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Endoplasmic reticulum stress occurs due to large amounts of misfolded proteins,

hypoxia, nutrient deprivation, and more. The unfolded protein is a complex

intracellular signaling network designed to operate under this stress. Composed

of three individual arms, inositol-requiring enzyme 1, protein kinase RNA-like ER

kinase, and activating transcription factor-6, the unfolded protein response looks

to resolve stress and return to proteostasis. The CD8+ T cell is a critical cell type

for the adaptive immune system. The unfolded protein response has been shown

to have a wide-ranging spectrum of effects on CD8+ T cells. CD8+ T cells

undergo cellular stress during activation and due to environmental insults.

However, the magnitude of the effects this response has on CD8+ T cells is still

understudied. Thus, studying these pathways is important to unraveling the inner

machinations of these powerful cells. In this review, we will highlight the recent

literature in this field, summarize the three pathways of the unfolded protein

response, and discuss their roles in CD8+ T cell biology and functionality.
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1 Introduction

The endoplasmic reticulum (ER) is a complex and robust cellular organelle that

specializes in the synthesis and folding of proteins, the biogenesis of lipids, and calcium

metabolism (1). The ER is composed of two different parts: the rough, sheet-like ER and the

smooth, tubule ER (2). The rough ER is characterized by the large amounts of ribosomes on

the surface of its sheets, while the smooth ER is characterized by the non-appearance of

ribosomes (3). While the smooth ER is known for lipid production and calcium storage, the

rough ER is the primary location of protein synthesis and modification (1, 3). The ER is also

the regulator of the translation of secretory proteins as well, which commonly occurs on the

ER membrane (4, 5), whereafter they translocate into the ER lumen and are properly folded

(6, 7).

Proteostasis, the maintenance of the balance of proteins in a cell, is an integral

component of maintaining the health of the cell (8). Proteostasis is maintained by
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protein chaperones, needed for conformational changes in

developing proteins, and both the ubiquitin-proteasome and

lysosome-autophagy systems, necessary for degrading un- or

misfolded proteins (9). However, an accumulation of misfolded

proteins can occur, leading to ER stress and thus activating the

unfolded protein response (UPR) (10). This can be caused by

several factors, such as hypoxia, nutrient deprivation, reduced

glycosylation, ineffective degradation of proteins, errors in post-

translation modifications, lipid bilayer alterations, and calcium level

shifts (11, 12).

The UPR was initially hypothesized in a work published by

Kozutsumi et al. in 1988, in which they deduced the presence of two

major chaperone proteins induced by ER stress: GRP78 and GRP94

(13). It was eventually revealed that when unfolded proteins reach a

certain concentration in the lumen of the ER, aggregation is

considered significant, leading to imbalance and activation of the

UPR (14, 15). To detect shifts in proteostasis, the UPR uses three

unique sensors: inositol-requiring protein 1 (IRE1), protein kinase

RNA-like ER kinase (PERK), and activating transcription factor-6

(ATF6). The UPR has three general methods of clearance using

these sensors and their downstream functions: depletion,

upregulation, and apoptosis (16) (Figure 1).

CD8+ T cells are one of the most extensively studied immune

cell subsets, often being compared to soldiers, as they are the body’s

targeted weapon against insults (17). These cells are primed through

three distinct mechanisms: 1) T cell receptor being presented with

an antigen by major histocompatibility complex-I (MHC-I) from

an antigen-presenting cell; 2) co-stimulation with various ligands;

and 3) cytokines supporting the activation and differentiation (18).

Once primed, they traffic from the lymph nodes to the site of insult,
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wherein they gain their effector program upon re-engagement of the

TCR-MHC complex and co-stimulation molecules (19, 20).

