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Background: Diabetic nephropathy (DN) is a complication of systemic

microvascular disease in diabetes mellitus. Abnormal glycolysis has emerged as

a potential factor for chronic renal dysfunction in DN. The current lack of reliable

predictive biomarkers hinders early diagnosis and personalized therapy.

Methods: Transcriptomic profiles of DN samples and controls were extracted

from GEO databases. Differentially expressed genes (DEGs) and their functional

enrichments were identified. Glycolysis-related genes (GRGs) were selected by

combining DEGs, weighted gene co-expression network, and glycolysis

candidate genes. We established a diagnostic signature termed GScore via

integrative machine learning framework. The diagnostic efficacy was evaluated

by decision curve and calibration curve. Single-cell RNA sequence data was used

to identify cell subtypes and interactive signals. The cMAP database was used to

find potential therapeutic agents targeting GScore for DN. The expression levels

of diagnostic signatures were verified in vitro.

Results: Through the 108 combinations of machine learning algorithms, we

selected 12 diagnostic signatures, including CD163, CYBB, ELF3, FCN1, PROM1,

GPR65, LCN2, LTF, S100A4, SOX4, TGFB1 and TNFAIP8. Based on them, an

integrative model named GScore was established for predicting DN onset and

stratifying clinical risk. We observed distinct biological characteristics and

immunological microenvironment states between the high-risk and low-risk

groups. GScore was significantly associated with neutrophils and non-classical

monocytes. Potential agents including esmolol, estradiol, ganciclovir, and

felbamate, targeting the 12 diagnostic signatures were identified. In vitro, ELF3,

LCN2 and CD163 were induced in high glucose-induced HK-2 cell lines.
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Conclusion: An integrative machine learning frame established a novel

diagnostic signature using glycolysis-related genes. This study provides a new

direction for the early diagnosis and treatment of DN.
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1 Introduction

Diabetic nephropathy (DN) is a prevalent and severe

microvascular complication of diabetes mellitus (DM), with

epidemiological studies estimating the risk of developing DN to

be as high as 25-40% (1). As a leading cause of end-stage renal

disease globally and a precursor for chronic kidney disease, DN

imposes a considerable healthcare burden on patients, families, and

society (2). A comprehensive understanding of the pathogenesis

and biological characteristics of DN, along with the identification of

reliable predictive biomarkers for high-risk groups, is essential for

early prevention and detection or for slowing disease progression.

Currently, clinical practice lacks effective early diagnostic markers,

resulting in many diabetic patients unknowingly progressing to DN

due to inadequate monitoring.

Glycolysis, a pivotal metabolic pathway ubiquitously present in

the cells of all living organisms, is responsible for the conversion of

glucose into pyruvate (3). This process, occurring in the cytoplasm,

stands at the heart of energy metabolism, essential for meeting the

bioenergetic demands of the cell. In DN, the impaired utilization of

glucose by cells leads to changes in the bioactivity of glycolysis (4).

This metabolic reprogramming not only affects the function of

kidney cells but may also exacerbate kidney damage. In addition,

glycolysis in DN may interact with pathological processes such as

inflammation (5), oxidative stress (6), and extracellular matrix

accumulation (7), which are key factors in the progression of DN.

Therefore, a deeper understanding of the mechanism of glycolysis

in DN may lead to the discovery of new predictive or intervention

targets, providing a theoretical basis for new treatment strategies.

In this study, we applied 108 combinations of 10 machine

learning algorithms, including Elastic Net (Enet), Random Forest

(RF), and Support Vector Machine (SVM), to identify predictive

signatures associated with glycolysis in DN. Utilizing these genes,

we developed a diagnostic prediction system termed GScore. The

diagnostic model demonstrated satisfactory predictive performance

and stability across the training/internal validation set, and three

independent external validation sets. We conducted a

comprehensive analysis of GScore regarding immune infiltration,

pathway enrichment, therapeutic drugs, and microenvironment

characteristics at single-cell resolution. Furthermore, in vitro

experiments indicated significant differences in the expression
02
levels of the 12 diagnostic signatures. Our findings offer a novel

perspective on the aberrant glycolysis state during DN progression

and highlight potential avenues for early diagnosis and treatment

strategies. The overall design of this study is illustrated in Figure 1.
2 Materials and methods

