor immunotherapy strategies targeting CD8+ T cell
mitochondria (green indicates mitochondrial changes in patients with cancer, red indicates cellular changes after immunotherapy, and red boxes
indicate treatment strategies). Produced with the aid of BioRender (http://biorender.com) (1). The long-term tumor microenvironment poses a threat
to CD8+ T cells, which is manifested as lack of nutrients, hypoxia, and long-term stimulation of tumor antigens. (2) PGC-1a affects mitochondrial
biogenesis, and UA and OPA-1 affect mitochondrial dynamics, so that the mitochondrial mass and morphology can not meet the needs of cell
metabolism. When CD8+ T cells are activated, their metabolism mainly shifts to glycolysis, and OXPHOS is inhibited. Increased FAO leads to energy
imbalance and ROS production. PD-1 not only affects mitochondrial metabolism but also mitochondrial dynamics through Drp1. (3) Immunotherapies
targeting mitochondria mainly involve supplementing metabolites to restore metabolic activity and improved mitochondrial dynamics, combining
immunosuppressive agents, etc. Ncoa2, nuclear receptor coactivator 2; Bcl2, B-cell lymphoma-2; PGC-1a, peroxisome proliferator activated receptor
gamma coactivator-1alpha; ROS, reactive oxygen species; MTP, mitochondrial trifunctional protein; SPD, spermidine; PTPMT1, protein tyrosine
phosphatase mitochondrial 1; TCA, tricarboxylic acid cycle; IL-10, interleukin-10; UA, urine acid; OPA-1, optic atrophy 1; OXPHOS, oxidative
phosphorylation; FAO, fatty acid oxidation; mTOR, mammalian target of rapamycin; PD-1, programmed cell death 1; PD-L1, programmed death ligand 1;
ERK1/2, extracellular regulated protein kinases; CHCHD, coiled-coil-helix-coiled-coil-helix domain; AMPK, Adenosine 5’-monophosphate (AMP)-
activated protein kinase; Cpt1, Carnitine palmitoyl transferase 1; Bhlhe40, basic helix-loop-helix family member e40;.
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with fragmented and round mitochondria (32–34). Regulating

mitochondrial fission and fusion in CD8+ T cells is important for

adaptation to TME. BCL11B knockout in T cells can upregulate

OPA1 expression and mediate mitochondrial fusion. Elongated

mitochondria promote OXPHOS to increase energy production

in T cells (35). High levels of Drp1, which mediates mitochondrial

cleavage, can be used in combination with PD-1 inhibitors to

improve anti-tumor effects. This may be the result of the PD-1-

ERK/Drp1 pathway as well as cytokine secretion (36). Knockdown

of Drp1 reveals fused mitochondria and suppresses T cell migration

(37). Interestingly, Simula et al. suggest that PD-1-mediated

downregulation of Drp1 does not regulate metabolism. Due to the

heterogeneity and diversity of tumors, the mechanisms by which

mitochondrial morphology changes in tumor-infiltrating CD8+ T

cells remain unclear.
3.3 Mitochondrial metabolism

In the TME, upon continuous activation by T cell receptors,

CD8+ T cells undergo a metabolic shift to glycolysis and

glutaminolysis to maintain their antitumor functions. However,

tumor cells compete with immune cells for nutrients, such as sugar

and oxygen, inhibiting metabolism in immune cells (28, 38–40).

Glycolysis provides pyruvate to the TCA cycle, the main pathway of

mitochondrial energy production. However, tumor cells influence

pyruvate utilization in many ways (41). Mitochondrial OXPHOS

rate affects the antitumor efficacy of CD8+ T cells. In glutamine-

and fatty acids-deficient TME, CD8+ T cells with suppressed

mitochondrial pyruvate carrier rely on lactate oxidation, which

leads to mammalian target of rapamycin (mTOR) inactivation and

H3K27 methylation, impairing their antitumor function (42, 43).

