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Background: High dietary sodium intake is a major cardiovascular risk factor and

adversely affects blood pressure control. Patients with primary aldosteronism

(PA) are at increased cardiovascular risk, even after medical treatment, and high

dietary sodium intake is common in these patients. Here, we analyze the impact

of a moderate dietary sodium restriction on microbiome composition and

immunophenotype in patients with PA.

Methods: Prospective two-stage clinical trial including two subgroups: 15

treatment-naive PA patients compared to matched normotensive controls;

and 31 PA patients on mineralocorticoid receptor antagonist treatment before

and three months after sodium restriction. Patients underwent blood pressure

measurements, laboratory tests, analysis of peripheral blood mononuclear cells

via flow cytometry and microbiome analysis.

Results: We observed a higher percentage of Tregs in treatment-naive PA

patients (p = 0.0303), while the abundance of Bacteroides uniformis was

higher in PA patients compared to normotensive controls (p = 0.00027) and

the abundance of Lactobacillus species however was higher in the subgroup

of normotensive controls (p = 0.0290). Sodium restriction was accompanied by

a decrease in pro-inflammatory Tc17 cells in male patients (p = 0.0081, females

p = 0.3274). Bacteroides uniformis abundance was higher in female patients

(0.01230, p = 0.0016) and decreased upon sodium restriction (0.002309,

p = 0.0068).
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Conclusion: Dietary sodium restriction in patients with PA modulates the

peripheral immune cell composition toward a less inflammatory phenotype.

This suggests a potential mechanism by which sodium reduction modulates

immune cell composition, leading to blood pressure reduction and positively

impacting cardiovascular risk.
KEYWORDS

primary aldosteronism (PA), microbiome, Tc17, Tregs (regulatory T cells), sodium
Introduction

High sodium diet is known to aggravate hypertension and has

been linked to an increased risk of death (1–5). ESC/ESH

Guidelines for the management of arterial hypertension therefore

recommend sodium (Na+) intake to be reduced to below 2 g per

day, which is equal to approximately 5 g salt (NaCl).

In the past decade, several studies revealed mechanistic insights

of how sodium consumption can alter the gut microbiome and

immunophenotype, factors which are known to promote and

aggravate arterial hypertension (6–8).

Gut dysbiosis and microbiota-derived metabolite imbalances in

affected individuals lead to changes in immune cell activation,

triggering the production of pro-inflammatory cytokines (9–15).

High sodium intake thereby worsens low-grade inflammation and

reactivation of certain T cell subsets contributes to disease

progression (16–19). Regulatory T cells (Tregs) play an anti-

inflammatory role (19–21), but imbalances caused by angiotensin

and changes in gut microbiome can worsen hypertension (20, 22–25).

Primary aldosteronism (PA) is the most prevalent form of

endocrine hypertension and affects up to 10% of all hypertensive
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patients. Patients with PA suffer from aldosterone excess and resistant

hypertension. They often consume a high sodium diet (26), which is

associated with impaired sodium taste perception (27). This does not

only affect blood pressure (BP), but also microbiome composition

and immunophenotype. These alterations in immunophenotype and

gut microbiome could also be an explanation for higher

concentrations of inflammatory biomarkers in patients with high

aldosterone levels and could at least partially explain the elevated risk

for renal and cardiovascular damage, compared to matched patients

with essential hypertension (26, 28–30). In a recent study, we could

show that already a moderate reduction of dietary sodium

consumption resulting in a reduction of urinary sodium excretion

of 66.5 mmol/d is able to substantially decrease BP levels (systolic 130

vs. 121 mmHg and diastolic BP 84 vs. 81 mmHg), which underlines

the importance of the topic (31).

This study now aims at analyzing the effect of a reduction of

sodium consumption on microbiome composition and

immunophenotypic alterations in peripheral blood of patients

with PA. We hypothesized that a moderate sodium restriction in

PA patients on stable antihypertensive treatment leads to changes in

microbiome composition and reverses the T helper type 17 (Th17)

cells dominated immunophenotypic alterations. This may

contribute to the reduction of cardiovascular risk and end-organ

damage, which has been previously suggested in studies on sodium-

sensitive hypertension in mice and a moderate high-sodium

challenge in a pilot study in humans (25). As recent studies have

proposed to also consider sex-specific effects of gut microbiome in

the development and treatment of hypertension, we will also focus

on sex-specificity in our cohort (32).
Methods

Subjects

This is a prospective two-stage clinical trial with two subgroups

(for study outline see Figure 1). The study is subdivided into two

different parts with a total of three different analysis steps.

