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Background:Osteosarcoma primarily affects children and adolescents, with current

clinical treatments often resulting in poor prognosis. There has been growing

evidence linking programmed cell death (PCD) to the occurrence and progression

of tumors. This study aims to enhance the accuracy of OS prognosis assessment by

identifying PCD-related prognostic risk genes, constructing a PCD-based OS

prognostic risk model, and characterizing the function of genes within this model.

Method: We retrieved osteosarcoma patient samples from TARGET and GEO

databases, and manually curated literature to summarize 15 forms of programmed

cell death. We collated 1621 PCD genes from literature sources as well as

databases such as KEGG and GSEA. To construct our model, we integrated ten

machine learning methods including Enet, Ridge, RSF, CoxBoost, plsRcox,

survivalSVM, Lasso, SuperPC, StepCox, and GBM. The optimal model was

chosen based on the average C-index, and named Osteosarcoma Programmed

Cell Death Score (OS-PCDS). To validate the predictive performance of our model

across different datasets, we employed three independent GEO validation sets.

Moreover, we assessed mRNA and protein expression levels of the genes included

in our model, and investigated their impact on proliferation, migration, and

apoptosis of osteosarcoma cells by gene knockdown experiments.

Result: In our extensive analysis, we identified 30 prognostic risk genes

associated with programmed cell death (PCD) in osteosarcoma (OS). To assess

the predictive power of these genes, we computed the C-index for various

combinations. The model that employed the random survival forest (RSF)

algorithm demonstrated superior predictive performance, significantly

outperforming traditional approaches. This optimal model included five key

genes: MTM1, MLH1, CLTCL1, EDIL3, and SQLE. To validate the relevance of

these genes, we analyzed their mRNA and protein expression levels, revealing

significant disparities between osteosarcoma cells and normal tissue cells.

Specifically, the expression levels of these genes were markedly altered in OS

cells, suggesting their critical role in tumor progression. Further functional

validation was performed through gene knockdown experiments in U2OS

cells. Knockdown of three of these genes—CLTCL1, EDIL3, and SQLE—resulted

in substantial changes in proliferation rate, migration capacity, and apoptosis rate

of osteosarcoma cells. These findings underscore the pivotal roles of these genes

in the pathophysiology of osteosarcoma and highlight their potential as

therapeutic targets.
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Conclusion: The five genes constituting the OS-PCDS model—CLTCL1, MTM1,

MLH1, EDIL3, and SQLE—were found to significantly impact the proliferation,

migration, and apoptosis of osteosarcoma cells, highlighting their potential as

key prognostic markers and therapeutic targets. OS-PCDS enables accurate

evaluation of the prognosis in patients with osteosarcoma.
KEYWORDS
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1 Introduction

Osteosarcoma is an exceptionally aggressive cancer that

develops in bone tissue, predominantly affecting children and

teenagers. This malignancy constitutes nearly half of all bone

cancers in this age group. It commonly arises in the metaphyseal

regions of long bones, such as the distal femur, proximal tibia, and

proximal humerus (1). Characteristically, osteosarcoma is marked

by uncontrolled proliferation of bone and cartilage tissue, leading to

significant morbidity (2). Recent statistical data indicate that the

average 5-year survival rate for osteosarcoma patients is around

70%. However, this rate significantly declines to below 30% for

those with distant metastases. The pathogenesis of osteosarcoma

involves complex genetic alterations that drive the initiation and

progression of the tumor (3).

Osteosarcoma is characterized by aberrant gene expression,

which exerts significant influence on the initiation and

progression of tumor cells (4, 5). Key molecular pathways

implicated in osteosarcoma include the STING/IRF3/IFN-b,
PI3K/AKT, and mTOR signaling pathways (6–8). Considering the

complexity of osteosarcoma pathogenesis and the heterogeneity of

its molecular landscape, identifying critical genes affecting

prognosis and constructing a simple yet effective prognostic

model is paramount.

With the advancement of cancer biology research, the

interaction between programmed cell death (PCD) and malignant

tumors has received widespread attention, being considered a

crucial component in the occurrence of malignant tumors (9, 10).

As research progresses, an increasing number of researchers are

focusing on the correlation between PCD and osteosarcoma

occurrence (11). Apoptosis, the predominant form of cell death,

is essential for the proper functioning of organisms. Abnormal

activation of apoptosis pathways may lead to sustained proliferation

and abnormal survival of tumor cells, which could promote tumor

occurrence and growth (12). Ferroptosis, another form of cell death

induced by oxidative stress, has attracted significant interest in the

realm of cancer research. Due to the weakened antioxidant capacity

of tumor cells, they are more susceptible to iron-dependent cell

death (13). Cuproptosis has also attracted researchers’ interest, as

this form of death may be related to the death and survival of tumor
02
cells (14). Autophagy is an intracellular degradation process crucial

for maintaining cellular homeostasis, as it breaks down damaged

proteins and organelles (15). PARP-1 is an important factor

associated with DNA damage repair and the effectiveness of

cancer drugs (16). Pyroptosis is an inflammatory type of cell

death that generally happens after the involved cells release

cytokines like interleukins and other signaling molecules (17). By

aiding the decline of inflammatory cells to control tumor

progression and, to a certain extent, modifying the response to

treatment (18). Netotic cell death, a distinct form of cellular demise,

is triggered by the formation and accumulation of net-like fibrous

structures (19). The possibility of this kind of regulation lies in an

apoptotic function of the tumor microenvironment. They are

interconnected with the consequences of oxidative harm (20).

Anoikis is a type of cellular demise initiated by the separation of

cells from the extracellular matrix, Dysregulation of extracellular

matrix interaction may impact tumor cell survival and metastasis

(21). Immunogenic cell death is a type of cellular demise that can

provoke an immune response, consequently impacting the survival

of tumor cells (22). Disulfidptosis is a type of cell death linked to the

formation and disruption of intracellular disulfide bonds. This

process may also contribute to tumor initiation and progression

(23). In summary, a deeper comprehension of the different forms of

programmed cell death and their roles in the development of

malignant tumors will yield new insights and targets for cancer

prevention and therapy. Further research is essential to explore how

these apoptotic pathways function in cancer treatment, aiming to

enhance the survival rates and quality of life for cancer patients.

The creation of prognostic models for osteosarcoma has been

greatly enhanced by the advancement of machine learning methods.

When it comes to understanding the complexity of biological

information, the application of different algorithms provides special

advantages within the field of machine learning. A selection of 10

algorithms renowned for their intrinsic variable selection properties

has been made, encompassing Enet, Ridge, CoxBoost, survivalSVM,

Lasso, SuperPC, plsRcox, StepCox, RSF, and GBM. Lasso is a

regression analysis method used for feature selection and model

sparsity, aiding in identifying key predictor variables (24). Ridge

regression constrains the size of model coefficients by adding an L2

regularization term, reducing overfitting, particularly useful for
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handling collinear data (25). Elastic Net combines the strengths of

Lasso and Ridge, balancing model sparsity and complexity, suitable

for high-dimensional and collinear data (26). CoxBoost is a Cox

proportional hazards model based on gradient boosting trees, used

for modeling and predicting survival data (27). Utilizing support

vector machines to capture intricate relationships between variables

and survival time, Survival Support Vector Machine is a technique for

managing survival data (28). With the advancement of machine

learning integration, the establishment of prognosis models for

different diseases has significantly improved. The application of

various algorithms in the field of machine learning provides

distinct advantages. Ten algorithms known for their inherent

variable selection capabilities include Enet, Ridge, CoxBoost,

survivalSVM, Lasso, SuperPC, plsRcox, StepCox, RSF, and GBM.