Chen et al. demonstrated that the loss of protein tyrosine

phosphatase mitochondrial 1 in CD8+ T cells inhibited the

oxidative utilization of pyruvate by mitochondria, resulting in

elevated FAO rate; this change in metabolic substrate and

metabolic inflexibility accelerated T cell failure (44). Lactate

accumulation and the lack of glucose and fatty acids in the TME

cause an imbalance in the metabolic microenvironment. In

addition, chronic antigen stimulation impairs OXPHOS and

reduces ATP production (45).
3.4 Immune checkpoint signaling

At present, an increasing amount of research have shown that

immune checkpoint signal transduction can affect mitochondrial

function, mainly mitochondrial metabolism and dynamics (26). T

cell failure is characterized by persistent PD-1 expression. In the

early stage of failure, PD-1 signaling inhibits PGC-1a, resulting in

metabolic disorders, excessive mtROS production, and increased

number of depolarized mitochondria (46, 47). PD-1 signaling also

suppresses the manifestation of the transcription factor basic helix-

loop-helix family member e40 (Bhlhe40), which primarily affects

mitochondrial metabolism and fitness (48). PD-1 signal
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transduction inhibits the motility and proliferation of T cells by

regulating extracellular signal-regulated kinase 1/2 (ERK1/2) and

mTOR proteins to phosphorylate Drp1 on Ser616, preventing

its activation (37). Moreover, PD-1 signaling leads to a decrease

in mitochondrial cristae length and quantity, affecting their

glycolysis and OXPHOS rates by reducing Coiled-Coil-Helix-

Coiled-Coil-Helix Domain Containing 3 (CHCHD3) and

CHCHD10 expression (49).
3.5 The endoplasmic reticulum-
mitochondria interface

There is a growing consensus that the association between

endoplasmic reticulum (ER) and mitochondria is not only related

to the T cell’s activation and differentiation, but also to their

exhaustion (50–52). First, the mitochondria-ER contact site

(MERC) in TILs is mediated by MFN2-sarcoplasmic/endoplasmic

reticulum Ca2+ ATPase 2 (SERCA2) interaction to regulate

mitochondrial Ca2+ homeostasis and maintain T cell metabolism

and adaptability (53). High cholesterol metabolism increases the

manifestation of mitophagy-related proteins (PINK, BNIP3, and

Parkin) in CD8+ T cells in patients with colorectal cancer through

the ERS-ERMC-mitophagy axis, which inhibits mitochondrial

metabolism (54). In the TME, ER stress cannot be avoided by

regulating MERC to promote mitochondrial fission, fusion,

autophagy, or Ca2+ influx and maintain constant energy in TILs

(52). Protein kinase RNA-like ER kinase-mediated induction of

mtROS is a marker of mitochondrial failure in CD8+TIL. ER stress

in ovarian cancer-activated T cells inhibits glutamine influx via

unfolded protein response. Thus, the effect of tumor cells on

tandem organelles in TILs is mediated not only through the

MERC interface but also through other molecules, providing new

targets for immunotherapy (52, 55, 56).
4 Natural killer cells

Natural killer (NK) cells are crucial components of the innate

immune system (57); these cells can kill tumor cells through MHC-I

and antibody-dependent direct cytotoxic effects. They can also

release cytokines, such as IL-8 and macrophage inflammatory

protein -1a, to play an immunomodulatory role in promoting

antitumor functions of T and B cells (58, 59). Although the

current classical phenotype of NK cells is not sufficient to further

classify them according to different functions, mitochondrial

metabolic activity can be used as a basis for distinguishing them:

cytotoxic NK cells exhibit enhanced ability to metabolize glucose

through OXPHOS and glycolysis; regulatory NK cells continue to

function under hypoxia and limiting glycolysis; memory NK cells

maintain improved fitness of the mitochondria by eliminating

dysfunctional mitochondria to increase membrane potential and

respiratory capacity of mitochondria and reduce ROS levels (60).

NK cells exhibit a long memory phenotype, and there are many

antitumor mechanisms that need to be explored in adaptive
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immunity (61). O’Sullivan et al. showed that NK cells acquired

immunological memory through mitophagy mediated by the

mitochondria-associated proteins BNIP3 and BNIP3L (62).

Mitochondria play a significant part in the antitumor activity of

NK cells, mainly by affecting NK cells’ metabolism. Specifically,

mitochondria are the energy supply centers of cells, and the

cytotoxic effect of NK cells is activated by the cytokine IL-2,

which provides energy for cellular activity (63). Slattery et al.

found that when NK cells from patients with neuroblastoma kill

tumor cells by antibody-dependent cell-mediated cytotoxicity,

increased glycolysis is mediated by mitochondrial dysfunction

(64). Transforming growth factor-b (TGF-b) produced by tumor

cells and tumor-associated cells directly causes mitochondrial

dysfunction by inhibiting mitochondrial respiration and other

mechanisms, which leads to NK cells’ metabolic malfunction in

patients with breast cancer that has spread (65). Zheng et al. found

that hypoxic TME causes continuous activation of mTOR-Drp1

targets in NK cells, leading to an increased rate of fission and

fragmentation of the mitochondria; this affects mitochondrial

metabolism and antitumor functions of NK cells. Furthermore,

they confirmed the connection between mitochondrial dynamics

and metabolic reprogramming (66). Apart from impacting

metabolism, the products of mitochondria in biological activities

have different implications for NK cell antitumor activity.