However, the role of the UPR in CD8+ T cells has been shown to

have a wide-ranging spectrum of effects on these processes. In this

review, we will further explore the functions of these pathways and

their roles in CD8+ T cell biology and functionality.
2 The IRE1 pathways

2.1 Overview of the IRE1/XBP1 pathway

IRE1 was discovered as a transmembrane kinase in

Saccharomyces cerevisiae in 1992 and speculated to play a role in

signal transduction (21). It wasn’t until one year later that its role

was deduced when it was shown that IRE1 is able to transduce

signals from the ER to the nucleus (22, 23). Then, IRE1 was

characterized as a serine-threonine protein kinase initiated by

unfolded protein accumulation, where it then oligomerizes and is

activated by trans-autophosphorylation (24, 25). Also, IRE1 has

endoribonuclease activity that cleaves the HAC1 mRNA into a

transcription factor (TF) that translocates to the nucleus and

controls the UPR. Previously, this was all shown in yeast, but a

breakthrough came when a yeast IRE1 homolog was found in

mammalian cells and had similar trans-autophosphorylation and

endoribonuclease activity. It also splices yeast HAC1, revealing a

homologous protein may exist in mammalian cells (26). The same

group found that the IRE1 endoribonuclease activity is

autoregulatory to its own mRNA and theorized the presence of

two human isoforms of IRE1 (27). These two forms of human IRE1
FIGURE 1

The unfolded protein response. The three arms of the UPR are IRE1a, PERK, and ATF6. Under homeostatic, non-stressed conditions, these three
arms are held in an inactivated state by BiP. Once misfolded proteins accumulate in the ER lumen, BiP binds to those and releases them from the
three arms, leading to their subsequent activation. Once free, IRE1a begins to oligomerize and auto-phosphorylate, leading to the start of its
endoribonuclease activity. Two primary outcomes associated with IRE1a endoribonuclease activity: splicing of XBP1 mRNA into the XBP1s
transcription factor and regulated RIDD. XBP1s translocates to the nucleus, where it upregulates genes related to protein folding, chaperone
molecules, and ER-associated degradation elements. IRE1a also associates with a TNF-receptor associated factor 2 (TRAF2) – apoptosis signal-
regulating kinase 1 (ASK1) complex, which results in the phosphorylation of c-Jun N-terminal kinase (JNK) and downstream apoptosis. When PERK is
unbound, it activates in a similar oligomerization and auto-phosphorylation manner as IRE1. Once activated, it acts primarily through the
phosphorylation of eIF2a. Then, eIF2a can lead to both protein translation inhibition and the favoring of the translation of ATF4. ATF4 then
translocates to the nucleus and can upregulate CHOP, oxidative stress response elements, and amino acid metabolism elements. Once unbound
from BiP, ATF6 will travel to the Golgi apparatus, where it is cleaved by site-1 and site-2 proteases. Once cleaved into a 50-kDa protein, p50ATF6
translocates to the nucleus, which can upregulate XBP1, chaperone molecules, and ER-associated degradation elements. (Created via BioRender).
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were identified and characterized as IRE1a and IRE1b, each with

distinct functions. IRE1a was shown to be ER stress-related, while

IRE1b was found to cleave 28s ribosomal RNA, causing

translational repression (28). The disparities in function were

later attributed to structural differences in the RNase domain of

the isoforms (29).

The primary splicing target of IRE1a in mammals was later

discovered to be X-box binding protein 1 (XBP1) (30, 31). XBP1

was first identified in 1996 as a basic region leucine zipper (bZIP)

TF (32) that acts on several transcriptional elements, later identified

as the unfolded protein response element (UPRE) and the

endoplasmic reticulum stress element (ERSE) I and II (31, 33).

XBP1 binds at CCACG sequences in the ERSE regions and the

palindrome sequence (CGTGC) in the UPRE regions (30, 32).

XBP1 was shown to be two separate protein products named

based on their form: an unstable, unspliced XBP1u or a stable,

spliced XBP1s (34). IRE1a excises a 26 nucleotide intron from the

XBP1 mRNA that is then re-ligated and results in a frameshift

mutation, extending the open reading frame and becoming a stable

376 amino acid protein (34, 35). The RNA ligase RtcB is responsible

for ligating the cleaved XBP1 mRNA together after IRE1a excision

(36, 37). RtcB is regulated via phosphorylation by ABL1 and PTP1B

(38, 39). XBP1s has several functions, such as upregulating the ER

degradation-enhancing a-mannosidase-like protein (EDEM),

which is critical for ER-associated degradation (ERAD), as well as

several other proteins involved in relieving ER stress, such as

chaperones (40, 41). It also plays an important role in glucose

and lipid metabolism, inflammatory pathways, collagen secretion,

pro-insulin synthesis in b-cells, and several other processes (41–46).

2.1.1 Activation of yeast IRE1
The method of activation of IRE1 has undergone much debate,

but three models have been proposed: a direct or indirect model and

one in which it’s a synergistic combination. In 2000, it was shown

that a protein called Kar2p (also known as GRP78 or BiP) is bound

to the ER lumen region of IRE1, interacts and binds with unfolded

proteins, and is released, causing the sequence of activating events

for IRE1 in yeast (47), which led to the initial hypothesis that the

UPR is via an indirect model in which BiP binding to unfolded

proteins leads to its disassociation with the monomeric IRE1, thus

activating the downstream IRE1 pathways. There was a challenge

when Kimata et al. showed that BiP binding to IRE1 is not required

to prevent constitutive activation of IRE1, demonstrating that BiP

may play a role as an adjustor of the UPR (48). Crystallography

analysis of IRE1 revealed the structure of the luminal domain (LD)

as containing a deep groove similar to MHC, suggesting that

activation may be dependent on that domain being occupied by

unfolded proteins, leading to a proposed direct activation model

(49). It was later hypothesized that BiP disassociation leads to

monomeric IRE1 binding to unfolded proteins via the LD, thus

inducing a conformational change, oligomerization, and activation.

Once stress is resolved, BiP can rebind to IRE1, leading to

deactivation via monomerization (50). Furthermore, studies

showed that the LD of yeast IRE1 directly bound to unfolded
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proteins caused oligomerization and activation of the UPR

functions (51).

2.1.2 Activation of mammalian IRE1
BiP was discovered at a similar time in mammalian cells as in

yeast and hypothesized to directly repress IRE1 functions (52). The

indirect model was proposed in which unfolded proteins sequester

BiP away from IRE1, which allows the hydrophobic regions to

dimerize and trans-autophosphorylation to occur (53). The

activation of IRE1 was later determined to be reliant on at least

four IRE1 monomers forming an oligomer (54), which was

confirmed later when an IRE1a mutant was generated in

mammalian cells with a low-affinity BiP binding site, showing

that in the absence of BiP binding, IRE1a is activated under

homeostatic conditions (55). Although it was proposed that BiP is

tapered from the LD of IRE1 during ER stress (16), there was still

the question of the sensitivity of the UPR. Importantly, even under

low amounts of ER stress, the pathway can still be activated (49).