By integrating these methods, the intricate relationship between

programmed cell death (PCD) and osteosarcoma (OS) prognosis

can be more thoroughly understood. The complementary nature of

these algorithms greatly enhances the model’s generalizability and

predictive accuracy.

This research employed the integration of several machine

learning algorithms to create a prognostic model for osteosarcoma

associated with programmed cell death (PCD). The underlying

assumption was that combining various algorithms would better

capture the complex gene interactions and enhance prediction

accuracy. The goal was to improve the accuracy of prognostic

predictions for osteosarcoma patients and to identify potential

targets for personalized treatment strategies.
2 Methods

2.1 Data download and standardization

We obtained a comprehensive dataset from the Therapeutically

Applicable Research to Generate Effective Treatments (TARGET)

database. This dataset contained detailed information on 202

osteosarcoma patients, encompassing expression data, clinical

details, and chromosomal and gene mutation information (https://

ocg.cancer.gov/programs/target). To ensure the robustness of our

study, we applied stringent criteria to screen for samples with

complete data, resulting in a selection of 88 osteosarcoma patient

samples. Furthermore, we enriched our analysis by incorporating

three additional datasets from the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/geo/): GSE16102,

GSE21257, and GSE39058. These datasets collectively contributed

an additional 128 osteosarcoma patient samples. Each dataset was

carefully chosen based on its relevance and the completeness of the

accompanying clinical annotations.

At the outset of osteosarcoma data analysis, we utilized the IOBR

package’s data transformation function to convert the raw count

matrix from the TARGET dataset into Transcripts Per Million

(TPM) format. This conversion was crucial for normalizing the

expression levels across samples. Next, we utilized the

NormalizeBetweenArrays function from the limma package to

standardize the data, which helped to reduce batch effects and

ensure comparability across various datasets. For the GEO datasets,
Frontiers in Immunology 03
we reversed the log2-transformed count values to restore the original

count values before converting them to TPM format. Batch effects

were addressed using the movebatcheffect function from the sva

package. These stringent normalization steps were essential to

maintain the integrity and reproducibility of our results.

Through a thorough literature review, we identified 15 distinct

types of programmed cell death, including disulfidptosis, entotic cell

death, netotic cell death, pyroptosis, ferroptosis, anoikis, autophagy,

necroptosis, PARP-1-dependent cell death, alkaliptosis, oxeiptosis,

immunogenic cell death, and lysosome-dependent cell death. The

genes associated with these forms of cell death were sourced from

the Gene Set Enrichment Analysis (GSEA) database (http://

www.gsea-msigdb.org/gsea/index.jsp) and the Kyoto Encyclopedia

of Genes and Genomes (KEGG) database (https://www.genome.jp/

kegg/). These genes were then combined using the intersection

function, resulting in a comprehensive set of 1621 programmed cell

death genes.
2.2 Selection of differentially expressed
genes and identification of prognosis-
associated genes

Utilizing the limma software for differential expression analysis, we

pinpointed genes significantly linked to programmed cell death (PCD)

in 88 osteosarcoma samples and their corresponding adjacent normal

tissues from the training set. The differential analysis criteria were

established at FDR < 0.05 and |log2Foldchange| > 1. Osteosarcoma

samples and their adjacent normal tissues were differentiated using

TARGET sample IDs. To visualize the differentially expressed genes,

we generated a heatmap by randomly selecting a subset of these genes

with the pheatmap package. Additionally, we created a volcano plot

using the ggplot2 tool to display the fold changes, p-values, and

expression levels of these genes.

In our thorough UniCox regression analysis, conducted with the

survival package in R, we identified 30 genes significantly correlated

with patient survival, applying a stringent p-value threshold of < 0.05.

Out of these, 24 genes were found to have protective effects, while 6

were associated with a higher risk prognosis. These findings were

illustrated through detailed forest plots, providing clear depictions of

hazard ratios and confidence intervals. To further elucidate the intricate

relationships between genes associated with prognosis, we constructed

chord plots using the igraph, psych, and reshape2 packages. These plots

illustrated complex interactions and co-expression patterns among the

identified genes. Additionally, lollipop plots and the Circos package

were employed to identify and present prognostic genes with copy

number variations (CNVs) greater than 4% in the training set of

osteosarcoma samples, offering deeper insights into the genomic

alterations and their potential impact on prognosis.
2.3 Establishment of osteosarcoma
subtypes and mechanism analysis

We utilized the ConsensusClusterPlus package in R to perform

unsupervised clustering on the test set of osteosarcoma samples.
frontiersin.org

https://ocg.cancer.gov/programs/target
https://ocg.cancer.gov/programs/target
https://www.ncbi.nlm.nih.gov/geo/
http://www.gsea-msigdb.org/gsea/index.jsp
http://www.gsea-msigdb.org/gsea/index.jsp
https://www.genome.jp/kegg/
https://www.genome.jp/kegg/
https://doi.org/10.3389/fimmu.2024.1427661
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1427661
The maxK parameter was set to 9, generating subtypes ranging from

2 to 9. Through an in-depth examination of the clustering heatmap

and the consensus variation curve, we determined the optimal value

of K to be 2. Consequently, the training set samples were

categorized into two distinct subtypes, labeled as A and B. The

consensus clustering results were subsequently validated using t-

distributed stochastic neighbor embedding (tSNE) and Uniform

Manifold Approximation and Projection (UMAP) techniques.

Kaplan-Meier (KM) survival curves for osteosarcoma patients

were created using the survival package in R to depict the

prognostic differences between these two subtypes.

To explore the underlying mechanisms behind the survival rate

disparities between the subtypes, we conducted a differential expression

analysis of prognostically relevant genes using the limma package. We

utilized single-sample gene set enrichment analysis (ssGSEA) to

determine variations in immune cell abundance between the

subtypes. To explore differential pathway enrichment between the

subtypes, gene set variation analysis (GSVA) was performed, and the

top twenty most differentially enriched pathways were visualized using

the pheatmap package. Reference gene sets from the KEGG and GSEA

databases were employed, and the Gene Set Enrichment Analysis

(GSEA) method was applied to identify pathways significantly

enriched in each subtype. Furthermore, we illustrated the expression

levels of the 30 prognosis-associated genes in subtypes A and B, along

with clinical information for each sample.
2.4 Development of integrated machine
learning models

After a preliminary screening, we identified ten machine learning

algorithms known for their excellent variable selection properties. We

integrated these into a robust ensemble. The chosen algorithms

included Enet, Ridge, CoxBoost, survivalSVM, Lasso, SuperPC,

plsRcox, StepCox, RSF, and GBM. Leveraging the corresponding R

packages, we established fundamental computational protocols for

each model. The selection of these algorithms was based on their

strengths in handling high-dimensional data, regularization, and

boosting, which are critical for robust prognostic modeling.

During model training, we optimized key parameters for each

algorithm. For instance, the Lasso and Ridge regressions included

tuning the regularization parameter lambda, which controls the

strength of the penalty imposed on the coefficients. The Elastic Net

model balanced the l1_ratio parameter to combine the penalties of

Lasso and Ridge. For the survivalSVM, we adjusted the cost

parameter to manage the trade-off between margin maximization

and classification error. In the case of the CoxBoost algorithm, the

step size and the number of boosting steps were finely tuned to

prevent overfitting while ensuring adequate model complexity.