2.1 Data acquisition and preprocessing

We obtained gene expression matrix from the Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo). The

data collection criteria included (1): expression profiling by array,

(2) glomerular or tubular tissue, (3) homo sapiens. This study

incorporated GSE47183 (8), GSE47184 (8), GSE104948 (9),

GSE104954 (9), GSE96804 (10), GSE30528 (11), and GSE30529

(11) from microarrays, and GSE183276 (12) from single-cell RNA

sequence. Detailed information on each dataset is provided in

Supplementary Table 1. Only genes present in all datasets were

retained. To filter diagnostic signatures and assess their predictive

performance for DN occurrence, we combined GSE47183,

GSE47184, GSE104948, and GSE104954 into a meta-cohort

named MetaGSE, which contained 56 DN samples and 36 normal

controls. The “normalizeBetweenArrays” function from the

“limma” package was utilized for data correction (13).

Subsequently, “removeBatchEffect” function was employed to

eliminate batch effect across datasets (13). Principal component

analysis (PCA) and t-Distributed Stochastic Neighbor

Embedding (t-SNE) were utilized to assess data distribution

(Supplementary Figure 1).
2.2 Differentially expressed genes
identification and functional enrichment

Differentially expressed genes (DEGs) between DN and control

groups were identified using limma package (13) in the MetaGSE

dataset. The thresholds were adjusted P < 0.05 and |log2FC| > 0.5. The

DEGs results are detailed in Supplementary Table 2. Visualization was

conducted using the “ggplot2” and “complexheatmap” R packages. To

elucidate biological function of DEGs, we conducted Gene Ontology
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(GO) (14), Kyoto Encyclopedia of Genes and Genomes (KEGG) (15),

and REACTOME (16) enrichment analysis by the “clusterProfiler”

package (17). Results were deemed statistically significant with

Benjamini-Hochberg adjusted p-values < 0.05.
2.3 Pathway enrichment

The Gene set “h.all.v2023.2.Hs.symbols” from the Molecular

Signatures Database (MsigDB; https://www.gsea-msigdb.org/gsea/

msigdb) (18) was utilized for Gene Set Enrichment Analysis (GSEA)

(19) to evaluate potential biological processes. The normalized

enrichment score (NES) and false discovery rate (FDR) were used

to quantify enrichment magnitude and assess statistical significance.
2.4 Gene correlation analysis

Pearson correlation analysis was performed on DEGs from both

DN and controls to evaluate distinct gene expression patterns.
2.5 Weighted gene co-expression network
construction and hub genes identification

To identify gene sets with highly correlated expression changes

and screen for candidate biomarkers associated with DN, we
Frontiers in Immunology 03
employed Weighted gene co-expression network analysis

(WGCNA) (20). Initially, hierarchical clustering was conducted to

eliminate outliers. An appropriate soft power was then selected to

construct a weighted adjacency matrix, which was transformed into

a topological overlap matrix (TOM) characterized by distinct colors

and module eigengenes (MEs). Each module contained a minimum

of 50 genes, and adjacent modules with a similarity threshold of at

least 0.7 were merged. Finally, Pearson’s correlation coefficient was

calculated to assess the correlation between each ME and the

DN samples.
2.6 Identification of the glycolysis-
related genes

We extracted non-redundant glycolysis-related candidate

genes from the relevant published literature, Genecards

(https://www.genecards.org/), as well as from the HALLMAR_

GLYCOLYSIS and REACTOME_GLYCOLYSIS gene sets within

the MsigDB. Additionally, we identified hub genes within the

module highly correlated with DN by applying a Gene

Significance (GS) threshold greater than 0.25 and a Module

Membership (MM) threshold greater than 0.7. Ultimately, we

identified glycolysis-related genes (GRGs) by overlapping the hub

genes, glycolysis-related candidate genes, and DEGs.
FIGURE 1

The overall design of this study.
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2.7 Construction of the glycolysis-related
genes score by integrative machine
learning models