One study introduced a new aspect of BiP that can explain this

phenomenon. There is a non-canonical interaction between IRE1

LD and BiP’s ATPase domain that retains it in the monomeric state

that is detached once unfolded protein binds to the substrate

binding domain of BiP, indicating an allosteric regulatory role

(56). This was further explored by the discovery of ER-localized

J-protein 4 (ERdj4) and its role in drawing BiP towards dimerized

IRE1 (57). BiP has a low affinity for the LD of IRE1. Thus, the

complex is conserved through an ATP-mediated process that

involves a release via nucleotide exchange, such as with a protein

like GRP170, and then reunification with the help of a J-protein like

ERdj4 (57, 58). ERdj4 also plays an active role in the suppression of

IRE1. ERdj4 binds to IRE1 dimers via the C-terminal targeting

domain and recruits BiP to break apart the dimers via ATP

hydrolysis with its J domain, in which ERdj4 is then released

(57). Karagöz et al. showed that mammalian IRE1 can be

activated through unfolded proteins binding to the LD of IRE1

and hypothesize that BiP functions as a tuning mechanism.

Importantly, they also show that BiP and IRE1 LD prefer

different subsets of peptides. BiP prefers serine and threonine

residues, and IRE1 LD prefers prolines and histidines. The group

hypothesizes that unfolded protein binding in the LD leads to

rearrangements that allow stabilization of the oligomeric form of

IRE1, then allows trans-autophosphorylation and the activation of

downstream functions (59). Work done in this field is still ongoing,

and a clear consensus has not been reached yet. Considering the

data, the true model seems to lie in the synergized combination. BiP

appears to disassociate with IRE1 once unfolded proteins interact

with it, which induces a conformational change in the LD of IRE1

that enables unfolded protein binding. This allows for the domains

of IRE1 to interact and oligomerize, trans-autophosphorylate, and

thus become active. When ER stress is resolved, IRE1 begins to

disassociate from its oligomeric form, and ERdj4 binds to it, which

then recruits BiP and leads to an ATP hydrolysis reaction that binds

BiP to the LD of IRE1 and releases ERdj4, causing IRE1 to become

monomeric and inactivated.
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2.1.3 Alternative activation pathways
The phosphorylation of IRE1a is also vital, with three regions

needing to be phosphorylated: the activation loop, the linker region,

and the RNase domain (60). The activation loop phosphorylation is

necessary for the enhancement of the splicing of XBP1 (60) and the

locking of IRE1a into an active state for oligomerization (61).

Alternatively, several non-canonical methods can activate IRE1. For

example, membrane aberrancy (62) and changes in lipid

composition (63) activate the IRE1 pathway. Also, IRE1 is

sensitive to the thickness and the amount of lipid packing in the

ER membrane through an amphipathic helix (64, 65). HSP47, a

collagen chaperone, was discovered to bind to the IRE1a LD and

reduce BiP binding, engaging the UPR (66), which provides a link to

the UPR and collagen synthesis and trafficking, as TANGO1, a

protein that assists in the secretion of collagen, is upregulated by

XBP1s (44).
2.2 Non-canonical IRE1 functions

IRE1 has various physiological functions that primarily center

around regulating cell death and re-establishing homeostasis after ER

stress. One of the first functions described was the ability of IRE1 to

regulate caspase-12 during ER stress. If ER stress reaches a critical

level, an IRE1a-TRAF2-ASK1 complex can induce apoptosis through

the JNK signaling pathway that causes caspase activation (67–69).

Pro-apoptotic proteins Bax and Bak also directly interact with IRE1,

wherein Bax and Bak appear to be necessary for the lessening of ER

stress in pancreatic islet cells, and in a double knockout of these two

proteins, IRE1 and XBP1s were both significantly upregulated (70).

Sustained expression of IRE1a can also destabilize miRNA-17, which

leads to increased thioredoxin-interacting protein (TXNIP) levels.

When this occurs, the NLRP3 inflammasome is activated, leading to

downstream cleavage of caspase-1, IL-1b secretion, and cell death (71,
72). An important discovery was made in Drosophila when it was

discovered that, besides cleaving XBP1, the IRE1a endoribonuclease

domain is also vital for cleaving and causing degradation of mRNAs

for secretory proteins in a process called regulated IRE1-dependent

decay (RIDD) (73). This process was later shown to be conserved in

mammalian studies (74), with one study specifically showing that

RIDD appears to be activated during more severe ER stress, whereas

XBP1 splicing occurs during low-level stress (75). Although the

consensus sequence was CUGCAG and a stem-loop structure for

canonical cleavage targets like XBP1 and CD59 (76), it was unknown

what this sequence was for RIDD targets. In 2021, Le Thomas et al.