Subsequently, we implemented a strategy where one algorithm

was responsible for variable selection, while another algorithm was

tasked with model construction. Pairing these ten algorithms in all

possible combinations resulted in 101 combinations. Each

combination was rigorously cross-validated, with hyperparameters

fine-tuned based on performance metrics like the concordance

index (C-index) and mean squared error.
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The concordance index (C-index) was computed for each

model, considering both survival time and status. To ensure

robust performance metrics, k-fold cross-validation was employed

for model evaluation. Ultimately, the Osteosarcoma Programmed

Cell Death Score (OS-PCDS) model was developed using the

Random Survival Forest (RSF) algorithm, which exhibited the

lowest relative variability and the highest average C-index across

validation sets. The exceptional performance of this model is

attributed to RSF’s ability to handle complex variable interactions

and its robustness against overfitting through ensemble learning.

By combining the glmnet R utility with the CalRiskScore

function, the parameter type was configured to linear predictor.

Subsequently, risk scores were computed for each sample in both

the training and validation sets. The medianOS-PCDS value from the

training set was used as the threshold to classify all osteosarcoma

(OS) samples in the dataset into high-risk and low-risk groups.

During the variable selection process, the RSF algorithm

identified five genes associated with prognosis, which became the

foundation of the prognostic model. Box plots were used to

illustrate the expression levels of these five genes in osteosarcoma

samples from the training set and adjacent normal tissues.

Independent survival analyses were subsequently conducted for

the high-expression and low-expression groups of these

model genes.
2.5 Verification of model prediction
accuracy and exploration of mechanism

We manually curated 61 transcriptome-based prognostic

models for osteosarcoma from publicly available sources, the list

of models is provided in Supplementary Table S1. In this study,

variables were excluded from published models if the proportion of

missing model genes in the training set expression matrix exceeded

20%. Consequently, a total of 38 models were selected for

comparison. Comparative analyses with previously published

osteosarcoma prognostic models involved generating forest plots

to represent the C-index for both training and validation sets.

Kaplan-Meier (KM) curves, illustrating overall survival across all

training and validation sets, were constructed using the survival and

survminer R packages. The comparison of survival curves between

low-risk and high-risk groups in the training and validation sets was

performed using the survdiff function, yielding statistically

significant p-values (<0.05). To improve the reliability of

prognostic predictions for osteosarcoma patients, ROC (Receiver

Operating Characteristic) curves were generated at 1, 2, 3, 4, and 5

years for both the training and validation sets using the timeROC

package. Subsequently, the area under the curve (AUC) values were

calculated for each ROC curve. Additionally, to validate the

prognostic significance of OS-PCDS and explore its potential as a

supplementary tool to current clinical data, ROC values were

calculated for all clinically relevant information to forecast

outcomes at 1-5 years. Following this, the predictive effectiveness

of PCDS was evaluated using multiCox regression, which

incorporated potential confounding factors from additional

clinical data, displayed in forest plot form. By utilizing Sankey
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and violin diagrams to illustrate the correlations between various

risk groups and subtypes A and B, the objectivity and predictive

precision of the model were confirmed. A heatmap was employed to

illustrate the relationships between the expression of model genes,

survival time, and risk scores.

We employed the CIBERSORT package to assess the relative

abundance of 22 distinct immune cell types in each sample from the

training set. Violin plots were then used to compare immune cell

abundance levels between the high and low PCDS groups.

Additionally, the R package estimate was utilized to evaluate

potential differences in stromal scores, immune scores, and estimated

scores within the tumor microenvironment between these two groups.
2.6 Evaluation of mRNA expression levels
in model genes

Total RNA was isolated from the tissues or cells according to the

manufacturer’s instructions using Trizol reagent (R401, Vazyme).The

RNA’s quantity and integrity were then verified using a

spectrophotometer. Subsequently, cDNA was synthesized from the

RNA template employing reverse transcriptase and random primers.

This cDNA served as the template for quantitative polymerase chain

reaction (qPCR), conducted on a StepOnePlus Real-Time PCR

System (ABI, USA), to measure the expression levels of the MLH1,

SQLE, EDIL3, MTM1, and CLTCL1 genes. The qPCR procedure

followed the manufacturer’s instructions, utilizing SYBR Green

(Q712, Vazyme) and gene-specific primers. An internal control was

utilized instead of beta-actin. Relative gene expression levels were

determined using the 2^-DDCTmethod. Details of the primers can be

found in Supplementary Table S2.
2.7 Determination of protein expression
levels of model genes

Protein extraction from tissue or cell lysates was performed using

radioimmunoprecipitation assay (RIPA) buffer (abs9231, absin). The

isolated proteins were subsequently subjected to sodium dodecyl

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then

transferred onto polyvinylidene fluoride (PVDF) membranes. After

transfer, the membranes were incubated with primary antibodies

against EDIL3 (ab190692, Abcam), GAPDH (ab9485, Abcam),

CLTCL1 (ab21679, Abcam), and SQLE (ab67479, Abcam).

Following this, a horseradish peroxidase (HRP)-conjugated

secondary antibody (ab6721, Abcam) was applied. Protein bands

were detected using an enhanced chemiluminescence (ECL) substrate

(E411 Vazyme), which reacts with HRP to produce light, thereby

visualizing the proteins on the membrane. GAPDH expression served

as the internal control.
2.8 Culturing and transfection of cells

The osteosarcoma cell lines (U2OS, MG-63, and HOS) as well

as mesenchymal stem cells (MSCs) were obtained from the
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American Type Culture Collection (ATCC). Each cell line was

cultured and maintained following the specific protocols provided

by their respective suppliers. For the osteosarcoma cell lines,

Dulbecco’s Modified Eagle Medium (DMEM) (Gibco, USA) was

used, while a specialized Human Mesenchymal Stem Cell Growth

Medium (Gibco, USA) was utilized for the MSCs. The cells were

then placed in a humidified incubator set at 37°C with 5% CO2 to

ensure optimal growth conditions. Plasmid transfection was

performed following the manufacturer’s guidelines using

Lipofectamine 2000 reagent (cat#11668019, Invitrogen). Plasmids

were synthesized by GenePharma.
2.9 Detection of proliferative capacity of
osteosarcoma cells after knockdown of
model gene expression

Cells were plated at a density of 5,000 cells per well in a 96-well

plate and were given 24 hours to attach and acclimate. After this initial

period, the cells were cultured for a standardized duration to ensure

synchronization across the population. Subsequently, the CCK-8 assay

reagent (C0038, Beyotime) was added to each well following the

manufacturer’s instructions. The plate was incubated for an

additional 120 minutes to allow the colorimetric reaction to develop.

Cell viability was subsequently evaluated by measuring the absorbance

at 450 nm with a microplate reader. The optical density readings were

used as indicators of cell proliferation and overall viability.