To develop a diagnostic model with high predictive accuracy, we

followed these steps (1): The MetaGSE cohort was randomly divided

into an training set and an internal validation set at a ratio of 7:3. The

individual external validation sets were GSE96804, GSE30528, and

GSE30529. We employed several integrative machine learning

algorithms, including Lasso, Ridge, Elastic Net (Enet), Random

Forest (RF), Stepglm, Generalized Boosted Regression Modeling

(GBM), Support Vector Machine (SVM), Extreme Gradient

Boosting (XGBoost), glmBoost, and Naive Bayes. Combinations of

these 10 algorithms were applied to the MetaGSE for signature

selection and model construction using 10-fold cross-validation. (2)

All models were evaluated on both the internal training cohort and the

external validation cohorts. (3) We calculated the Area Under the

Curve (AUC) and 95% confidence intervals (Cis) for MetaGSE,

GSE96804, GSE30528, and GSE30529, subsequently ranking all

models based on the AUC index. (4) The top 12 potential

diagnostic signatures identified by the most efficient algorithm

combinations were CD163, CYBB, ELF3, FCN1, GPR65, LCN2,

LTF, PROM1, S100A4, SOX4, TGFBI, and TNFAIP8. (5) Based on

these selected signatures, we established a diagnostic model predictive

of DN occurrence, termed the GScore. The GScore is derived from

single-sample Gene Set Enrichment Analysis (ssGSEA) using the

“GSVA” R package: GScore = ssGSEAsocre (12 diagnostic signatures).
2.8 Evaluation of GScore by
multiple approaches

We first developed a nomogram based on diagnostic signatures to

quantify the risk of DN (21). We then assessed the predictive ability

and diagnostic accuracy of both the nomogram and the GScore using

decision curve analysis and calibration curves (22). Additionally, we

constructed Receiver Operating Characteristic (ROC) curves for each

diagnostic signature across the training and validation sets.
2.9 Immune cell infiltration assessment and
correlation analysis

To investigate the immunological characteristics between DN

samples and controls, we employed the ssGSEA method to quantify

the infiltration levels of 28 immune cell types and assess correlations

among these cells (23). Additionally, we utilized the Spearman rank

correlation test to evaluate the relationship between each diagnostic

signature and immune cells in the DN samples.
2.10 Risk evaluation and biological
characteristic analysis based on GScore

To further investigate the stratified predictive ability of the

GScore, we calculated it for all samples. Based on the median
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GScore, subjects were classified into high-risk and low-risk groups.

We then aimed to elucidate the distinct characteristics between

these groups by examining the expression patterns of GRGs and

DEGs. Additionally, we conducted GO (14), KEGG (15), GSEA (19)

enrichment analysis. Moreover, we assessed the correlation between

the GScore and the infiltration levels of various immune cells (24).
2.11 Single-cell RNA-seq data collection
and processing

We collected single-cell RNA sequencing data of 14 DN samples

and 20 normal controls in the GSE183276. Seurat (version 4.4.0)

(25) was used for the analysis of the single-cell data. Cells with

mitochondrial gene expression below 50% and those containing at

least three cells with between 500 and 5000 unique multiplex indices

(UMIs) were retained. We then selected 3000 highly variable genes

for downstream analyses. Harmony (26) was employed to correct

for batch effects across samples. Cell clusters were identified using

the “FindNeighbors” and “FindClusters” functions, and visualized

with t-SNE. Concurrently, we calculated differentially expressed

genes within each cell cluster using the “FindAllMarkers” function

and the Wilcoxon test. Major cell types were annotated based on

established markers. To evaluate the GScore for each cell type, we

utilized AUCell (27) to assess the bioactivity of GRGs in each

celltypes and map the GScore. Finally, we performed cell interaction

analysis on the subtypes with the highest GScore using

CellChat (28).
2.12 Potential therapeutic
agents prediction

To further explore the clinical implications of GRGs, we

examined the Connectivity Map database (cMAP; https://clue.io/)