described a promiscuous form of RIDD, titled RIDDLE or RIDD

lacking endomotif. RIDD requires dimerization of IRE1a and is

shown by this group to recognize and cleave the CNGCAGN

sequence and stem-loop structure, whereas RIDDLE requires a

higher-order phospho-oligomerization of IRE1a and is

promiscuous. Specifically, it can degrade non-optimal or non-

existent stem-loop endomotifs and consensus RIDD substrates

(77). The ability of IRE1 to perform RIDD is a direct effector

function for it to relieve ER stress by lowering the amount of

transcripts present. RIDD also has other unique roles, such as
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cleaving a group of miRNAs that repress the pro-apoptotic protein

caspase-2 (78) and cleaving miRNAs that suppress angiopoietin,

leading to better wound healing in a diabetic model (79). IRE1a is

vital in the placenta; in a knockout model, mice died at the embryonic

stage for reasons that appear to be linked to VEGF-A (80) and b-cell
proinsulin folding (81). Related to the topic of b-cell proinsulin, it has
also been reported that IRE1a splicing of XBP1mRNA is required for

accelerating the synthesis of proinsulin in response to elevated blood

glucose levels (45). Acosta-Alvear later showed that IRE1 interacts

with a signal recognition particle on the surface of ribosomes, arriving

at the ER translocon in two unique ways: preemptive mode and

surveillance mode. In the preemptive mode, IRE1 is able to degrade

the mRNA before it enters the ER, and in the surveillance mode, it

can degrade proteins that have folding issues as it is translated and

pushed through the translocon (82). Targeting this pathway

therapeutically has led to positive results in diseases such as

cancers, renal failure, and diabetes (Table 1).
2.3 IRE1/XBP1s pathway in CD8+ T cells

Initially, using an IRE1-GFP reporter model, a previous study

showed that IRE1 was upregulated during the double-positive

thymic development stage yet only remained upregulated in CD8

single-positive T cells in both the thymus and spleen (126).

However, the role of IRE1 in T cell development is still an area of

active research, as the loss of both IRE1 and XBP1 in T cells doesn’t

affect their development or frequency (127, 128). IRE1 may play a

role in regulating TCR arrangement, although more research is

needed in this area. Interestingly, one group showed that IL-2 can

induce XBP1u transcripts, while TCR ligation initiates IRE1a
activation to cleave XBP1u into XBP1s (129). In mice infected

with ovalbumin-expressing Listeria monocytogenes (LM-OVA),

both ERN1 (IRE1) and ATF6 mRNA were shown to increase 12

hours post-infection via a transcriptome analysis (130). It was later

revealed that TCR ligation activates protein kinase C, which leads to

the induction of the UPR, specifically BiP levels increasing.

Interestingly, it was also shown that the phorbol 12-myristate 13-

acetate (PMA) and ionomycin, common CD8+ T cell activating

compounds in vitro, activate the UPR also due to protein kinase C

activation (131). This indicates a regulatory system between calcium

signaling, T cell activation, and the UPR that further research is

required to understand fully. Similarly, store-operated calcium

entry (SOCE) is a critical step for T cell activation (132) and is

promoted via IRE1 and STIM1 interactions to increase ER and

plasma membrane contact sites (133).

In both LM-OVA and LCMV models, XBP1s supports CD8+ T

cell differentiation into end-stage effector cells via enhanced KLRG1

expression, although it is dispensable for the differentiation state

(129). IRE1a inhibition in CD8+ T cells was also shown to result in

immunosuppression due to lower effector functionality and

memory commitment, thus the rejection of the transplant was

lessened (134). While studying hereditary sensory and autonomic

neuropathy type I (HSAN-I), one group found that serine

palmitoyltransferase long chain base subunit 2 (SPTLC2)
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dysfunction results in increased mTORC1 activation and ER stress,

specifically XBP1s and CHOP upregulation, thus resulting in CD8+

T cell apoptosis (135). Human CD8+ T cells isolated from ovarian

cancer ascites also showed increased XBP1s expression compared to

healthy donor cells, and the knockout of XBP1s in CD8+ T cells in a

murine model showed higher perforin and IFN-g production (136).

Another example of the role of XBP1s in CD8+ T cells was revealed

when a research group showed that increased cholesterol in the

TME disrupts lipid metabolism, leading to ER stress, higher XBP1s

and immune checkpoint expression, and fewer effector molecules

(137). Recently, a group published that in a comparison between

healthy donor and multiple myeloma CD8+ T cells, there is

increased XBP1s that they show bind to and decrease SLC38A2, a

gene encoding for the glutamine transporter SNAT2 (138). Within

24 hours of antigen activation in a murine model of LCMV in vitro

(139), it was found that protein synthesis tripled in CD8+ T cells,

indicating that there may be a need for a protein regulation system

such as the UPR. An incomplete image of how IRE1 and XBP1s

regulate CD8+ T cells is still present, and further research will need

to focus on the mechanisms of how these molecules regulate CD8+

T cells. Currently, it appears that this pathway regulates CD8+ T

cells via multiple mechanisms: managing protein burden, calcium

signaling and activation, metabolism, and exhaustion. How, or if,

these pathways intersect is unknown, although it is plausible that

the activation of CD8+ T cells upregulates the UPR via calcium

signaling, which results in the downregulation of metabolite

transporters, like SNAT2, and thus T cell exhaustion (Figure 2A).
3 The PERK pathway

3.1 Overview of the PERK pathway

PERK was identified as a type I transmembrane-ER-resident

protein that is similar to IRE1. It contains an ER-stress-sensing

luminal domain and a cytoplasmic region that is structurally similar

to the eukaryotic initiation factor 2 (eIF2a) kinases (140). Once

activated by ER stress, PERK autophosphorylates and begins its

protein kinase activity by phosphorylating eIF2a on serine 51,

which inhibits the translation of select mRNA (139, 140).