For the colony formation assay, cells were detached with trypsin

and evenly seeded into 6-well plates at a concentration of 1,000 cells

per well. The cells were cultured for another 7 days to allow colony

formation. Subsequently, the cell monolayers were fixed using a 4%

solution of paraformaldehyde and then incubated with a 0.1%

crystal violet staining solution (abs817172, absin) to visualize the

colonies. Photographs of the stained colonies were captured, and

the colony counts were documented and analyzed among the

various experimental groups.
2.10 Detection of migration ability of
osteosarcoma cells after knockdown
model gene expression

When the cell monolayer reached around 90% confluence, a

wound was created by gently scraping a specific area of the cell layer

with a 200 ml plastic pipette tip, producing a controlled scratch. Images

of the scratch wound were taken immediately after its creation and

again after a 24-hour incubation period using a phase-contrast or

inverted microscope equipped with a digital camera.
2.11 Detection of apoptosis rate of
osteosarcoma cells after knockdown of
model gene expression

The cells underwent a staining procedure that included a one-

hour incubation with Annexin V-FITC (A211, Vazyme) and 7-
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AAD in the absence of light and at room temperature. After the

designated incubation period, the cells underwent three

comprehensive washes using cold phosphate-buffered saline (PBS)

in order to eliminate any unbound stains. Following that, the cells

were reconstituted in PBS, and a flow cytometer (BD, USA) was

utilized to analyze the stained cells.
2.12 Single-cell analysis

Six samples of osteosarcoma (OS) and six samples of normal

control make up the GSE162454 dataset. The R program Seurat was

used to perform quality control processes for the single-cell

sequencing data. The tSNE and UMAP algorithms were then

used for dimension reduction and clustering, respectively. The

generated two-dimensional graphs were labeled with numbers to

identify cell types. Further annotation of cell types was performed

using the singleR package in R to identify established cell types that

are linked to each cellular subgroup.
2.13 Drug sensitivity analysis

Using the oncoPredict R package, sensitivity scores for 198

anticancer drugs were calculated for samples in the training set.

Through iterative analysis, we identified significant sensitivity

differences between the OS-PCDS high and OS-PCDS low groups,

with a p-value threshold of <0.001. This analysis revealed significant

sensitivity differences in 34 drugs: 9 drugs demonstrated increased

sensitivity in the PCDS low group, while 25 drugs showed

heightened sensitivity in the PCDS high group. The results of the

drug sensitivity screening were visually represented using violin

plots, highlighting the differences across the various risk categories.
2.14 Osteosarcoma specimen information

To assess the mRNA and protein expression levels of the model

genes, we collected tumor specimens and adjacent normal tissue

samples from six osteosarcoma patients. These samples were

obtained during surgeries performed at the Affiliated Zhongshan

Hospital of Dalian University between September 2021 and

September 2023. Prior to specimen collection, informed assent

was obtained from all patients. In addition, the research protocol,

including the collection and use of human tissue samples, has been

reviewed and approved by batch number KY2023-115-1 of the

hospital’s ethical review committee.
2.15 Statistical analysis

Statistical analyses were performed using R software version

4.1.3. Continuous variables were presented as means with standard

deviations or as medians with interquartile ranges, while categorical

variables were summarized using frequencies and percentages. T-

tests were utilized to compare continuous variables between two
Frontiers in Immunology 06
groups, and one-way ANOVA was applied for comparisons

involving more than two groups. For categorical variables, chi-

square tests or Fisher exact tests were used as appropriate to identify

significant differences.

Survival distributions between different groups were compared

using the Kaplan-Meier method along with the log-rank test. The

Cox proportional hazards regression model was employed to

evaluate the prognostic value of the osteosarcoma programmed

cell death score (OS-PCDS), adjusting for potential confounding

variables. Model performance was assessed using the concordance

index (C-index), and receiver operating characteristic (ROC) curve

analyses were conducted to calculate the area under the curve

(AUC), thereby evaluating model effectiveness.

To optimize the model, machine learning algorithms such as

Lasso, Ridge regression, and Random Survival Forests were

employed. These algorithms were selected for their capability to

handle high-dimensional data and perform feature selection

effectively. Cross-validation was used for parameter tuning to

avoid overfitting and ensure the model’s robustness.

A two-sided P-value of less than 0.05 was considered

statistically significant. Detailed statistical analyses for specific

experiments, including qPCR, CCK8 assays, flow cytometry, and

other investigations, were performed using Prism software. For

qPCR, gene expression levels were normalized to internal controls,

and relative quantification was carried out using the 2^-DDCT
method. CCK8 assay results were analyzed by comparing optical

density values across different time points and treatment groups

using repeated measures ANOVA. Flow cytometry data were

analyzed by calculating the percentage of cells in different cell

cycle stages or the percentage of apoptotic cells, followed by

statistical comparisons using T-tests.
3 Results

3.1 Identification of differentially expressed
and prognosis-associated genes

Within the training set, 246 genes were found to be differentially

expressed between osteosarcoma samples and their corresponding

adjacent normal tissues. Among these, 145 genes showed significant

downregulation, while 101 genes demonstrated significant

upregulation. A heatmap depicted the expression patterns of forty

randomly selected genes (Figure 1A). The volcano plot illustrated

both upregulated and downregulated genes, with notable

upregulated genes including UBE2C, MMP13, TREM2, SPP1, and

MMP9, and representative downregulated genes including MAPT,

GABARAP, ILK, EEF1A2, and ATP6V0C (Figure 1B).

A total of 30 prognosis-related genes were identified and

visualized using a forest plot. This group included 24 protective

genes (such as CLTCL1, CALCOCO2, MLH1, MTM1, and ZDHC3)

and 6 risk genes (including BAG1, CD36, and CRIP1) (Figure 1C).

Additionally, a circos plot was utilized to illustrate the

interconnections among these prognosis-associated genes. Genes

related to prognosis were highlighted in red, while genes carrying

protective or risk factors were depicted with yellow and green
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semicircles, respectively. The sizes of circles representing p-values

from Cox regression analysis served as indicators of the relative

importance and relevance of gene interactions within the network.

Particularly noteworthy genes included EDIL3, CRIP1, CLTCL1,

SQLE, PDK2, and TPM1, which exhibited extensive interaction

patterns. Expression correlations between genes were represented

by lines connecting them, with positive correlations depicted in pink

and negative correlations in blue (Figure 1D).

A bar plot was created to display the frequency of Copy

Number Variations (CNVs) impacting prognosis-associated
Frontiers in Immunology 07
genes, focusing on those with frequencies above 4%. Noteworthy

genes with copy number gains included SQLE, PTGIS, and

STAT5B, while those with losses comprised MFN2, DOK2, and

EDIL3 (Figure 1E). Furthermore, a circular plot depicted the

chromosomal locations of these high-frequency CNV-affected

genes: MFN2 on chromosome 1, EDIL3 on chromosome 5, SQLE

and DOK2 on chromosome 8, STAT5B on chromosome 17, and

PTGIS on chromosome 20. Chromosomes 3, 5, 8, and 17, in

particular, exhibited high frequencies of CNV events in

osteosarcoma (Figure 1F).
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FIGURE 1

Gene Selection Relating to Prognosis and Differentiation. (A) Heatmap showing the expression patterns of 40 randomly selected differentially
expressed genes between osteosarcoma samples and adjacent normal tissues. The color scale indicates the level of gene expression, with red
representing high expression and blue representing low expression. (B) A volcano diagram illustrating the correlation between fold changes, P-
values, and gene expression levels; yellow dots denote upregulated genes, green dots represent downregulated genes, and purple dots signify
insignificant differences in gene expression. (C) A forest plot illustrating thirty genes that have been linked to survival prognosis. (D) A circos plot
depicting the correlations among genes associated with prognosis. (E) A lollipop diagram illustrating the frequency of copy number variations (CNVs)
in genes associated with prognosis, with particular attention given to CNVs surpassing a 4% threshold. (F) Genes with a mutation frequency greater
than 4% are highlighted at the position of chromosome mutations. The genomic circumference diagram illustrates the chromosomal locations of
genes that display high-frequency CNVs.
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3.2 Revealing the establishment and
mechanism analysis of
osteosarcoma subtypes

The ConsensusClusterPlus R package was employed to

determine the optimal number of clusters for unsupervised

clustering, categorizing TARGET-OS samples into subtypes A and

B (Figure 2A). The optimal clustering number was identified by

analyzing the inflection point on the variation rate curve of the

Cumulative Distribution Function (CDF) (Figures 2B, C). A heatmap

was generated to display the subtype and clinical information for each

sample (Figure 2F). Additionally, dimensionality reduction of the

osteosarcoma expression matrix to two dimensions was performed

using the t-distributed Stochastic Neighbor Embedding (tSNE) and

Uniform Manifold Approximation and Projection (UMAP)

algorithms, with each sample assigned a point value (Figure 2D).