Mitochondria are the main production site of ROS, which is
Frontiers in Immunology 05
required for NK cell-mediated tumor cell lysis. However, lactic

acid-induced ROS also promotes apoptosis in NK cells, and

mitochondrial dysfunction with immunosenescence is associated

with excessive ROS production (67, 68). Abarca-Rojano et al.

proved that the development of NK cell immune synapses is

assisted by mitochondria, and that mitochondrial recombination

into these synapses based upon activating receptors, such as Natural

killer group 2, member D (NKG2D) (69). NK cells develop immune

memory through three stages. However, how mitochondria mediate

each metabolite in this process is still unclear. Further studies are

needed to determine whether metabolic changes can be used to

target mitochondria in NK cells, promoting their long-term

memory phenotype instead of apoptosis to develop novel

antitumor therapy. (Figure 2)
5 Dendritic cell

Dendritic cells (DCs) are a group of myeloid-derived antigen-

presenting cells (APCs) with specialized functions (70). These cells

have the ability to combine environmental data and transmit it to

other leukocytes, generating both innate and adaptive immunity (71).

Mitochondrial dysfunction affects differentiation, metabolism, T cell

activation, and antigen presentation of DCs (Figure 2). DC

differentiation is characterized by upregulation of mitochondrial
FIGURE 2

Mitochondrial changes in dendritic cells and natural killer cells in patients with cancer (increase↑, decrease↓). Created using BioRender software
(http://biorender.com). (A) Tumor cells secrete cytokines such as TGF-b or compete for oxygen, which leads to the inhibition of OXPHOS in NK cells,
mitochondrial cleavage, and insufficient energy supply. At the same time, ROS production increases, promoting cell apoptosis and inhibiting the
antitumor effect of NK cells. (B) In the TME, both FAO and glycolysis in DC cells are enhanced but have different effects on DC antigen presentation.
IL-2, interleukin-2; TGF-b, transforming growth factor b; TNF-a, tumor necrosis factor a; IFN-g, interferon g; cGAS-STING, the cyclic GMP-AMP
synthase -sstimulator of interferon genes pathway; HIF-1a, hypoxia-inducible factor alpha; TFAM, transcription factor a, mitochondrial;
TDE, tumor-derived exosome; 4-HNE, 4-hydroxynonenal; ATP, adenosine 5’-triphosphate.
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respiratory complexes and increased mitochondrial DNA copy