Thirty-four patients with PA and 15 healthy normotensive

controls were recruited from the Endocrine Outpatient Clinic of

the University Hospital Munich, Germany (Center of the German
frontiersin.org
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Conn’s Registry). PA was diagnosed following the Endocrine

Society Clinical Practice Guidelines (33). In part A – 1 (in the

further manuscript referred to as part A), 15 PA patients without

mineralocorticoid receptor antagonist (MRA) treatment were

included and compared to a matched normotensive control

cohort (Figure 1). PA patients were again evaluated three months

after start of MRA therapy (part A – 2, see Supplementary Table S1

for further information on clinical and biochemical parameters). In

part B – 3 (further referred to as part B), 13 patients from part A and

additionally 18 PA patients on a stable antihypertensive medication

regimen for at least four weeks including mandatory spironolactone

therapy were included. These patients were reassessed three months

after the start of the low sodium diet.

The study protocol was approved by the Ethics Committee of the

University of Munich and registered as a clinical trial (ID

DRKS00026030). Detailed information on in- and exclusion criteria

can be found under https://drks.de/search/de/trial/DRKS00026030. All

patients gave written informed consent to participate in this study.

During each study visit, patients underwent standardized

procedures such as laboratory check-ups including analysis of

steroid profiles, BP measurements, bioelectrical impedance

analysis, assessment of duplicate measurement of 24-hour urinary

sodium excretion to estimate dietary sodium intake, as well as

isolation of peripheral blood mononuclear cells (PBMCs) and

collection of stool samples for microbiome analysis. For data on

the effect of dietary sodium restriction on BP levels and detailed

information on the study protocol please refer to the previous

publication on the Salt CONNtrol trial (31).
Isolation of immune cells

Heparinized blood samples were processed for the isolation of

PBMCs on the same day to minimize apoptotic effects. We collected

three tubes of heparinized blood from each patient to isolate

PBMCs using density centrifugation. All isolated cells were
Frontiers in Immunology 03
cryopreserved using 10% dimethylsulfoxide (Sigma-Aldrich ®) in

fetal calf serum (Thermo Fisher Scientific ®). Cells were

cryopreserved at -80°C using an isopropanol freezing chamber

(Mr. Frosty®, Sigma-Aldrich®) before further analysis by

multicolor flow cytometry.
Thawing and staining of PBMCs

Cryopreserved PBMCs were first thawed in a 37°C water bath,

resuspended and washed in complete medium (RPMI 1640 medium

supplemented with 10% heat-inactivated FBS, 1% penicillin-

streptomycine, 2 mM L-glutamine) at 450 x g and room

temperature for 10 min. Cells were incubated at 37°C in 5% carbon

dioxide for resting overnight. Prior to staining, samples were

stimulated for four hours with PMA/ionomycin at working

concentrations (eBioscience™ Cell Stimulation Cocktail, 500x,

diluted 1/500 to a final concentration of 2 μl/ml). After blocking of

unspecific binding sites with Human TruStain FcX (BioLegend®),

cells were stained with appropriate anti-human antibodies or their

correspondent isotype control (panels shown below) for 30 minutes

at 4°C with a concentration of 0.7/100 μl.

For intracellular staining, we used the eBioscienceTM Foxp3/

Transcription Factor Staining Buffer Set (Invitrogen®). Samples

were fixed using 4% paraformaldehyde, before transferring them to

Dulbecco’s phosphate-buffered saline for analysis by multicolor

flow cytometry.
Assessment of T cell and NK cell subsets
and surface phenotypes

Immune cell subsets were analyzed via multicolor flow cytometry

with T cells studied after stimulation of PBMCs with PMA/ionomycin.

Antibodies for T cell panel (BioLegend®): CD3-PECy5

(HIT3a), CD4-BV786 (OKT4), CD8-PECy7 (RPA-T8), CD25-
FIGURE 1

Study protocol. The study is subdivided in two different parts with a total of three different analysis steps. Part A – 1 focuses on comparison of PA
patients before MRA treatment (n = 15) to sex, age, and BMI-matched healthy controls (n = 15). PA patients were again evaluated three months after
start of MRA therapy (Part A – 2, see Supplementary). In part B – 3, 13 of these 15 patients on three months of stable MRA treatment and another 18
PA patients with over three months of stable MRA treatment were analyzed before and after sodium restriction.
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BV510 (M-A251), FOXP3-BV421 (206D), IFN-g-BV605 (4S.B3),

IL-4-AF488 (MP4-25D2), IL-9-PE (MH9A4), IL-17A-BV711

(BL168) and IL-22-APC (2G12A41). The gating strategy from

CD3+ T cells onwards is illustrated in Supplementary Figure S1.