(29) to identify small molecule agents with potential therapeutic

effects. The 3D structures of these small molecules were obtained

from pubchem (https://pubchem.ncbi.nlm.nih.gov/) (30).
2.13 Cell culture and establishment of in
vitro model of DN

The proximal tubular epithelial cell line (HK-2) was purchased

from FuHeng Biology and cultured in DMEM/F12 (Servicebio,

China) with 10% fetal bovine serum (FBS, Pricella, China) and 1%

penicillin-streptomycin (Biosharp, China) at 37°CC in a humidified

atmosphere of 5% CO2. HK2 cells were inoculated into 96-well

plates with the number of 5×10^3 per well. After 24 hours of serum-

free culture, the culture medium with glucose concentration of

17.5mM, 30mM, 45mM and 60mM was used for 48h. Then,

according to the scheme given by the reagent manufacturer, the

Cell Counting Kit-8(Beyotime, C0038, China) was used to

determine the cell viability, and the high glucose concentration at

80% of the cell viability was taken as the glucose concentration of

the diabetic nephropathy model in vitro. HK-2 cells were inoculated
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in 6-well plates and cultured in serum-free medium for 24 h, then

exposed to serum-free medium supplemented with D-glucose (HG)

for 48 h. The cells cultured with 17.5mMD-glucose (NG) were used

as control and treated for 48 h.
2.14 RNA extraction and qRT-PCR

Total RNA from HK-2 were extracted using the SteadyPure

Universal RNA Extraction KitII (Accurate Biotechnology,

AG21022, China). The ABScript Neo RT Master Mix for qPCR

with gDNA Remover (ABclonal, RK20433, China) was used for the

reverse transcription of miRNA. 2X Universal SYBR Green Fast

qPCR Mix ((ABclonal, RK21203, China) was utilized for

conducting real-time quantitative PCR. The relative expression

levels were calculated using two-delta delta CT. Specially designed

primers are provided in Table 1.
2.15 Western blotting

Radio immunoprecipitation assay buffer (EpiZyme, PC101,

China) was used to extract cellular proteins. The protein

concentration was quantified via a bicinchoninic acid (BCA)

protein assay kit (EpiZyme, ZJ102, China). Then, all the protein

samples were mixed with 5X SDS-PAGE protein loading buffer

(EpiZyme, LT103, China). After all the samples were denatured at

100°C for 10 min. Separation via SDS-PAGE, the protein was

shifted to PVDF membranes(EpiZyme, WJ002, China) and seal

the film with 5% skim milk powder for 1 h. Afterward, the

membranes were incubated overnight with primary antibodies

CD163 (1:5000, Proteintech, 16646-1-AP, China) and b-actin
(1:10000, Proteintech, 66009-1-IG, China). Then incubated with

HRP conjugated antibody at room temperature for 1 h. Bands were

detected by enhanced chemiluminescent(EpiZyme, SQ203, China)

and analyzed with ImageJ 1.54g software (NIH, USA) based on the

gray value of target protein(CD163) and gray ratio of the internal

reference (b-actin).
2.16 Statistical analysis

All statistical analyses were performed using R software (version

4.2.2, https://www.r-project.org/). Pearson correlation was used to

analyze two continuous variables, while comparisons between two

groups were performed using the t-test. Correlation analysis

between genes and immune cells employed the Spearman

method, utilizing either the “ggpubr” or “stats” R packages. The

Wilcoxon rank-sum test assessed differences between two non-

normally distributed variables. Receiver operating characteristic

(ROC) curves were generated using the “pROC” R package (31).