Phosphorylation of Thr980 of PERK stabilizes the activation loop

and the C-terminal helix aG, which was shown to be important for

preparing it for binding to eIF2a (141, 142). The conformational

change of PERK was also shown to be vital for increasing the

binding affinity of the kinase loop to eIF2a (143). After

phosphorylation, eIF2a was discovered to increase the translation

of activating transcription factor 4 (ATF4), which induces the

protein C/EBP-homologous protein (CHOP) (144). ATF4 plays

an important role in promoting resistance to oxidative stress,

mediating amino acid metabolism, and regulating angiogenesis

(144–146). The activation of PERK was later discovered to be

linked to BiP disassociating from it, in which, after disassociation,

PERK will oligomerize, trans-autophosphorylate, and then activate

similarly to IRE1 (52). It was also hypothesized that PERK can bind

unfolded proteins in its luminal domain through an MHC-like
TABLE 1 Potential therapeutic compounds for the treatment of UPR-
related disorders.

Compound Mechanism
of Action

Diseases
Tested

Sources

4µ8C IRE1a
RNase Inhibitor

Colon Cancer (83, 84)

AMG18 (KIRA8) IRE1a
RNase Inhibitor

MM, Non-
Obese Diabetes

(85–87)

B-I09 IRE1a
RNase Inhibitor

CLL (88)

Bortezomib Proteasome
Inhibitor

(Activates UPR)

MM (89)

CAY10566 Increases Expression
of BiP,

CHOP, XBP1s

GBM (90, 91)

Compound 147 ATF6 Activation Ischemia/
Reperfusion Injury

(92)

Dibenzoylmethane Reduces ATF4 and
CHOP Levels,
Increases BiP

Dementia (93, 94)

GSK2606414 PERK Inhibitor Neuroblastoma,
Neurodegeneration

(95–97)

GSK2656157 PERK Inhibitor Pancreatic
Tumor, MM

(98, 99)

Guanabenz Inhibits
eIF2a

Dephosphorylation

Hypertension, ALS (100–102)

HA15 BiP Inhibitor Lung Cancer, MM (103–105)

IKM5 BiP Inhibitor Breast Cancer (106)

ISRIB Blocks Effects of
eIF2a

Phosphorylation

ALS, Prion Diseases (107–110)

KIRA6 IRE1a
RNase Inhibitor

Diabetes,
Retinal

Degeneration

(111)

KP1339 BiP Inhibitor Colon Cancer (112, 113)

MKC3946 IRE1a
RNase Inhibitor

MM (114)

MKC8866 IRE1a
RNase Inhibitor

Breast
Cancer, GBM

(115, 116)

OSU-03012 BiP Inhibitor Osteosarcoma (117, 118)

Salubrinal Inhibitor of
eIF2a

Dephosphorylation

Breast Cancer,
Iron-Induced

Insulin Resistance

(119, 120)

Sephin1 Inhibitor of
eIF2a

Dephosphorylation

MS (121)

STF-083010 IRE1a
RNase Inhibitor

ARF, MM,
Breast Cancer

(122–124)

Trazodone Reduces ATF4 and
CHOP Levels

Dementia,
Prion Diseases

(94, 125)
ALS, Amyotrophic Lateral Sclerosis; ARF, Acute Renal Failure; CLL, Chronic Lymphocytic
Leukemia; GBM, Glioblastoma; MM, Multiple Myeloma; MS, Multiple Sclerosis.
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groove, which will cause the molecules to line up and form dimers

and oligomers (52, 147). PERK activation can result in the

disassociation of Nrf2/Keap1 complexes, which leads to Nrf2

translocating to the nucleus and increasing cell survival pathways

in an eIF2a phosphorylation-independent manner (148).
3.2 PERK functions

In an early experiment, PERK was knocked out in murine cells,

and it was shown that there was a decrease in the inhibition of protein

synthesis, phosphorylation of eIF2a, and cell survival when exposed

to ER-stress-inducing agents (149). It has also been shown that cells

can be caught in G1 arrest in the cell cycle when PERK is activated

due to eIF2a phosphorylation and the loss of cyclin D1 (150). PERK

plays an important role in ER-mitochondria contact sites and

mitochondrial-associated ER membranes (MAMs) by transducing

crosstalk that can induce reactive oxygen species cell death and

regulate Ca2+ stores (151). Then, Muñoz et al. discovered that the

key GTPase in the MAM site is mitofusin 2 (Mfn2), which regulates

the transfer of Ca2+ between the ER and mitochondria. Mfn2 is a

regulator of PERK that can keep PERK inactive under homeostatic

conditions and can also detect cellular stress to coordinate the

activation of PERK. They also showed that PERK was able to

control the morphology and function of mitochondria, as well as

oxidative stress (152). Although it was previously believed that Ca2+

perturbations can activate PERK (16, 151), the link was not fully clear

until van Vliet et al. discovered that Filamin A was the protein that

interacts with dimerized PERK once Ca2+ levels rise in the cytosol to

drive actin remodeling. These events lead to an increase in stromal

interaction molecule 1 (STIM1), which increases the contact sites

between the ER and plasma membrane to refill the ER Ca2+ stock

(153). Similar to IRE1, PERK has also been implicated in playing an
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important role in b-cell pathways; when PERK is knocked out in

mice, it leads to Wolcott-Rallison syndrome, a severe infantile

diabetes mellitus (154). By repressing the levels of the NF-kB
inhibitor IkBa, eIF2a plays an important role in regulating the

wide-ranging effects of NF-kB in the cells, although a physiological

link has not yet been shown (155). This phenomenon has been shown

to occur through ultraviolet light exposure as well (156). eIF2a
phosphorylation is also necessary for b-cell insulin trafficking and