Antibodies for natural killer (NK) cell panel (BioLegend®):

CD45-BV605 (HI30), CD3-PECy5 (HIT3a), CD56-FITC (HCD56),

CD16-BV785 (3G8), NKG2D-BV510 (1D11), NKp30-PE (P30-15),

NKp46-BV711 (9E2), CD107a-BV421 (H4A3), NKG2A-PECy7

(S19004C), CD94-PerCPCy5.5 (DX22) and KIR-APC (HP-MA4).

The gating strategy from CD3- cells onwards is illustrated in

Supplementary Figure S2.

All cytometric measurements were performed using LSFortessa

II® (BD Biosciences®) and FlowJo® v10.8.1 software.
Statistical analysis of demographic and
immunological data

This study serves exploratory purposes. For statistical analysis, data

were tested for normality using the Shapiro-Wilk test and data

displayed as mean and standard error of the mean (SEM) or median

and interquartile range (IQR). Non-normally distributed data were

analyzed using Kruskal-Wallis test (or Friedman test if paired data was

analyzed) and Dunn’s multiple comparisons test. For unpaired t-test

comparison, the Mann-Whitney test was used and, as a paired non-

parametric test, Wilcoxon matched-pairs test. Area under the curve

(AUC) was calculated with baseline Y = 0, positive peak direction and

ignoring peaks that were less than 10% of the distance from minimum

to maximum Y using GraphPad Prism v9.5.1. The confidence interval

was defined as 95% and a p-value of < 0.05 was considered statistically

significant p ≤ 0.05 (≤ 0.05 (*), ≤ 0.01 (**), ≤ 0.001 (***), < 0.0001

(****)). Statistical analysis and graphical presentation were carried out

using GraphPad Prism v7.03 and Adobe Illustrator 2020.
16S rRNA gene amplicon sequencing

Desoxyribonucleic acid (DNA) of fecal samples was isolated

using a MaxWell from Promega with the RSC Fecal Microbiome

DNA kit. Subsequently, isolated DNA was subjected to a two step

polymerase chain reaction (PCR) for 16S ribosomal ribunocleic acid

(rRNA) gene amplicon sequencing (34). Briefly, the first PCR

targets the V3-V4 region of the 16S rRNA genes [primer were

341F CCT ACG GGN GGC WGC AG, and 785R GAC TAC HVG

GGT ATC TAA TCC, according to Klindworth et al. (35)]. The first

PCR also adds overhangs, used for the second PCR, which adds

adapter for Illumina sequencing. Final amplicons were sequenced

on a MiSeq in PE300 mode with a v3 cartridge from Illumina.
Microbiome data processing

Stool was sampled using the Stratec/Invitek stool stabilizer. The

16S rRNA sequencing data were processed using the R package

DADA2 to detect amplicon sequencing variants (ASVs) (36, 37).

Briefly, sequences were trimmed to remove the primer and low-
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quality bases at the beginning and the end of the sequences by

truncating forward reads at base 280 and reverse reads at base 240.

After merging the paired sequences and removal of chimeras,

taxonomy labels were assigned to ASVs using the ribosomal

database project (RDP) classifier algorithm (38) and the SILVA

ribosomal RNA gene database (v132) (39). All samples containing

≥ 5,000 reads that can be assigned to ASVs were included for further

downstream analysis. Only one such sample was excluded for

further analysis. The median read number in the remaining

samples is 18,676 (Supplementary Figure S3). The ASV table of

read counts was converted to relative abundances by total sum

scaling. All ASVs prevalent in at least 5% of the samples were used

for microbiome composition analysis.
Microbial diversity analysis

The alpha diversity was calculated using the Shannon index and

transformed into Shannon effective numbers (40). Wilcoxon rank

sum tests were used to evaluate differences in alpha diversity

between groups. Analysis of similarity (ANOSIM) test was

performed to compare the overall microbiota composition

between groups based on Bray-Curtis dissimilarity (41). These

calculations and visualizations were performed with the R

package vegan (https://cran.r-project.org/web/packages/vegan/).
Differential abundance analysis

Microbiome Multivariable Association with Linear Models

(MaAsLin2, http://huttenhower.sph.harvard.edu/maaslin) (42),

which employs a generalized linear model, was used to identify

differentially abundant bacterial ASVs between controls and PA

patients without PA-specific medical treatment (MRA), controlling

for potential confounders (covariates: age and gender). A

prevalence threshold of 50% was set for bacterial ASVs that were

analyzed with MaAsLin2. The false discovery rate (FDR) was

controlled with the Benjamini-Hochberg procedure, and adjusted

p-values (q-values) < 0.25 were considered statistically significant.
Results

Patient characteristics and study outcome
in study part A: PA patients without PA-
specific medical treatment (MRA)