An adjusted p-value or a p-value with a significance threshold of

0.05 was considered statistically significant.
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3 Results

3.1 Microarray data collection
and preprocessing

Four microarray datasets—GSE47183, GSE47184, GSE104948,

and GSE104954—were normalized and merged into a large

training/internal validation cohort named MetaGSE. The batch

effect was corrected by using the “removeBatchEffect” function of

“limma” package (13). This MetaGSE contains 56 DN samples and

36 Normal controls. Following normalization, the data distributions

from each dataset fell within a similar range (Supplementary

Figures 1A, B), and the batch effects between datasets were

effectively mitigated (Supplementary Figures 1C, D).
3.2 Identification of DEGs and
functional annotations

A total of 296 DEGs in DN were identified using thresholds of

adjusted p-value < 0.05 and |log2FC| > 0.5 (Figure 2A,

Supplementary Table 2). Among these, 195 DEGs were

downregulated, including LYZ, CX3CR1, C3, and CXCL6, which

are implicated in renal inflammation and immune cell activation.

Conversely, 101 DEGs were upregulated, including KLK1, ALB, and

PDK4, which play roles in fluid and electrolyte balance as well as

energy metabolism in the kidney. The distribution of DEGs

indicates distinct gene expression patterns between DN and

controls (Figure 2B). To elucidate the biological mechanisms

underlying DN, pathway enrichment analyses were conducted for

both upregulated and downregulated DEGs. The GO enrichment

results revealed increased catabolism, including carboxylic acid and

cellular amino acid catabolism in DN. Additionally, adaptive

immune responses such as humoral immune response, bone

marrow leukocyte activation, and positive regulation of cytokine

production were found to be dysregulated (Figure 2C,

Supplementary Table 3). KEGG and REACTOME pathway

analyses corroborated these findings, indicating excessive

activation of fatty acid metabolism and dysregulation of

complement and coagulation cascades (Figure 2D, Supplementary

Tables 3). These pathway enrichment results suggest a state of

heightened catabolism and abnormal immune response activation

during the progression of DN. Furthermore, The GSEA enrichment

analysis using hallmarks from the MsigDB database indicated

positive enrichment in oxidative phosphorylation and

peroxisomes, alongside negative enrichment in interferon gamma

and alpha responses (Figures 2E, F, Supplementary Table 3).

Previous literature discussed the imbalance of the oxidative-

antioxidant system in DN, highlighting increased oxidative stress

due to high glucose, which induces endothelial cell apoptosis and

fibrosis, leading to renal histological and functional abnormalities

(32, 33). However, research on the antiviral infection response in

DN remains limited.
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3.3 Evaluating key modules in weighted
gene co-expression network and
recognizing GRGs in DN

In the initial phase of this study, we identified potential

differences in gene expression patterns between diabetic kidney

disease with DN and control groups. Subsequently, DEGs from the

MetaGSE cohort were selected for clustering and correlation

analyses. The results demonstrated distinct clustering and

correlations among these genes within the DN and control

groups (Figure 3A). For example, PDK4 in DN exhibited positive

correlations with APOM, C1QA, ELF3, and GPR65, which were not

observed under normal conditions. This indicates that focusing

solely on previously screened DEGs may be insufficient. To more

comprehensively identify key genes associated with the DN

phenotype, we conducted a Weighted Gene Co-expression

Network Analysis (WGCNA). After hierarchical clustering of all

samples, we excluded outliers (Figure 3B). An optimal soft

threshold of power = 7 (R² = 0.9) was selected to construct a

scale-free topological network (Figure 3C). In this study, we set the

minimum module gene count to 50 and the MEDissThres to 0.3,

ultimately identifying 20 co-expression modules (Figure 3D). Our

findings revealed that the MEturquoise module exhibited the

strongest positive correlation withDN in the MetaGSE cohort (cor

= 0.52, p = 1.21e-07, Figure 3E). Furthermore, the gene significance

(GS) of the MEturquoise module showed a significant correlation

with module membership (MM) (cor = 0.68, p < 1e-200, Figure 3F).