Both algorithms effectively distinguished subtypes A and B,

confirming the objectivity of PCD-related osteosarcoma subtyping.

Kaplan-Meier (KM) curves further validated prognostic differences

between the subtypes (P = 0.002), with subtype B showing better

survival outcomes than subtype A (Figure 2E).
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An in-depth analysis was subsequently conducted to uncover the

molecular mechanisms underlying the prognostic differences among

the subtypes. The limma package facilitated differential expression

analysis of prognosis-associated genes between subtypes, with results

presented via box plots (Figure 3A). A total of 19 genes displayed

significant differential expression between subtypes A and B, with 18

genes upregulated in subtype B and only one gene upregulated in

subtype A. The ssGSEA algorithm computed the abundance of 33

distinct immune cell types in each training set sample. Box plots

visualized the differences in immune cell expression levels between

the subtypes (Figure 3B). Significant variations were observed in the

abundance of 24 immune cell types, with all being more abundant in

subtype B, except for nine cell types, including immature dendritic

cells, eosinophils, Th17 cells, and Th2 cells.

The GSVA algorithm was utilized to examine differential

enrichment pathways between the subtypes. A heatmap highlighted

the top 20 pathways with significant enrichment differences, all

upregulated in subtype B (Figure 3C). GSEA curves depicted the top

five pathways most enriched in each subtype (Figures 3D, E). Subtype

A showed significant upregulation in the Focal Adhesion and

Neuroactive Ligand-Receptor Interaction pathways, while subtype B
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FIGURE 2

Clinical Information and Subtype Differentiation Are Illustrated in Figure 2. (A) By employing the R package ConsensusClusterPlus and non-
parametric clustering, TARGET-OS samples were categorized into subtypes A and B. (B) The determination of the optimal number of clusters is
based on the x-coordinate of the inflection point on the variability curve of the CDF. (C) Cluster number CDF curves spanning the range of 2 to 9.
(D) The osteosarcoma expression matrix is reduced to two dimensions by the UMAP and tSNE algorithms, which distinguish the expression patterns
of the two subtypes. (E) K-M survival analysis curve. The Kaplan-Meier diagram (P = 0.002) provides validation for the prognostic distinctions among
the four subtypes. (F) A pheatmap presents the subtype and clinical information of each sample.
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FIGURE 3

Mechanisms of Subtypes of Osteosarcoma Associated with PCD. (A) Box diagram depicting the variation in prognostic gene expression among
distinct subtypes. (B) The differences in 33 immune cell abundances between the two subtypes are depicted in the box diagram. (C) The Gene Set
Variation Analysis (GSVA) method was applied to identify pathways that varied in expression between two subtypes. (D, E) Gene Set Enrichment
Analysis (GSEA) shows which five pathways within each subtype have the highest level of enrichment. The following p-value ranges: * < 0.05,
** < 0.01, and *** < 0.001.
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demonstrated substantial upregulation in the Hematopoietic Cell

Lineage and Chemokine Signaling Pathway pathways. Additionally,

three pathways—Cell Adhesion Molecules (CAMs), Cytokine-

Cytokine Receptor Interaction, and Extracellular Matrix (ECM)

Receptor Interaction—were notably upregulated in both subtypes.
3.3 Construction of machine learning
integration models

The integration of the machine learning algorithm generated a

total of 101 possible combinations. The optimal model was identified

to be the one constructed by the RSF algorithm, which exhibited the

highest average consistency index and relatively low variability in the

consistency index. This model’s scoring system was termed OS-

PCDS. The model generated by the RSF algorithm ranked highest

across all three GEO validation sets, with an average C-index of 0.943

(Figure 4A). During the variable selection process, the RSF algorithm

identified all five prognostic-related genes, namely MTM1, MLH1,

CLTCL1, EDIL3, and SQLE. The mRNA expression levels of these

five genes showed significant differences between osteosarcoma

samples and adjacent normal tissues, as depicted in the boxplots

(Figure 4B). Specifically, EDIL3 and SQLE exhibited significant

upregulation in osteosarcoma samples, suggesting their roles in

promoting angiogenesis and cholesterol biosynthesis, respectively.

EDIL3, known for its involvement in endothelial cell adhesion, may
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facilitate tumor angiogenesis, while SQLE, an enzyme in the

cholesterol biosynthesis pathway, could support membrane

biogenesis in rapidly proliferating tumor cells. While MTM1,

MLH1, and CLTCL1 showed significant upregulation in adjacent

normal tissues. By integrating clinical information from all datasets

with the OS-PCDS, a nomogram model was developed to predict the

prognosis of OS patients (Figure 4C).
3.4 Validation of machine learning
integration models

A comparative analysis was conducted on osteosarcoma

prognostic models published in the last five years. The C-index

for both training and validation sets was illustrated using forest

plots, with significant differences indicated by asterisks. Across all

three GEO validation sets, the TARGET-OS training set, and the

combined meta-cohort from the three validation sets, OS-PCDS

consistently ranked highest in C-index values (Figure 5A).

Samples were classified as high-risk or low-risk based on the

median OS-PCDS value from the training set. Kaplan-Meier plots

for each dataset showed significant survival differences (p < 0.05)

between high-risk and low-risk groups in both the training set and

the three validation sets. The prognosis of the low-risk group

consistently surpassed that of the high-risk group in all datasets

(Figures 5B–E).
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FIGURE 4

Construction and Selection of an Machine Learning Integration Model. (A) A cumulative sum of 101 iterations generated by ten distinct machine learning
algorithms was employed in the development of prognostic models, with the Concordance index (C-index) being computed. The optimal model was
determined to be the RSF algorithm, and its score was designated OS-PCDS (Osteosarcoma Programmed Cell Death Score). (B) The OS-PCDS gene
expression levels in adjacent normal tissues and osteosarcoma are depicted in the box plot. (C) A nomogram model was developed by incorporating
PCDS, gender and age variables. P values for *** is less than 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427661
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1427661
In both training and validation sets, the Area Under the Curve

(AUC) values for PCDS at 1, 2, 3, 4, and 5 years were calculated using

Receiver Operating Characteristic (ROC) curves. The 5-year AUC

values for the TARGET, GSE16102, GSE21257, and GSE39058 cohorts

were 0.994, 0.906, 0.959, and 0.769 respectively (Figures 6A–D),

indicating the model’s exceptional stability. Violin plots displayed

significant differences in OS-PCDS risk scores between subtypes A
Frontiers in Immunology 11
and B. Subtype B had lower risk scores associated with better

prognostic outcomes, whereas subtype A had higher risk scores

linked to poorer survival (Figure 6E). Additionally, the Sankey plot

(Figure 6F) showed a significant correlation between the distribution of

high-risk and low-risk categories and the A and B subtypes.