In part A, 15 recently diagnosed patients with PA were matched

by sex (12 females, 3 males), female hormonal status, age (median of

47 vs. 48 years in controls) and body mass index (BMI; median of

25.3 kg/m² vs. 25.0 kg/m² in controls) with normotensive controls

(Table 1). Patients with PA suffered from hypertension for a median

duration of 68 months. As expected, systolic and diastolic BP (SBP

and DBP, p < 0.0001), as well as plasma aldosterone (p = 0.0228),

renin concentration (p = 0.0010) and aldosterone to renin ratio

(ARR, p = 0.0006) differed in PA patients without PA-specific
frontiersin.org
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medical treatment compared to controls. Serum potassium

concentrations were lower in PA patients (4.0 vs. 4.5 mmol/l in

controls, p = 0.0006). Regarding steroid profile measurements by

LC-MS/MS, we could only observe a difference in corticosterone

concentration with lower measurements in PA patients (p = 0.0010,

Supplementary Table S2). Markers of inflammation (such as
Frontiers in Immunology 05
leucocyte count and c-reactive protein) were in the normal range

for both subgroups (Table 1).

Flow cytometric analysis of T cell subsets in part A revealed no

differences in the relative prevalence of T helper type 1 (Th1), type 2

(Th2), type 9 (Th9), Th17 and T helper type 22 (Th22) cells and no

differences in numbers of cytotoxic T cell type 1 (Tc1), type 2 (Tc2),

type 9 (Tc9), type 17 (Tc17) and type 22 (Tc22) in PA patients without

PA-specific medical treatment compared to healthy controls

(Supplementary Table S3). The percentage of CD4+CD25+ T cells

(p = 0.0038, Figure 2A) and Tregs (p = 0.0303, Figure 2B) was higher in

PA patients without PA-specific medical treatment compared to

normotensive controls. No differences were observed regarding

NK cell subsets or surface marker expression (Supplementary Table

S3). Moreover, abundance of Bacteroides uniformis was higher in PA

patients compared to normotensive controls (p = 0.00027, Figure 2C).

Abundance of Lactobacillus species however was higher in the

subgroup of healthy normotensive controls (p = 0.0290, Figure 2D).
Patient characteristics and study outcome
in study part B: patients with PA after
sodium restriction

In part B, median age of the 31 patients (18 females and 13

males) with established MRA treatment that underwent sodium

restriction was 48 years with a median BMI of 27.7 kg/m² (Table 2).

PA patients presented with a median BP of 131/86 mmHg, plasma

aldosterone concentrations of 247 pg/ml and plasma renin

concentrations of 10.2 mU/ml, resulting in an elevated ARR of 28.1.

Estimated sodium intake was effectively reduced from a median

urinary sodium of 148.1 (IQR 51.1) mmol/d to 84.3 (IQR 43.8) mmol/

d (p < 0.0001) accompanied by a reduction in SBP (p < 0.0001) and

DBP (p = 0.0071), while plasma aldosterone concentrations

significantly increased from 247 to 351 pg/ml and renin

concentrations from 10.2 to 23.6 mU/ml (Table 2).
Effects of sodium restriction on
leucocyte subpopulations

Flow cytometric analysis of collected PBMC samples did not

reveal differences in the relative distribution of Th1, Th2, Th9, Th17

or Th22 cells and numbers of Tc1, Tc2, Tc9 or Tc22 cells after

reduction of daily sodium consumption (Supplementary Table S4).

Strikingly, three months of sodium restriction resulted in a

lower frequency of Tc17 cells (p = 0.0051, Figure 3A). This

observation was more pronounced in male (p = 0.0081) than in

female PA patients (p = 0.3274, Figure 3B). The observed changes in

Tc17 cells primarily involved the IFN-g+IL-17+ subset, rather than

the IFN-g–Tc17+ cells (Supplementary Figure S4).

The percentage of Tregs in patients with PA on MRA treatment

both before (p = 0.0466) and after sodium restriction (p = 0.0167) was

higher compared to healthy controls (Supplementary Figure S5).

While the percentage of Tregs however did not seem to be

influenced by sodium restriction, the Tc17/Treg ratio was also

reduced after sodium restriction (p = 0.0071, Figure 3C). This effect
TABLE 1 Clinical and biochemical parameters in part A – 1 (subgroup of
patients with primary aldosteronism before treatment (PA) and
normotensive controls).