These results suggest that the genes within the MEturquoise module

may possess functional relevance in DN. We screened 370 critical

genes from the MEturquoise module based on the criteria GS > 0.25

and MM > 0.7 (Supplementary Table 2). Glycolysis-related

candidate genes were compiled from relevant literature, the

GeneCards (https://www.genecards.org/) (34), as well as from the

HALLMARK_GLYCOLYSIS and REACTOME_GLYCOLYSIS
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gene sets within the MsigDB (18) (Supplementary Table 2). By

intersecting these with the previously identified DEGs, we filtered

out 46 GRGs (Figure 3G).
3.4 Construction and validation of the
diagnostic signatures based on integrative
machine learning

To construct diagnostic signatures based on GRGs, we

employed 108 combinations of 10 machine learning algorithms

for variable selection and model development. The combination of

each machine learning algorithm can be referred to in

Supplementary Table 4. The MetaGSE cohort was divided into a

training set and an internal validation set at a ratio of 7:3, ensuring a

balanced distribution of clinical characteristics. Within the internal

training set, we conducted 10-fold cross-validation to evaluate each

algorithm combination and calculate AUC values. The ranking of

AUC values for all algorithms is presented in Figure 4A and

Supplementary Table 4. Notably, the combination of Support

Vector Machine (SVM) with Elastic Net (Enet; alpha = 0.6)

demonstrated superior performance across both internal and

external datasets, achieving an AUC of 0.911 (95%CI: 0.841 -

0.965) in the training/internal validation set and AUCs of 0.743

(95%CI: 0.602 - 0.857), 0.915 (95%CI: 0.761 - 1.000), and 0.975

(95%CI: 0.870 - 1.000) in the external validation sets. The AUCs

and 95% Cis for all models can be found in Supplementary Table 4.

The lower AUC in the GSE96804 dataset may be attributed to the

control samples, which were normal tissues adjacent to surgically

removed tumors and likely exhibited underlying transcriptional

abnormalities. In summary, the SVM + Enet (alpha = 0.6) algorithm

combination merged as a highly accurate predictive model. Under

10-fold cross-validation frame, we identified the optimal lambda

value of 0.02732 (referred to as lambda.min, that with the smallest
TABLE 1 Primers used for RT-qPCR.

Gene Forward primer sequence(5’-3’) Reverse primer sequence(5’-3’)

SOX4 AATGCCGAGAACACGGAAG ACCACACCATGAAGGCGTTC

TGFBI CTTCGCCCCTAGCAACGAG TGAGGGTCATGCCGTGTTTC

TNFAIP8 AAGATGAGCTAGCATTGATGGAG TTCATTTAACAGCCTGGATAACAC

S100A4 GCCCTGGATGTGATGGTGTC GTTGCTGTCCAAGTTGCTCATC

PROM1 GGAGTCGGAAACTGGCAGATAG TGAACGCCTTGTCCTTGGTAG

LTF TGCCCAACAGCAACGAGAG TCCATCAGTGTTCTGCAAGACAG

LCN2 CAGGGGAAGTGGTATGTGGTAG TGGCAACCTGGAACAAAAGTC

FCN1 CATTCAAGGTGGCTGACGAG CATCATTGTCTTGGTCTTTGGTG

ELF3 CAGATGTCATTGGAGGGTACAGA CGCTTGCGTCGTACTTGTTC

CYBB TCGCATCCATTCTCAAGTCAG GCATTGTTCCTTTCCTGCATC

CD163 TTTGTCAACTTGAGTCCCTTCAC TCCCGCTACACTTGTTTTCAC

GPR65 GAAATGGCAAATCAACCTCAAC CTTGTTTTCCGTGGCTTTATTG

b-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA
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average error) in the SVM + Enet model. This analysis led to the

identification of 12 key genes (SOX4, TGFBI, TNFAIP8, S100A4,

PROM1, LTF, LCN2, FCN, ELF3, CYBB, CD163, GPR65) along

with their coefficients (Figure 4B). Moreover, we developed a

predictive nomogram for the occurrence and progression of DN

assigning score points to each diagnostic signature. In the

nomogram, each diagnostic signature is assigned a score point.