upregulation of various transcription factors; without it, it can lead to

b-cell dysfunction and diabetes mellitus (157, 158). Additionally, the

PERK pathway has been implicated in the field of neurology,

including improving cognitive memory (107) and controlling

cortical neurogenesis (159).
3.3 PERK pathway regulatory mechanisms

While the binding of PERK with BiP is the initial regulatory

mechanism in the pathway, there are several others as well. One of

the first mechanisms discovered that regulated the PERK pathway

was uncovered by Novoa et al. and revolved around a protein called

growth arrest and DNA damage-inducible 34 (GADD34)

associating with protein phosphatase 1 (PP1c), which in turn

reduced the levels of eIF2a phosphorylation. This results in

lowered amounts of ATF4 and CHOP, lessening the effects of the

PERK pathway (160). The constitutive repressor of eIF2a
phosphorylation (CReP) was later discovered and was also shown

to associate with PP1c, leading to dephosphorylated eIF2a and a

lessened stress response (161). One group discovered that, despite

their low amino acid similarity, GADD34 and CReP have a

common function: both are vital for regulating eIF2a
phosphorylation and the loss of both results in embryonic

lethality (162). P58IPK is upregulated by ER stress and can inhibit
B CA

FIGURE 2

Overview of the unfolded protein response in CD8+ T cells. (A) T cell receptors and MHC combined with interleukin-2 result in the upregulation of
XBP1s. Cholesterol, such as from the tumor microenvironment, can also lead to upregulating XBP1s. Once upregulated, XBP1s can increase the
expression of KLRG1, PD1, and granzyme B and decrease the expression of IFNg, perforin, and SLC38A2, a gene encoding for a glutamine
transporter. (B) After activating, ATF4 translocates to the nucleus and upregulates CHOP, resulting in decreased Tbet and IFNg. It can also result in
apoptosis. Downstream, CHOP increases endoplasmic reticulum oxidoreductase 1a (ERO1a), leading to an accumulation of mitochondrial reactive
oxygen species (ROS). (C) After the 50-kDa portion of activating transcription factor 6 (p50ATF6) translocates to the nucleus, it has hypothesized
effects on enforcing tissue-resident memory cell formation and downregulating effector cell formation. It has also been shown to bind to and
upregulate granzyme B and B-cell lymphoma 2 (BCL-2). (Created via BioRender).
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PERK signaling and phosphorylation, which will reduce the

activation of the pathway, resulting in a negative feedback loop

(163, 164). Protein disulfide isomerase A6 (PDIA6) attenuates the

response of the UPR by inhibiting the luminal domain of both IRE1

and PERK (165). An ER-localized transmembrane protein called

transducin beta-like 2 (TBL2) was discovered to associate with

activated PERK and to positively regulate the downstream post-

transcriptional processing of ATF4 (166). Related to the

aforementioned role of PERK in calcium homeostasis, calcineurin

(CN), a Ca2+ and calmodulin-dependent phosphatase, binds to

PERK and can increase autophosphorylation and thus the activity

of the UPR, resulting in CN playing the role of a positive regulator

of ER stress (167). Rheb, a protein involved in the mTORC1 protein

synthesis pathway, has also been shown to interact with PERK, thus

increasing the efficiency of PERK phosphorylation onto eIF2a
(168). Interestingly, nitric oxide was discovered to affect PERK via

S-nitrosylation by Nakato et al. S-nitrosylation of PERK results in

higher phosphorylation of eIF2a, thus increasing the pro-apoptotic
pathways (169).

CHOP, the prominent effector protein expressed by the PERK

pathway, was first discovered by a group looking for DNA-damage-

inducible genes. Instead, they found only one that was upregulated

during both heat shock stress and DNA damage as well as growth-

attenuating conditions: growth arrest and DNA damage-inducible

153 (GADD-153) (170, 171). Previously only shown in hamster

cells, the homologous protein was later identified in murine cells as

C/EBP-homologous protein 10 (CHOP-10), a protein that forms

heterodimers with C/EBP-like proteins that inhibit their binding to

their respective DNA enhancer elements (172). It was then shown

that this heterodimer complex can also be phosphorylated, as well

as activate genes known as downstream of CHOP (DOCs) (173).

The first link to the UPR with CHOP was uncovered when, after

cells were exposed to stress-causing conditions, CHOP was

upregulated quickly yet was attenuated by overexpression of BiP

(174). ATF4 was then discovered as the necessary TF that

upregulates CHOP during ER stress, linking the PERK pathway

and CHOP (175). Interestingly, in a positive feedback loop, CHOP

is also able to interact with ATF4, which leads to increased protein

synthesis as well as oxidative stress and cell death (176). The

primary role of CHOP, apoptosis (177), was originally shown to

be due to CHOP decreasing the levels of B-cell lymphoma 2 (BCL-

2), causing cells to die (178). This was later shown to be unlikely;

rather, the BCL-2 family member protein called Bim is the

increased pro-apoptotic protein due to transcriptional induction

from CHOP (179). Death receptor 5 (DR5), a protein involved in

caspase 8-mediated apoptosis, was discovered to be upregulated by

CHOP during ER stress by Lu et al. In an interesting interplay

between UPR pathways, IRE1 cleaves the DR5 mRNA, leading to no

apoptosis, but if ER stress continues, IRE1 levels begin to wane

while PERK and CHOP remain consistent, leading to enhanced

DR5 expression and apoptosis (180). Marciniak et al. discovered

that CHOP activates GADD34, resulting in a negative feedback

loop for the PERK pathway. They were also able to show that CHOP

can directly activate endoplasmic reticulum oxidoreductase 1a
(ERO1a), leading to oxidizing conditions in the ER and thus
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apoptosis (181). Similar to PERK, CHOP is vital to controlling b-
cell failure in diabetes; when knocked out in a murine model, the