Using ESTIMATE analysis, violin plots were created to depict

significant differences in stromal and immune scores between the high
B C
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A

FIGURE 5

(A) A forest plot illustrating the OS-PCDS’s Superiority in published osteosarcoma models according to the C-index. Calculations were done for the
TARGET-OS training set, several GEO validation sets, and a meta-cohort consisting of the GEO validation sets. (B–E) The median PCDS of the
TARGET–OS training set was used as the cut-off value to separate all data into PCDS–high and PCDS–low categories. After that, Kaplan-Meier plot
was generated for each dataset. Various degrees of importance are indicated by the following symbols: P values for *, **, ***, and **** are less than
0.05, 0.01, 0.001, and 0.0001, respectively.
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and low OS-PCDS groups (Figure 7B). The CIBERSORT algorithm

was then applied to determine the abundance of 22 different immune

cell types in each sample (Figure 7A). Violin plots revealed an increase

in memory B cells and macrophage M2 cells in the low OS-PCDS

group, while the high OS-PCDS group had elevated levels of naive B

cells and resting dendritic cells. Correlation scatter plots further

validated the relationship between these immune cells and OS-PCDS

(Figures 7C–F). Additionally, a heatmap was generated to show the

correlation between the abundance of immune cells and the expression

levels of the five model genes, with significance levels indicated as * p <

0.05, ** p < 0.01, *** p < 0.001 (Figure 7G).
3.5 The mRNA expression levels of the
model genes were evaluated

In comparison to osteosarcoma samples, the mRNA expression

levels of the CLTCL1, MTM1, and MLH1 genes were significantly

elevated in adjacent normal tissues (P=0.015, P=0.009, and P<0.001,

respectively). On the other hand, the expression levels of SQLE and

EDIL3 genes were considerably higher in osteosarcoma samples

compared to the adjacent normal tissues (P=0.033 and P=0.026,

respectively) (Figure 8A).

Quantitative polymerase chain reaction (qPCR) analysis of

model genes in Mesenchymal Stem Cells (MSCs) and three

different osteosarcoma cell lines (HOS, MG63, and U2OS)

showed no significant differences in the expression levels of
Frontiers in Immunology 12
MLH1 and MTM1 genes between MSCs and the osteosarcoma

cell lines. However, mRNA expression levels of EDIL3 and SQLE

genes were markedly higher in osteosarcoma cell lines compared to

MSCs. Furthermore, the CLTCL1 gene expression was significantly

greater in MSCs than in the osteosarcoma cell lines (Figure 8B).
3.6 Expression levels of model genes
encoding proteins

In adjacent normal tissues, the protein expression levels of

CLTCL1 were significantly higher than those observed in

osteosarcoma samples. Conversely, the protein expression levels of

SQLE and EDIL3 were markedly elevated in osteosarcoma samples

compared to the adjacent normal tissues (Figure 9A). Additionally,

when compared to MSC cell lines, human osteosarcoma cell lines

showed significantly higher protein expression levels of SQLE and

EDIL3, whereas CLTCL1 demonstrated significantly higher protein

expression levels in MSC cell lines than in human osteosarcoma cell

lines (Figure 9B).
3.7 Impact of gene knockdown on
osteosarcoma cell proliferative capacity

To evaluate the differential expression of CLTCL1, SQLE, and

EDIL3 genes in OS cells (U2OS), individual gene silencing was
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FIGURE 6

(A–D) The Area Under the Curve (AUC) values of PCDS at 1, 2, 3, 4, and 5 years for all training and validation sets. (E) Box diagrams indicate that the risk
scores for subtypes A and B differ significantly. (F) A Sankey plot depicting noteworthy correlations between the sample distributions of the PCD-Cluster
and OS-PCDS.
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conducted, and the differences in proliferation capacity between the

silenced and control groups were assessed. In the CCK8 assay, the

optical density (OD) values for the si-CLTCL1 group significantly

increased from day one, showing a notable contrast to the control

group. Conversely, the OD values for the si-SQLE group

significantly decreased from day two, demonstrating a marked

difference from the control. Similarly, the si-EDIL3 group
Frontiers in Immunology 13
exhibited a significant reduction in OD values compared to the

control group from day one onward (Figure 10A).

Results from the colony formation assay showed a significant

increase in the number of OS cell clones in the CLTCL1

knockdown group compared to the control. In contrast,

there was a substantial decrease in the number of OS cell

clones in the SQLE knockdown group. Additionally, the EDIL3
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FIGURE 7

(A) shows violin plots generated by the CIBERSORT algorithm to compare the quantity of 22 immune cell types across groups with high and low scores.
(B) Violin graphs showing statistically significant differences in stromal and estimate scores between PCDS-high and PCDS-low groups are produced
using estimate analysis. (C–F) Correlation scatter graphs show how PCDS is related to four different kinds of immune cells. (G) A heatmap showing the
correlation between immune cell abundance and five model gene expression levels. The following is a notation for the importance levels: The following
p-value ranges: * < 0.05, ** < 0.01, and *** < 0.001. P-values are considered statistically significant when they are less than 0.05.
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knockdown group also displayed a reduction in OS cell clone

numbers (Figure 10B).
3.8 Repercussions of gene knockdown on
the migratory capacity of
osteosarcoma cells

The results of the cell scratch assay revealed that, compared to

the 0-hour time point, all four cell groups exhibited healing after 24

hours. Additionally, OS cells treated with CLTCL1 gene knockdown
Frontiers in Immunology 14
showed significantly enhanced migratory capacity compared to the

control group, while those treated with SQLE and EDIL3 gene

knockdown demonstrated weakened migratory abilities (Figure 11).
3.9 Repercussions of knockdown model
genes on the apoptotic rate of
osteosarcoma cells

The bar chart below depicts the comparison of apoptosis rates

among different groups (Figure 12). Compared to the control group,
B

A

FIGURE 8

(A) The differential mRNA expression of the model gene between osteosarcoma samples and adjacent normal tissues. (B) A comparison is made
between human osteosarcoma cell lines (HOS, MG63, U2OS) and mesenchymal stem cell (MSC) cell lines with respect to the mRNA expression of
the model gene. The levels of significance are denoted as follows: *pvalue < 0.05, **pvalue < 0.01; ***pvalue < 0.001. P-values that are below 0.05
are deemed to be statistically significant.
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a significant decrease in the apoptosis rate of osteosarcoma cells was

observed following CLTCL1 gene knockdown (P<0.001), while a

substantial increase was noted after SQLE gene knockdown

(P<0.001) and EDIL3 gene knockdown (P<0.01).
3.10 Single-cell analysis

The GSE162454 dataset, which includes six osteosarcoma

samples, underwent various analyses, and the results were

compared to ensure validity. Cell subclusters identified through

Seurat dimensionality reduction clustering and annotated known

cell types from singleR were visually represented using UMAP plots

(Figures 13A, B). Bubble plots depicted the correspondence between

cell subclusters (Figure 13D). Furthermore, UMAP and violin plots

were utilized to illustrate the expression levels of model hub genes

within individual cell subclusters (Figure 13C). A notable finding

was the significant upregulation of EDIL3 expression, particularly

in chondrocytes and tissue stem cells.
3.11 Identification of OS-PCDS-related
anticancer medications

The violin plot clearly illustrates substantial differences in drug

sensitivity between the high and low PCDS groups, highlighting a
Frontiers in Immunology 15
set of 34 drugs with divergent responses. Specifically, eight drugs,

including Acetalax, BI-2536, Daporinad, and Lapatinib, showed

increased sensitivity in the low PCDS group (Figure 14A). In

contrast, 26 drugs, such as Axitinib, Dabrafenib, Entospletinib,

and Mitoxantrone, exhibited enhanced sensitivity in the high

PCDS group (Figure 14B).
4 Discussion

Osteosarcoma is a common and highly aggressive bone cancer

that predominantly affects individuals during their teenage years

(29).Despite progress in surgical techniques and chemotherapy, the

5-year survival rate for osteosarcoma patients has seen little

improvement over the last twenty years (30, 31).The pathogenesis

of osteosarcoma is exceedingly intricate, with single genes, protein

markers, or conventional clinical data falling short in fully

elucidating its complexity (32). These approaches are relatively

rudimentary and overlook the heterogeneity inherent in

osteosarcoma. Studies indicate that markers like B7-H3, GD2,

and HER2, while closely linked to osteosarcoma pathogenesis,

offer limited prognostic value when examined in isolation (33).