Patient characteristics PA Controls p

Age [years] 47 (9) 48 (13) 0.7201

Sex [f/m] 12/3 12/3 >0.9999

Duration of hypertension [months] 68 (120) 0 (0) <0.0001

BMI [kg/m²] 25.3 (8.5) 25.0 (5.4) 0.4798

Diabetes mellitus [n] 0 0 n.a.

Insulin resistance [n] 3 0 n.s.

OSAS 2 0 n.s.

Osteoporosis 0 0 n.a.

Hypercholesterinemia 1 0 n.s.

Hypertriglyceridemia 2 0 n.s.

Cardiovascular disease 0 0 n.a.

Cerebrovascular disease 0 0 n.a.

SBP [mmHg] 145.5
(20.0)

117.0 (18.5) <0.0001

DBP [mmHg] 92.5
(17.5)

75.0 (10.5) <0.0001

Plasma aldosterone [pg/ml] 150 (47) 115 (109) 0.0228

Plasma renin [mU/ml] 2.0 (3.6) 9 (11.8) 0.0010

ARR 64 (56.6) 15 (23.9) 0.0006

ACTH [pg/ml] 11.0
(10.0)

9.0 (11.0) 0.7664

Angiotensin II [pg/mL] 0.3 (0.4) 0.4 (0.5) 0.3160

CRP [mg/dl] 0.1 (0.1) 0.1 (0.1) 0.5571

Fibrinogen [mg/dl] 270.5
(53.3)

310.0
(122.0)

0.0399

Leucocytes [G/l] 5.3 (1.9) 4.9 (1.3) 0.3046

Serum sodium [mmol/l] 140.0
(3.0)

140.0 (3.0) 0.4495

Serum potassium [mmol/l] 4.0 (0.4) 4.5 (0.5) 0.0006

GFR [ml/min/1.73 m²] 103.7
(6.4)

103.6 (17.4) 0.9267

Serum osmolality [mosm/kg] 289 (6.0) 289 (7.0) 0.9097

24-h urinary sodium [mmol/d] 146.7
(91.4)

143.1 (85.2) 0.8145

Calculated salt intake [g/d] =
salt excretion

8.6 (6.2) 8.4 (5.0) 0.9593
Shown are median (IQR) values.
Statistically significant differences with p < 0.05 are indicated by bold letters.
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was again more pronounced in the male subpopulation (p = 0.0012 vs.

0.3692, Figure 3D).

While we did not observe a difference in the percentage of

CD3-CD56+ NK cells upon sodium restriction (p = 0.0646; Figure 3E)

and no changes in the expression of activating or inhibitory receptors, we

found an upregulation of degranulationmarker Cluster of Differentiation

107a (CD107a) after sodium restriction (p = 0.0498, Figure 3F).
Impact of sex and treatment on
immunophenotype and gut microbiome

In a multivariate linear regression model, male sex, a higher

percentage of Tc17 cells at baseline, and a greater amount of sodium

restriction led to the greatest proportional reduction in percentage
Frontiers in Immunology 06
of Tc17 cells (Supplementary Table S5). We did not observe any

differences in subsets of Tregs, Th17 cells or microbiota abundance

before compared to after sodium restriction. Among all study

groups, long-term MRA treatment and low dietary sodium intake

showed a trend toward a slight reduction in abundance of B.

uniformis (Figure 4A). Additionally, abundance of B. uniformis

was higher in female, but not male patients, both before (p = 0.0016)

as well as after sodium restriction (p = 0.0068, Figure 4B).

Besides these sex-specific differences in abundance of B.

uniformis, we additionally observed inverse correlations of B.

uniformis abundance and testosterone (r = -0.2702, p = 0.0088),

dihydrotestosterone (r = -0.2295, p = 0.0269) and 17-

hydroxyprogesterone (r = -0.2699, p = 0.0089).