mice had higher glycemic control and lower oxidative damage

(182). Inhibitors of the PERK pathway have been used for

diseases such as neuroblastomas, multiple myeloma, and multiple

sclerosis (Table 1).
3.4 PERK pathway in CD8+ T cells

CHOP was shown to be induced when GTPase of the

immunity-associated nucleotide-binding protein 5 (Gimap5)

was lost, resulting in apoptosis of rat CD8+ T cells (183). Cao

et al. discovered that CHOP was upregulated in CD8+ T cells from

tumor-bearing mice, which resulted in negative regulation of Tbet.

Deletion of CHOP from CD8+ T cells significantly reduces tumor

burden via increased IFN-g and Tbet expression (184). Another

study by Hurst et al. zoomed out from CHOP, instead using both a

PERK knockout and a PERK inhibitor to show that tumor burden,

mitochondrial exhaustion, and reactive oxygen species are all

decreased. ERO1a, a protein upregulated by CHOP and

involved in protein folding through oxidation reactions, was

shown to be a large contributor to their phenotype via the

accumulation of reactive oxygen species and subsequent damage

to the mitochondria. They also used combination therapy with

anti-PD1 and the PERK inhibitor, showing significantly increased

tumor clearance and survival (185). KDEL receptor 1 (KDELR1)

was identified as an associate of protein phosphatase 1 (PP1).

Thus, without KDELR1, PP1 does not perform its phosphatase

activity on eIF2a, resulting in increased CHOP in CD8+ T cells

and apoptosis (186). Solanki et al. showed that ribosomal protein

L22 (RPL22) resulted in significant ER stress if lost, leading to the

induction of the arresting protein p53. In rescue experiments, they

found that the knockdown of PERK specifically reduces p53

induction and rescues the T cell, thus showing a link between

the cell cycle and the UPR (187). Cytoplasmic polyadenylation

element-binding protein 4 (CPEB4) regulates the UPR in CD8+ T

cells. When CPEB4 is deleted, there is weaker anti-tumor

immunity and significantly increased CHOP expression (188).

Stimulators of IFN genes (STING) regulate ER stress and T cell

survival primarily through calcium homeostasis (189) and CHOP

(190). While the knowledge of how the PERK pathway regulates

CD8+ T cells is still incomplete, the data indicates that PERK

upregulation, and subsequent CHOP upregulation, are both

negative regulators of T cell immunity via oxidative stress and

the downregulation of effector transcription factors and

cytokines (Figure 2B).
4 The ATF6 pathway

4.1 Overview of the ATF6 pathway

ATF6 was initially discovered in 1998 as a basic leucine zipper

(bZIP) TF that binds ER stress response elements (ERSE) to resolve
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ER stress (191). ATF6 binds to the consensus CCAAT-N9-CCACG

sequence, specifically binding to the CCACG sequence when the

CCAAT sequence is bound by the NF-Y TF upstream (192). The TF

YY-1 (193) and TBP (194) were also shown to be factors that can

increase the upregulation of ERSE transcription via interactions

with ATF6. p90ATF6 exists as a transmembrane protein in the ER,

but it is proteolyzed during ER stress, leading to activated p50ATF6

that is translocated to the nucleus to upregulate the ERSE, such as

BiP (194, 195). While the activation mechanism was unknown for

some time, it was discovered that BiP plays an inhibitory role,

wherein it binds to Golgi localization sites on ATF6 and unbinds

during ER stress, allowing it to translocate (196). Shortly after the

initial discovery, ATF6’s cleavage was shown to be mediated by site

1 and site 2 proteases (S1P and S2P) (197). The Golgi apparatus was

discovered to be the site of this cleavage, with the LZIP protein

being an important player in translocating ATF6 after recognizing

ER stress via the luminal domain, where it is then cleaved and

shuttled to the nucleus (198). The mechanism of translocation from

ER to the Golgi was later shown to be mediated by COPII vesicles

once ATF6 is unbound from BiP (199). ATF6, similar to IRE1, was

also shown to exist in two distinct forms: ATF6a and ATF6b (200).

Although it was initially shown that knocking out both forms was

not vital to cell survival (41), it was disproven in a murine model

when knockout of the two isoforms was shown to be embryonic

lethal. The same study also showed that ATF6a is the isoform for

the induction of ERSE and upregulating proteins such as ER

chaperones. It can also heterodimerize with XBP1s to upregulate

ERAD components (201).

Temporally, ATF6 was shown to be activated quickly in

response to ER stress, while the IRE1 and PERK pathways appear

to be slightly delayed (40). Although not required (34), ATF6

upregulates XBP1 mRNA, leading to higher activity of IRE1a and

its pathway (30). XBP1s and ATF6 have very similar effector

functions, including upregulating genes involved in correcting

folding, trafficking, and degradation of misfolded proteins (202).