number, indicating active mitochondrial biogenesis (72). ROS plays

a crucial role in the differentiation of DC. Del Prete et al. demonstrate

that the treatment of NK cells with rotenone or catalase results in a

decrease in ROS production, which leads to the obstruction of DC

differentiation (73). ROS content also controls the differentiation of

DC subpopulations, and ROS inhibition increases the proportion of

cDC1 (74). Mitochondria plays a vital role in antigen processing and

presentation by APCs (75). GMP-AMP synthase (cGAS)-stimulator

of interferon genes (STING) pathway is a vital innate immune

pathway which links innate and adaptive immunity. Recently, it

was found that the antitumor effect of this pathway is closely related

to mitochondrial function (76). Lu et al. have demonstrated that

mitochondrial transcription factor A (TFAM) deficiency in DCs leads

to mitochondrial DNA escape, which triggers the cGAS-STING

pathway to promote DC migration, maturation, antigen

presentation, and secretion of inflammatory factors and restore the

anti-tumor effect of DC (77). Hu et al. have reported that DCs in

TME exhibited enhanced aerobic glycolysis and ATP production,

which promoted STING phosphorylation and STING-dependent

antitumor activation of DC. Simultaneously, the intrinsic STING-

mediated activation of DC promoted hypoxia-inducible factor-1

alpha (HIF-1a)-mediated glycolysis to establish a positive feedback

pathway against tumor cells (78). It is crucial for DC tolerance to be

maintained that glycolysis occurs. In the TME, tumor-derived

exosomes carrying fatty acids or tumor cells use the paracrine

Wnt5a/b-catenin signaling pathway to activate peroxisome

proliferator-activated receptors in DC cells, leading to enhanced

FAO. Consequently, mitochondrial metabolism is switched to

OXPHOS, which leads to DC immune dysfunction (79–81). This

may be due to increased ROS production by mitochondria

through FAO rather than glycolysis, which subsequently leads to

the production of peroxidation byproducts, consisting of

4-hydroxynonenal (4-HNE), preventing antigen cross-presentation

(82). However, ROS production by mitochondria is also essential to

the presentation and processing of antigens by APC. Antigen cross-

presentation to CD8+ T cells by Plasmacytoid DCs is dependent on

mitochondrial ROS production and involves pH alkalinization and

antigen protection (83). Meanwhile, DC-mediated activation of Tn

cells requires mitochondria to maintain their integrity (84). However,

most studies on DC tend to focus on the functional changes of

mitochondria when T cells are activated, and few have focused on

mitochondrial dysfunction in DC cells in the TME.
6 Tumor-associated macrophages

Tumor-associatedmacrophages (TAMs) are the predominant kind

of macrophages seen in TME (85). TAM can be divided into M1 pro-

inflammatory anti-tumor type and M2 anti-inflammatory pro-tumor

type (86). This, however, is not a straightforward choice. There are also

many intermediate types of Tams that express markers of bothM1 and

M2 (87). Nonetheless, the types of TAM mentioned in TME is

primarily of M2 macrophage, and excessive TAM infiltration is

linked to a poor patient prognosis (88). ROS production occurs
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mostly in mitochondria and is intimately associated with TAM

polarization (89). ROS can also be secreted by cancer cells.

Studies show that M1 macrophages are pro-inflammatory and

secrete a large number of ROS and inflammatory factors. ROS is a

necessary condition for the phenotype polarization of TAM towards

M2, which is conducive to the formation of immunosuppressive TME

(90–92). However, the ROS content in M2 macrophages was lower.

This is why M2 macrophages have lower concentrations of pro-

oxidants like NOX and higher concentrations of antioxidant

enzymes like catalase and Gpx1 (93). It has now been demonstrated

that ROS contributes to M1 polarization as well. Two DNA binding

agents, trabectedin (TRB) and lurbinectedin (LUR), activated the PPP

pathway upon TAM, promoted ROS production, and exhibited anM1-

polarized phenotype (94). This implies that TAM polarization may be

impacted by REDOX targeting of TAM. Liang et al. design a new

nanomaterial SV@BMs to generate a large number of ROS in TAM.

ROS inhibits cancer cell growth in TME and promotes the polarization

of TAM to M1 through the NF-kB pathway together with manganese

ions (95). Shi et al. design a novel nanoparticle using photodynamic

release of ROS, which promotes the polarization of the M2 type into

the M1 type through the NF-kB pathway. In order to prevent the toxic

effects of ROS, NH4HCO3 was added to the nanomaterials to control

the production of ROS (96). Cu2-xSe nanoparticles have the ability to

generate ROS in TAM, ubiquitinate TRAF6, stimulate IRF5 to increase

IL-5 production, and polarize M2 to M1 (97). The synergistic effect of

ROS with ZnPP PM/PIC causes M2 TAM to redevelop the M1

phenotype. It’s probable that ZnPP PM/PIC works on TAM to

suppress STAT3 expression through ROS (98). There are more

factors influencing TAM polarization than ROS. The different

polarization results of ROS to TAM may be due to the combined

effects of the amount of ROS, the signal pathway activated by ROS and

the activation of the signal pathway related to ROS. More research is

necessary to determine whether ROS has an antitumor or antitumor

function in tumor therapy.
7 Antitumor therapy targeting
T cell mitochondria

7.1 Targeting the PGC-1a
signaling pathway

Owing to its function, PGC-1a has attracted attention as a target

for antitumor therapy, including its potential to enhance the efficacy of

existing immunotherapies or adoptive cell therapy (ACT) (99). PGC-

1a/peroxisome proliferator-activated receptor complex agonists can

activate mitochondria, increase OXPHOS and glycolysis, increase fatty

acid oxidation (FAO) via carnitine palmitoyltransferase 1 and B-cell

lymphoma-2 (Bcl2) upregulation, and improve CD8+ T cell effector

function, enhancing its antitumor effect when used in combination

with PD-1 inhibitors. Malinee et al. developed EnPGC-1, an epigenetic

activator of PGC-1a/b based on DNA (100, 101). The nuclear receptor

coactivator 2 (NCOA2)-based therapy developed by Zhong et al. is also

based on PGC-1a. Mice lacking Ncoa2 in T cells are unable to

stimulate PGC-1a expression, and therefore have lower
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mitochondrial mass, reduced interferon-g production, and impaired