As recent literature underscores, integrating molecular data is

pivotal for enhancing prognosis (34). Traditional multigene

models have been found lacking in exploring the interplay of

genetic information in osteosarcoma. They overlook gene
B
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FIGURE 9

(A) The differences in the expression levels of CLTCL1, EDIL3, and SQLE proteins in 6 pairs of osteosarcomas and their adjacent normal tissues were
demonstrated, with N representing normal tissues, T representing osteosarcoma tissues, and GAPDH protein being the internal reference protein.
(B) The discrepancy between human osteosarcoma cell lines (HOS, MG63, U2OS) and MSC (mesenchymal stem cell) cell lines in terms of protein
expression of the model gene is illustrated.
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interactions and pathway crosstalk, thus constraining their

predictive capability (35). Recent research endeavors have aimed

to employ multi-gene panels in osteosarcoma, emphasizing the

imperative for more intricate and comprehensive investigations
Frontiers in Immunology 16
into the disease (36, 37). The fifteen forms of programmed cell

death play a crucial role in cancer (38). Therefore, this study

screened genes highly correlated with programmed cell death and

osteosarcoma, unveiling numerous potential therapeutic targets,
FIGURE 11

The image depicts a wound healing assay conducted to evaluate cell migration over a 24-hour period.
B

A

FIGURE 10

(A) The differences in optical density (OD) values over time compared to the negative control (NC) following knockdown of CLTCL1, SQLE, and EDIL3
gene expression levels in the CCK8 experiment. (B) The results of a colony formation assay. Four groups are depicted: negative control (NC), and cells
treated with small interfering RNA (siRNA) against CLTCL1 (si-CLTCL1), SQLE (si-SQLE), and EDIL3 (si-EDIL3), respectively. The plates have been stained
to visualize the colonies. Significance levels are indicated as *p value < 0.05, **p value < 0.01 ***p value < 0.001. P-values less than 0.05 are considered
statistically significant.
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pathways, and immune cells. By leveraging highly sophisticated

machine learning integration, a prognostic model for osteosarcoma

was constructed to furnish a more precise prognosis assessment for

osteosarcoma patients.

Using unsupervised clustering, the osteosarcoma (OS) patient

database was classified into A and B subtypes, revealing a poorer

survival prognosis in subtype A. There were 19 genes with

significant differential expression between the two subtypes,

among which only one gene, SQLE, was highly expressed in

subtype A. Previous research has demonstrated that the p53

transcription regulator can inhibit tumor cell growth through

suppression of SQLE expression (39). Meanwhile, research has

confirmed the role of CASP6, a gene highly expressed in subtype

B, in reducing the risk of osteosarcoma patient prognosis (40).

There was significant variation in immune cell infiltration

abundance between the two subtypes. While 9 out of 33 immune

cell types showed no significant distribution difference between

subtypes, the remaining 24 immune cell types were significantly

more abundant in subtype B. This suggests that the low abundance

of immune cell infiltration is one of the factors contributing to the

poorer survival prognosis in subtype A patients. Pathway

enrichment analysis revealed differences between the two

subtypes. Subtype A exhibited significant enrichment in the focal

adhesion pathway, a finding consistent with previous studies that

have associated this pathway with increased cancer cell growth and

migration (41). In summary, by studying differences in survival

prognosis between different subtypes, immune cell abundance,

differential gene expression, and enriched pathways, we explore

key factors leading to different survival prognoses in OS patients,
Frontiers in Immunology 17
providing a foundation for subsequent research on molecular

targeted therapy for osteosarcoma.

In recent years, various prognostic models for osteosarcoma

have been developed, mostly constructed using single machine

learning algorithms and single forms of cell death to build

prognostic risk models for osteosarcoma (42–44). However, the

molecular characteristics of osteosarcoma are extremely complex,

and using single screening criteria cannot accurately predict the

prognosis of osteosarcoma patients. A study utilized multiple

machine learning integration to construct a prognostic model for

ovarian cancer and established a prognostic model for breast cancer

patients using various forms of cell death (45, 46). However, these

methods have not been applied to osteosarcoma disease. Samples of

osteosarcoma patients and 15 sets of genes associated with PCD

were extracted from the database. Prior to filtering out genes

associated with prognosis, genes differentially expressed between

osteosarcoma samples and adjacent normal tissues were screened.

These genes were then intersected with PCD genes. The model

utilized in this investigation was constructed using this gene set as

its foundation.

As demonstrated in the text, our study’s machine learning

integration model exhibits significant improvements compared to

traditional methods. The use of multiple integrated machine

learning algorithms resulted in improved accuracy of prognostic

predictions for osteosarcoma, as evidenced by higher concordance

index scores compared to traditional methods. The experimental

results are consistent with findings from other studies, which have

used similar methodologies and analytical frameworks (47–50). OS

samples from all datasets are classified by the OS-PCDS into high-
FIGURE 12

The results showed that compared with the negative control (NC), the apoptosis rate of osteosarcoma cells was changed after the expression levels
of CLTCL1, SQLE and EDIL3 were reduced. Significance levels are indicated as *p value < 0.05, **p value < 0.01 ***p value < 0.001. P-values less
than 0.05 are considered statistically significant.
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risk and low-risk groups, with survival analysis indicating that a

lower prognosis is associated with the low-risk group and a higher

prognosis is associated with the high-risk group. ROC curve

analysis further validates the robustness of OS-PCDS. After

undergoing internal validation, the predictive performance of OS-

PCDS was compared to that of 38 other prognostic models for

osteosarcoma based on transcriptomes that were published within

the last five years. In order to mitigate discrepancies that may have
Frontiers in Immunology 18
emerged from sources other than the TARGET and GEO databases,

all models underwent training and validation using homogeneous

datasets. The results demonstrate that our model exhibits stronger

stability and accuracy compared to existing prognostic tools, thus

confirming its significant advantage and potential utility in

clinical practice.