Also similar to XBP1s, when a BiP inhibitor called subtilase

cytotoxin was used, NFkB activation was reduced, showing the

interplay between the UPR and NFkB disorders (203). They share a

common function in upregulating ER expansion, but ATF6 does it

independently through upregulating phosphatidylcholine and

phospholipid synthesis (204). When ATF6a KO cells are cultured

in stress conditions, they similarly handle stress as WT cells, but

they do not return to equilibrium as quickly, nor do they survive

chronic stress, instead showing increased CHOP, apoptosis, and

lowered ER chaperones (205). ATF6 has been shown to bind to

other proteins, such as calnexin and protein disulfide isomerases,

allowing for increases in protein folding and ER chaperone

functionality (206, 207). When only the absence of ATF6a, once
challenged with tunicamycin, mice began to show signs of liver

dysfunction and steatosis, showing the importance of ATF6a in

lipid metabolism (208). Hepatic gluconeogenesis was also found to

be related to ATF6 via the negative regulation of CREB-regulated

transcription coactivation 2 (CRTC2), an important regulator of the

aforementioned pathway (209). Another group also showed that a
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single knockout of ATF6a can impair spermatogenesis via the

TSSK4 gene in mice (210).

ATF6 has relations to Wolfram syndrome and cancer. Mutations

in WFS1 lead to the protein form transporting ATF6a to

proteasomes for degradation, thus causing an aberrant UPR

pathway in b cells (211). In regards to cancer, ATF6 was shown to

promote proliferation and migration through MAPK signaling in

cervical cancer (212). In colon cancer cells, ATF6 was found to

activate mTOR, leading to sustained HSP90 expression and the

prevention of apoptosis (213). Similarly, in colorectal cancer,

GREM1, a protein involved in the epithelial-mesenchymal

transition, was discovered to upregulate ATF6, resulting in

metastasis promotion, linking this protein to the mTOR pathway

(214). While therapeutically targeting ATF6 is not currently a large

field, success has been seen in ischemia-reperfusion injuries (Table 1).
4.2 Alternative activation pathways of ATF6

ATF6 also has a non-canonical method of activation. During

times of ER Ca2+ depletion, p90ATF6 can become partially

glycosylated, ATF6(f), which reduces its binding with calreticulin,

leading to increased export to the Golgi and under-glycosylated ATF6

becoming a sensing mechanism for ER stress (215). Sphingolipids,

such as dihydrosphingosine and dihydroceramide, can also activate

ATF6 in a non-canonical way, although they result in normal effector

functions of ATF6 (216). In its inactive form in unstressed cells, ATF6

was shown to exist as monomers, dimers, and oligomers via disulfide

bridges between the cysteine regions in the luminal domain, with only

the monomeric version reaching the Golgi during stress (217).

ERp18, an ER oxidoreductase, was shown to be a regulator of

ATF6 release from the ER by associating with it and ensuring the

monomeric form is released to the Golgi (218). To return to

homeostasis, ATF6 can be negatively regulated by NUCB1, a

Golgi-localized protein that is upregulated in response to ER stress

(219). ATF4 has also been shown to have a regulatory role on ATF6;

it can upregulate ATF6, as well as genes vital for the COPII vesicles,

and when knocked out, it lessens ATF6 transport (220).
4.3 ATF6 pathway in CD8+ T cells

ATF6 is still relatively understudied for its impacts on CD8+ T

cells. One group found that in a constitutive TNF-expressing

model used for representing ileitis, ATF6, ATF4, and XBP1s can

bind to the promoter regions of Granzyme B and BCL-2, an anti-

apoptotic protein (221). In addition, using an in vivo CRISPR

screen, ATF6 appears to be a restrictive element of T effector cell

development, although further validation studies are needed

(222). Similarly, a transcriptome study of tissue-resident

memory chimeric antigen receptor T cells (CAR-TRM)

uncovered that both ATF6 and ATF4 are upregulated, perhaps

indicating that these two molecules may play a role in memory

differentiation (223) (Figure 2C).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427859
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nair and Liu 10.3389/fimmu.2024.1427859
5 Conclusion

While recent work has highlighted the deeper intricacies of the

UPR, more questions remain, particularly regarding the roles of

each arm. For example, how does the UPR regulate the activation of

each arm individually? There is also a lack of work regarding the

exact function of ATF6. New technologies are consistently being

refined that will allow for further exploration of these topics. As for

CD8+ T cells, while there has been an effort to study the effects the

UPR has on them, the exact mechanism by which they are regulated

by the UPR is still unknown. The UPR is a broad system that

encompasses three arms and several effector molecules. Research

investigating the functionality of each molecule in each arm will be

the goal, although this will take time. This leaves a broad space for

researchers to investigate the UPR in CD8+ T cells due to several

understudied aspects. For example, an outstanding question

currently is what are the mechanisms that activate the UPR in

CD8+ T cells. Some studies have uncovered those, but many are still

needed to determine the exact effects of this activation and why it

occurs. One study has shown in CD4+ T cells that XBP1 affects the

abundance of glutamine transporters (136), although evidence in

CD8+ T cells has been shown only by RNA-level changes (138).

Further research is needed to validate the phenomenon and its

effects on CD8+ T cells, albeit this evidence, as well as the evidence

presented by the effects of PERK, indicate that metabolism, the

UPR, and CD8+ T cells appear to be intricately linked. Work

completed towards understanding the UPR has the potential to

uncover novel ways to manipulate CD8+ T cells by using the UPR to

increase their efficacy in the diseased setting.
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