The total score, derived from the sum of these points, predicts the

risk of DN (Figure 4C). Previous attempts to establish predictive
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models related to glycolysis or DN predominantly utilized lasso

regression, which tends to emphasize predictive performance over

the actual state of glycolysis. To address this limitation, we used the

12 diagnostic signatures as the input gene set to construct a score

model based on GRGs, named GScore. The formula is as follows:

GScore = ssGSEAsocre (12 diagnostic signatures).Calibration

curves confirmed the accuracy of the GScore in predicting DN

(Figure 4D). Additionally, the decision curve analysis demonstrated

that the predictive performance of the nomogram based on the 12
FIGURE 2

Identification of differentially expressed genes (DEGs) in DN and functional annotation. (A) Volcano plot of DEGs between DN and controls.
(B) Heatmap of gene expression patterns between DN and controls. (C) Go enrichment analysis of upregulated DEGs and downregulated DEGs.
(D) KEGG and REACTOME pathway enrichment analysis of DEGs in DN. (E) Positive GSEA enrichment of DEGs. (F) Negative GSEA enrichment of
DEGs. DN, diabetic nephropathy; GO, gene ontology; KEGG, Kyoto encyclopedia of genes and genomes; GSEA, gene set enrichment analysis.
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diagnostic signatures surpassed that of individual genes, suggesting

that it could potentially benefit DN patients (Figure 4D). Finally, we

calculated AUC values for each diagnostic signature in both the

training and validation cohorts, revealing that the predictive power
Frontiers in Immunology 08
of individual signatures was inferior to that of the combined GScore

model. This indicates that the GScore model, based on the 12

diagnostic signatures, possesses the most robust predictive

capability (Figure 4E).
FIGURE 3

Weighted gene co-expression network analysis (WGCNA) and glycolysis-related genes (GRGs) identification. (A) Correlation analysis of differentially
expressed genes between DNc and controls. (B) Samples clustering tree. (C) The soft threshold power and mean connectivity of WGCNA. (D) The
cluster dendrogram. (E) The heatmap depicting the relationship between modules and clinical traits, specifically DN and controls. (F) The scatter plot
between gene significance and module membership in turquoise module. (G) The venn diagram of the intersectiong of DEGs, turquoise module
genes, and glycolysis candidate genes for screening GRGs. WGCNA, weighted gene co-expression network analysis; DN, diabetic nephropathy;
GRG, glycolysis-related genes. p values were showed as: **p < 0.01, ***p < 0.001, ****p < 0.0001.
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3.5 Immune infiltration analysis and
association with diagnostic signatures

The ssGSEA was employed to characterize the abundance of

immune cell infiltration, aiming to elucidate the immune

microenvironment characteristics of DN and explore the

relat ionship between diagnostic signatures and these

characteristics. We applied z-score normalization to standardize

the values of different immune cells within the range of 0 to 1 for

ease of comparison and presentation. Our analysis revealed a multi-

tiered infiltration pattern between DN and normal groups
Frontiers in Immunology 09
(Figure 5A). Specifically, the first-tier cell subset, represented by

central memory CD4 T cells, exhibited high infiltration levels. The

second-tier subset, represented by neutrophils, showed low

infiltration, while the third-tier subset, represented by regulatory

T cells, displayed mid-low infiltration. The fourth-tier subset,

indicated by activated CD8 T cells, demonstrated mid-high

infiltration levels. Subsequently, we compared the infiltration

characteristics of each immune cell subset between the DN and

normal groups. Activated lymphocytes, including activated B cells,

activated CD4 T cells, and activated CD8 T cells, exhibited higher

infiltration levels in DN relative to the normal group. Conversely,
FIGURE 4

Construction and validation of diagnostic signatures by integrative machine learning. (A) The 108 combinations of prediction models using 10-fold
cross-validation with ranked AUC index. (B) Visualization of elastic net regression in MetaGSE cohort and the coefficience of diagnostic signatures.
The optimal lambda was retrieved when the binomial deviance reached the minimum value. (C) Nomogram of the 12 diagnostic signatures. (D) ROC
plots for each diagnostic signature in internal training cohort and external validation cohorts. (E) Decision curve showing the net benefit by applying
the nomogram and all diagnostic signatures. Calibration curve shows the predicted performance of the nomogram.
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certain myeloid cells, such as monocytes and immature dendritic