Additionally, the low sodium diet in our study did not change

detection of Lactobacillus species in our patients (0.028% vs.
FIGURE 2

Comparison of immune cell subsets and microbiome between patients with PA and healthy controls. Immune cell subsets and abundance of microbiota
of part A (n = 15 patients with PA before MRA treatment and 15 matched healthy controls). (A) Analysis of the percentage of CD25+ T cells of all CD4+ T
cells. (B) Analysis of the percentage of CD25+Foxp3+ Tregs of all CD25+ Th cells. Mann-Whitney test was used for statistic analysis with p < 0.05.
Presented is the median and IQR. (C) Abundance of Bacteroides uniformis ASV. The p value indicated in the boxplot is generated from MaAsLin2 results
with adjusting age and gender. The adjusted p-values (q-values) is 0.058. (D) Analysis of abundance of Lactobacillus genus.
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0.017%, Supplementary Figure S6), a trend of increasing abundance

upon MRA treatment and additional sodium restriction could

however be observed.
Alpha diversity and microbial composition
in PA patients depending on
treatment status

Alpha diversity presented in Figure 4C as Shannon effective

numbers in PA patients without PA-specific MRA treatment was

numerically lower compared to healthy controls, although not

reaching statistical significance. However, we found a trend of

increasing alpha diversity along with MRA treatment plus sodium

restriction (baseline 49.23 vs. 52.18 with MRA treatment vs. 55.15

after additional sodium restriction vs. 49.68 in controls, Figure 4C).

Prinicipal coordinates analysis (PCoA) was used to demonstrate

differences in overall microbial composition among the different

treatment groups using Bray-Curtis dissimilarity (Figure 4D). Most

of the differences were observed between PA patients before

initiation of disease-specific treatment compared to healthy
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controls. In patients receiving MRA treatment or following a low-

sodium diet, microbial composition more closely resembled that of

control patients.
Discussion

In our study, we discovered relevant immunophenotypic

changes that could have substantial clinical implications. Firstly,

we observed a remarkable reduction in pro-inflammatory and pro-

hypertensive Tc17 cells following sodium restriction in male PA

patients. This resulted in a decrease of Tc17/Treg ratio after sodium

restriction. In addition, our investigation revealed noticeable sex-

specific changes in the microbiome composition, specifically a

higher prevalence of B. uniformis in female PA patients compared

to both male PA patients and healthy controls. These findings imply

that men might benefit more from low sodium diet, indicated by a

higher reduction in pro-inflammatory Tc17 cells, which goes along

with better BP response as elaborated in our previous publication

on the Salt CONNtrol trial (31). Collectively, our data support the

notion that a lifestyle intervention with sodium restriction is a valid

treatment option in PA patients, even for those on PA-specific

MRA treatment and with already well-controlled BP values. A low

sodium diet modulates the immune cell composition toward a less

inflammatory phenotype, which could positively impact

cardiovascular risk. Moreover, it provides mechanistic insight into

the pathogenesis of hypertension in PA.

We found a proportional increase in predominantly anti-

inflammatory signals depending on sodium restriction, ultimately

going in hand with a successful BP reduction in male patients with

PA. So far, descriptions on the pathophysiology of salt-responsive

hypertension have mainly focused on Th1 and Th17 cells (19, 20, 22,

25). T helper cell subsets Th1 and Th17, as well as Tc, activate the

mineralocorticoid receptor, triggering the production of pro-

inflammatory cytokines (9–14). Fewer publications have however

demonstrated the importance of Tc, although mice lacking these

subsets have been shown to be protected against endothelial

dysfunction, renal sodium and water retention, and vascular

rarefecation; all of which are pathophysiological mechanisms, which

normally result in development of hypertension (43). Recent studies

have also demonstrated a mechanistic interaction between salt and

cytotoxic T cells, supporting our findings. Although these recent studies

focus on a completely different setting - the tumor microenvironment -

they highlight the influence of salt on cytotoxic T cells, showing that

NaCl enhances CD8+ T cell activation and effector functions, thereby

strengthening antitumor responses (44, 45).

It is important to note that the changes in Tc17 counts observed

in our study due to sodium restriction primarily affected the IFN-g-
producing subsets. While Tc17 cells are mainly characterized by IL-

17 production, they exhibit plasticity that enables IFN-g production
under certain conditions. These dual-functional Tc17 cells have

been observed in various contexts, including autoimmune diseases

and infections (46–48). Their ability to produce both IFN-g and

IL-17 enhances their inflammatory profile, highlighting the

significance of the IFN-g-producing Tc17 subset in response to

sodium restriction.
TABLE 2 Clinical and biochemical parameters in part B – 3(patients with
primary aldosteronism before (PA – SR) and after sodium restriction (PA
+ SR)).

Patient
characteristics

PA – SR PA + SR p

Age [years] 48 (10) 48 (10) n.a.

Sex [f/m] 18/13 18/13 n.a.

BMI [kg/m²] 27.7 (8.2) 27.2 (7.9) 0.0008

Diabetes mellitus [n] 2 2 n.a.