OXPHOS, with faster tumor growth and progression (102). However,

PCG-1a is neither affected by a single pathway, nor does it affect a

single downstream target. Mitochondrial biogenesis-based treatment

combined with immunotherapy has shown advantages, and there is an

urgent need to clarify the underlying mechanism.
7.2 Targeting mitochondrial metabolism

Mitochondrial function can be restored to produce sufficient

energy for resisting attacks by tumor cells through metabolic

reprogramming or substrate supplementation, depending on the type

of mitochondrial metabolism imbalance, i.e., substrate reduction or

impaired metabolite production during glycolysis or OXPHOS. Siska

et al. found that glycolysis and mitochondrial function in TILs are

impaired in clear cell renal cell carcinoma, and supplementation with

pyruvate or mitochondrial ROS scavengers can partially restore CD8+

T cell function (40). Spermidine can improve low response rate to PD-1

therapy in elderly patients with cancer by directly combining with

mitochondrial trifunctional protein to promote FAO (103). 5-ALA/

SFC leads to PGC-1a upregulation through Nuclear Respiratory Factor

1 (Nrf-1), Heme Oxygenase-2 (HO-2), Sirtuin 1 (Sirt-1), and PGC-1a
pathways, which enhances mitochondrial function in vitro and

increases oxygen consumption rate, elevating the production of

complex V and ATP, which are required for the induction of effector

ZCD8+ T cells (104). Guo et al. developed an interleukin (IL)-10-Fc

fusion protein to modulate metabolism and promote OXPHOS

recovery in terminally depleted CD8+ TILs through a new material

technology. IL-10 was fused with a colony-stimulating factor-1 receptor

blocking antibody to generate a bifunctional protein for metabolic

reprogramming (105, 106). However, CD8+ T cells have different

energy requirements with different stimuli in the TME. Therefore, the

treatment should reprogram mitochondrial metabolism in order to

fulfill the demands of cell differentiation and cell metabolism according

to the patient’s autoimmune status, which is still rarely studied.
7.3 Targeting PD-1 inhibitors

At present, treatment with PD-1 inhibitors is accompanied by

supplementation with nicotinamide nucleoside to restore mitochondrial

metabolism (47). Combination therapy with PD-1 inhibitors and

metformin can stimulate mtROS production and promote CD8+ T

cell proliferation, likely due to the promotion of downstream mTOR

and AMPK by ROS (107, 108). It also has synergistic effects when

combined with costimulatory receptors, costimulatory molecules, and

cytokines, such as 4–1BB agonists, IL15, IL2, and IL10 (109–111).
8 Conclusion

Mitochondria function as a transfer station in biological processes

of immune cells, playing essential parts in both energy supply and cell

migration. Immune cell failure in patients with cancer is marked by

mitochondrial dysfunction. Therefore, mitochondria represents a
Frontiers in Immunology 07
therapeutic target to restore immune function. In this review, we

explored the effects of mitochondrial dysfunction on the antitumor

functions of T cells, NK cells, DC cells and TAMs. We propose that

tumor cells impact mitochondria in immune cells since their

stimulation by tumor antigens. Moreover, mitochondria play crucial

roles in the antitumor functions of immune cells by regulating

metabolism and kinetics. However, if the antitumor response is

inadequate, tumor cells take advantage and lead to tumor

progression and shortened overall survival. We summarize ways to

target T cell mitochondria to improve antitumor therapy.

Mitochondrial biogenesis can be activated by targeting the PGC-1a
signaling pathway. Supplement the products required for

mitochondrial metabolism and promote mitochondrial metabolic

reprogramming. Activation of mitochondrial function in

combination with PD-1 inhibitors. We summarize methods that can

be combined with existing tumor treatment methods, such as chimeric

antigen receptor T-cell therapy, immunotherapy, radiotherapy,

chemotherapy, and surgery. However, most existing studies are in

the preclinical stage, and few have progressed to clinical trials. To fully

evaluate the effectiveness and safety of such treatment plans in clinical

settings, more research is required. Due to the heterogeneity of tumors

and the diversity of individuals, the responses of immune cell

mitochondria to changes in the TME are holistic and cannot be

analyzed separately, such as changes in mass, volume, or metabolic

pathway. Future studies should explore how to avoid or reverse

mitochondrial dysfunction in immune cells and target mitochondrial

function to ultimately improve clinical outcomes in patients.
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