The machine learning integration selected five model genes:

MLH1, MTM1, CLTCL1, EDIL3, and SQLE. In recent years, the
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FIGURE 13

(A, B) A single-cell analysis was conducted on the GSE162454 dataset in order to examine the processes of dimensionality reduction and clustering
of single-cell data. (C) To visually represent the expression levels of critical genes in various cell subgroups within the model, UMAP plots were
employed. The dot plot illustrated the relationship between subgroups of cells. (D) The bubble map illustrates the expression levels of key genes in
different cell subpopulations.
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roles of MLH1 and SQLE genes in osteosarcoma have garnered

attention. Recent studies have indicated an association between the

expression level of MLH1 and the prognosis of osteosarcoma

patients. Specifically, the expression level of MLH1 shows a

negative correlation with patients’ risk scores, suggesting that
Frontiers in Immunology 19
higher MLH1 expression is associated with lower risk scores and

better prognosis (51). Kun reported that SQLE can promote the

proliferation and migration of osteosarcoma cells (52). These

studies suggest that MLH1 may act as a protective factor, with

higher expression potentially reducing the risk and improving the
B

A

FIGURE 14

(A) Anticancer drug screening in relation to model scores. Twenty-five compounds demonstrate increased sensitivity in the OS-PCDS-high group.
(B) Nine drugs show greater sensitivity in the OS-PCDS-low group. P-values less than 0.001 are considered statistically significant.
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prognosis of osteosarcoma patients, while SQLE may serve as a risk

factor, with its higher expression possibly increasing the prognosis

risk for osteosarcoma patients. Visualization of the expression levels

of model genes in osteosarcoma samples and adjacent normal

tissues from databases revealed that MLH1 was downregulated in

osteosarcoma samples but significantly upregulated in adjacent

normal tissues, whereas SQLE was significantly upregulated in

osteosarcoma samples but downregulated in adjacent normal

tissues. The expression patterns of MLH1 and SQLE suggest

differential roles in osteosarcoma pathology. MLH1 was

downregulated in osteosarcoma samples, potentially indicating a

tumor suppressive function, whereas SQLE was upregulated,

suggesting a role in tumor progression. The experimental results

align with the conclusions of previous studies, suggesting that

MLH1 and SQLE genes could serve as biomarkers for

osteosarcoma prognosis and therapeutic targets. However, the

precise mechanisms by which these genes influence osteosarcoma

development remain to be fully elucidated. Various cellular

experiments were conducted to elucidate the functional roles of

the identified genes and their impacts on osteosarcoma cells.

Specifically, the mRNA and protein expression levels of CLTCL1

were significantly reduced in osteosarcoma cells, indicating its

potential role as a tumor suppressor gene. Bioinformatics analysis

suggested that CLTCL1 might exert protective effects in

osteosarcoma. Inhibition of CLTCL1 expression led to increased

proliferation and migration of osteosarcoma cells, along with a

significant reduction in apoptosis, validating its role as a protective

molecular marker.

Further investigation into the regulatory mechanisms of risk

genes, such as EDIL3 and SQLE, revealed that these genes are

potential candidates for therapeutic targeting, as indicated by their

significant role in the progression and prognosis of osteosarcoma.

Downregulation of EDIL3 and SQLE in the U2OS osteosarcoma cell

line was essential for exploring potential treatment strategies and

understanding osteosarcoma pathology. Bioinformatics analysis

indicated a positive correlation between the high expression of

SQLE and EDIL3 and osteosarcoma cell development. Knockdown

experiments showed that reduced expression of these genes led to a

significant decrease in proliferation and migration abilities, along

with an increase in apoptosis rates, suggesting their roles as risk

factors that promote tumor development.

Additionally, the differential expression analysis using the

limma package and subsequent gene set enrichment analyses

(GSEA and GSVA) provided insights into the functional

pathways and regulatory networks involving these differentially

expressed genes. For instance, the upregulation of genes in the

focal adhesion pathway in subtype A may promote cancer cell

growth and migration, while the enriched immune-related

pathways in subtype B indicate potential immunogenic responses.

The mechanistic insights from these analyses highlight the complex

interplay between gene expression patterns and osteosarcoma

progression, emphasizing the need for further research to uncover

the underlying biological mechanisms and therapeutic implications.

By integrating these findings, we can better understand the

biological significance of the differentially expressed genes and their
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roles in osteosarcoma development and progress ion.

This comprehensive approach lays the groundwork for future

investigations into targeted therapies and prognostic biomarkers

in osteosarcoma, enhancing the potential for personalized

treatment strategies.

Risk genes are often utilized in the development of therapeutic

targets. In our research, EDIL3 and SQLE may also serve as

potential therapeutic targets. Therefore, we validated their

functions by downregulating their expression levels in the human

osteosarcoma cell line U2OS. This approach is essential for

investigating potential treatment strategies and advancing our

understanding of osteosarcoma pathology. In osteosarcoma cells,

both the mRNA and protein expression levels of SQLE and EDIL3

genes show significant elevation. Combining the bioinformatics

analysis results from this study, SQLE and EDIL3 are likely to be

genes associated with risk, indicating a positive correlation between

their high expression and the development of osteosarcoma cells.

Knockdown of SQLE and EDIL3 gene expression in osteosarcoma

cells resulted in a significant decrease in proliferation and migration

abilities, accompanied by a notable increase in apoptosis rate. These

findings suggest that SQLE and EDIL3 genes serve as risk factors in

osteosarcoma, promoting tumor development.

In osteosarcoma cells, the mRNA expression levels of MTM1 and

MLH1 genes were significantly decreased, suggesting their functions

may be inhibited in these cells. Although further experimental

validation of these two genes was not conducted in this study,

combining the predictive results suggests that MTM1 and MLH1

genes are likely negatively correlated with tumor development. This

conclusion awaits further experimental investigation.

While the prognostic model for osteosarcoma developed in this

study demonstrates remarkably high predictive accuracy, it is

imperative to acknowledge the inherent limitations of this

research methodology. One significant constraint lies in the

retrospective nature of the osteosarcoma patient data utilized,

which were primarily sourced from the TARGET and GEO

databases. This reliance on retrospective data may limit the

generalizability of the findings to broader clinical contexts.

Additionally, the variability in patient demographics and

treatment protocols across different datasets could introduce

biases that affect the model’s performance.

To conclusively ascertain the efficacy and robustness of the

prognostic model, further validation through prospective clinical

trials is essential. These trials would provide more controlled and

comprehensive data, allowing for a more accurate assessment of the

model’s predictive capabilities. Moreover, prospective studies could

help in understanding how the model performs across diverse

patient populations and in different clinical settings, thereby

enhancing its applicability and reliability.

Recognizing these limitations aids in a fair assessment of the

study’s scope and practicality, thereby furnishing crucial insights for

subsequent inquiries. Further exploration of the molecular

mechanisms governed by the genes identified in the model may

unveil previously undiscovered therapeutic targets, potentially

advancing more effective approaches to treating osteosarcoma. For

instance, investigating the regulatory pathways and interactions of
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these genes could provide deeper insights into their roles in tumor

progression and response to treatment. This understanding could

lead to the development of targeted therapies that are more precise

and effective in managing osteosarcoma.

In summary, while the current study provides a robust

framework for prognostic modeling in osteosarcoma, addressing

its limitations through future research and validation efforts is

crucial for translating these findings into clinical practice.

Continuous refinement and validation of the model will ensure its

long-term utility and effectiveness in improving patient outcomes.
5 Conclusion

This study integrated multiple machine learning algorithms and

selected five model genes, including CLTCL1, SQLE, EDIL3,

MTM1, and MLH1. Utilizing these five genes, a programmed cell

death-related osteosarcoma prognostic risk model was constructed,

enabling a more precise and comprehensive analysis of prognostic

factors in osteosarcoma patients. According to all experimental

results, CLTCL1, MTM1, and MLH1 are likely tumor suppressor

genes exerting inhibitory effects on osteosarcoma development,

while SQLE and EDIL3 may function as targets promoting tumor

proliferation, thus presenting new therapeutic potential. Further

research, including in vivo studies and clinical trials, is crucial for

validating the roles of these genes in osteosarcoma progression and

assessing their potential as therapeutic targets.
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