SBP [mmHg] 131.0 (11.5) 123.0 (12.5) <0.0001

DBP [mmHg] 86.0 (9.0) 83.0 (7.5) 0.0071

Plasma aldosterone
[pg/ml]

247 (136) 351 (158) 0.0033

Plasma renin [mU/ml] 10.2 (17.5) 23.6 (28.1) <0.0001

ARR 28.1 (52.3) 16.7 (20.9) 0.0028

CRP [mg/dl] 0.1 (0.1) 0.1 (0.1) 0.9238

Fibrinogen [mg/dl] 284.0 (103.0) 330.0 (110.0) 0.0138

Leucocytes [G/l] 5.7 (2.5) 5.8 (1.8) 0.9422

Serum sodium [mmol/l] 139.0 (2.0) 138.0 (4.0) 0.3478

Serum potassium
[mmol/l]

4.4 (0.4) 4.5 (0.6) 0.7829

GFR [ml/min/1.73 m²] 100.9 (15.6) 98.2 (14.1) 0.6253

Serum osmolality
[mosm/kg]

290 (6.0) 289 (6.0) 0.0906

24-h urinary sodium
[mmol/d]

148.1 (51.1) 84.3 (43.8) <0.0001

Calculated salt intake [g/
d] = salt excretion

8.7 (2.9) 5.0 (2.5) <0.0001
Shown are median (IQR) values.
Statistically significant differences with p < 0.05 are indicated by bold letters.
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In development of hypertension, Tregs have been so far

described to play a protective role relating to their anti-

inflammatory properties (49). In our study, Tregs were

upregulated in PA patients compared to healthy normotensive
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controls, though no significant change was observed with sodium

restriction, possibly due to the small sample size.

We hypothesize that the resulting imbalance in Tc17/Treg has

similar detrimental effects on disease progression as previously
FIGURE 3

Changes in immune cell subsets dependent on sodium restriction. Immune cell subsets of part B (n = 31 patients with PA before (PA – SR) and after
(PA + SR) sodium restriction) after 4 hours stimulation with PMA/ionomycin by multicolor flow analysis. (A) Analysis of the percentage of Tc17 cells
of all Tc cells. (B) Sex-specific analysis of Tc17 cells of all Tc cells (males = 13, females = 17). (C) Analysis of Tc17/CD25+Foxp3+ Treg ratio before
and after sodium restriction. (D) Sex-specific analysis of Tc17/Treg ratio (males = 13, females = 17). (E) Analysis of the percentage of CD3-CD56+ NK
cells in percentage of CD3- cells. (F) Analysis of the percentage of CD107a+ NK cells of CD3-CD56+ NK cells in PA patients before and after
intervention. Wilcoxon test was used for statistic analysis with p < 0.05. Presented is the median and IQR.
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described effects of disturbance of Th17/Treg (19–21). Th17/Treg

has previously been shown to be affected by the gut microbiome,

where the ratio of intestinal Bacillota to Bacteriodota (formerly

Firmicutes to Bacteroidetes) is increased, leading to a reduction in

anti-inflammatory short chain fatty acids and an increase in lactate

producing bacterial populations (20, 22–25).

We could show that the abundance of B. uniformis was

increased in PA patients without PA-specific medical treatment

(MRA). In addition, we showed a trend of decrease upon sodium

restriction. Previous publications have shown that Bacteroides

species cause a movement toward an anti-inflammatory

phenotype by induction of Tregs and inhibition of IL-17

production via polysaccharide A (PSA) and also via Toll-like

receptor 2 (TLR2) and TLR5 signaling (50–52). Other gut

bacteria, such as Lactobacillus species might – besides the effect

on Tregs – also explain the effect of sodium restriction on Tc17

cells. While the abundance of Lactobacillus spp. is diminished in

PA patients without PA-specific medical treatment (MRA)

compared to healthy controls, the abundance shows a trend to

increase upon MRA treatment and sodium restriction, indicating

a potential normalization of the intestinal flora. This finding goes
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hand-in-hand with the observation by Wilck et al. that

development of hypertension by means of IL-17 dependent

inflammatory stimuli is dependent upon reduced presence of

intestinal Lactobacillus species (25).

While we did not observe significant changes in alpha diversity

between different treatment modes and healthy control patients in

our study, we could see a trend of increasing alpha diversity and

show that after start of MRA treatment or sodium restriction,

microbial composition was more similar in PA patients compared

to control patients.

We have previously investigated the effects of a moderate

sodium restriction on BP and cardiovascular outcome parameters

in patients with PA treated with mineralocorticoid antagonists (31).

Here, we could show that a moderate reduction of dietary sodium

intake (reduction of urinary sodium of about 60 mmol/d) is

accompanied by a decrease in systolic BP of 9 mmHg and

diastolic BP of 3 mmHg. However, we found sex-specific

differences in response to a low sodium diet with men showing

stronger response compared to women. This finding is paralleled in

our study by a greater reduction in Tc17 cells in males along with

sodium restriction, which could be one relevant factor for the better
FIGURE 4

Alpha diversity and microbial composition in PA patients depending on treatment status. (A, B) Abundance of Bacteroides uniformis was analyzed in
PA patients without PA-specific medical treatment (PA), after at least three months of a stable MRA dose (PA – SR, n = 31) and three months after
additional sodium restriction (PA + SR) and compared to a subgroup of healthy controls (n = 15). (C) Alpha diversity (i.e. Shannon effective numbers)
was analyzed in PA patients without PA-specific medical treatment (PA), after at least three months of MRA treatment on a stable dose (PA – SR) and
three months after additional sodium restriction (PA + SR) and compared to a subgroup of healthy controls (n = 15). (D) Principal coordinates
analysis (PCoA) analysis indicated the difference in overall composition of gut microbial community among the groups using Bray-Curtis dissimilarity.
In 4A and C Kruskal-Wallis test was used for statistic analysis with p < 0.05. P-values in 4B refer to results of Mann-Whitney test.
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BP response. This is further underlined by the fact that the decrease

in Tc17 was associated with the degree of sodium restriction in a

multivariate analysis. The sex-specific differences in microbiota

composition, especially the higher abundance of B. uniformis in

female PA patients compared to male PA patients and also

compared to healthy controls, might explain the limitations of a

low sodium diet on the outcome of blood pressure reduction in the

female patient cohort. Interestingly, this finding is controversial to

previously published data on higher salt sensitivity regarding blood

pressure in the general female population and provokes the idea of

disease-specific alterations that might affect the “normal” sex-

specific phenotype (53).

We conclude that a moderate sodium restriction, in addition to

MRA treatment, can successfully reduce systolic and diastolic BP,

particularly in male patients with PA. One relevant factor might be

modifications of intestinal flora, which diminishes Tc17 formation

and reconstitutes the anti-inflammatory and protective Treg to

IL-17 producing T cell ratio. Besides the observed changes in BP,

also inflammatory processes might affect cardiovascular risk in this

patient cohort. A previously published review and meta-analysis

highlighted the increased cardiovascular risk of medically treated

PA patients compared to those with essential hypertension (54).

This is of relevant interest and importance as Hundemer et al. could

show that patients with PA already undergoing specific MRA

treatment have higher cardiovascular risk, when renin levels are

continuously suppressed compared to PA patients with normalized

renin levels under MRA therapy or undergoing surgery (55). This

suppression of renin levels could be attributed to factors such as

inadequate MR blockade and high dietary sodium intake. Here,

funder proposed that just increasing the MRA dose might not be the

best treatment approach for these patients, as it could lead to issues

like non-compliance and overlook the importance of renin

suppression physiology. Effective sodium restriction, as suggested

by Funder, could help raise renin levels, potentially reducing

cardiovascular risk (56). In our study, we could now demonstrate

that a decrease in dietary sodium intake is associated with a strong

rise in renin levels and a decrease in percentage of Tc17 cells,

potentially improving cardiovascular risk.

It is important to acknowledge the limitations of our study. The

number of patients enrolled is rather small and conclusions are

limited by the single center setting. Since our study did not include a

control cohort with essential hypertension, a comparison between

primary aldosteronism and essential hypertension is not possible.

The patients enrolled in our study were medically well controlled,

which may lead to an underestimation of the actual effect of sodium

restriction on immunophenotype and gut microbiome. Further

studies involving larger patient populations from diverse settings

are warranted to validate our findings and assess the impact of the

renin-aldosterone-angiotensin system on inflammatory processes

in real-world data.

To summarize, our study uncovered significant immunophenotypic

changes upon sodium restriction in PA patients, including a reduction in

pro-inflammatory Tc17 cells leading to a decrease in the Tc17/Treg ratio.

The reduction in Tc17 cells wasmost prominent inmale PA patients and

was paralleled with a higher reduction in BP. Moreover, we observed
Frontiers in Immunology 10
notable changes in the microbiome, specifically a higher abundance of B.

uniformis in female PA patients compared tomales and healthy controls,

indicating potential limiting factors in women that may impede the

effectiveness of sodium restriction. These findings suggest that a lifestyle

intervention with sodium restriction could be a valid treatment option

for PA patients, potentially revealing mechanisms by which sodium

reductionmodulates immune cell composition, leading to blood pressure

reduction and positively impacting cardiovascular risk.
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