cells, displayed elevated infiltration levels in the normal group

(Figure 5B). These findings suggest that myeloid cell subtypes

may exist in an immunosuppressive state in DN, which aligns

with previous enrichment results. Figure 5C illustrates the

correlations among various immune cell subsets. Notably,
Frontiers in Immunology 10
activated CD4 T cells showed the highest positive correlation with

myeloid-derived suppressor cells (cor = 0.908), indicating a strong

interactive relationship between lymphocytes and myeloid cells in

DN. Finally, we examined the correlations between primary

infiltrating immune cells in DN and the 12 diagnostic signatures

(Figures 5D–O).
FIGURE 5

Immune infiltration analysis and association with diagnostic signatures. (A) Heatmap demonstrating immune cell infiltration in the DN and the control groups.
(B) Correlations of various infiltrated immune cells (C) Boxplot shows infiltrated immune cell differences between DN and controls. (D–O) The associations
between diagnostic signatures and infiltrated immune cells. DN, diabetic nephropathy. p values were showed as: *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001; ns: not significant.
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3.6 Clinical risk stratification and biological
features analysis based on GScore

We calculated the GScore for each sample in the MetaGSE

cohort. Based on the median GScore, samples were stratified into

high-risk and low-risk groups to assess the clinical stratification

accuracy of the GScore. Results indicated that individuals in the

high-risk group were more predisposed to DN, while those in the

low-risk group were more likely to be normal (Figure 6A). The

expression patterns of the 12 diagnostic signatures were consistent

across both groups, with most signatures upregulated in the high-

risk group (Figure 6B). Subsequently, we investigated the biological

characteristics distinguishing the high-risk and low-risk groups,

identifying 575 DEGs, of which 385 were downregulated and 190

were upregulated (Figure 6C). We performed GO and KEGG

enrichment analyses based on these DEGs. Results revealed that

the DEGs were primarily associated with gland development,

mononuclear cell differentiation, positive regulation of cell

adhesion, the insulin signaling pathway, and the PI3K-Akt

signaling pathway (Figures 6D, E). Additionally, we conducted

GSEA on the DEGs, yielding results like previous GSEA

enrichments between DN and normal conditions (Figure 6F).

Finally, we explored the relationship between GScore and

immunological characteristics (Figure 6G). The GScore exhibited

a strong positive correlation with activated CD4 T cells (cor = 0.885,

p < 2.2e-16) and a negative correlation with monocytes (cor =

-0.568, p = 3.63e-09).
3.7 Heterogeneity of GScore status in
immune microenvironment at the single-
cell transcriptome level

To further elucidate the relationships between GScore and

immune cells, we mapped the GScore onto more granular single-

cell RNA sequencing data. We utilized the public dataset GSE183276,

comprising 14 samples from DN patients and 20 samples from

normal controls (Figure 7A). The tissues for single-cell sequencing

were derived from various renal structures, including collecting

tubules, distal tubules, intermediate tubules, interstitium, proximal

tubules, renal corpuscles, and vessels (Figure 7A). Using established

markers, we identified multiple cell types: B cells (CD79A, MS4A1),

classical dendritic cells (CD11C, CLEC9A), endothelial cells

(PECAM1, VWF), epithelial cells (EPCAM), fibroblasts (MME,

FGF7), juxtaglomerular granular cells (REN), macrophages

(CD163, CD206), mast cells (KIT, CPA3, CST3), mesangial cells

(ACTA2, PDGFRB), monocyte-derived cells (CD14, CD16, CD68,

CD163), mononuclear phagocytes (CD163, CD206, CD14), natural

killer cells (CD16, CD56), neutrophils (CSF3R, FPR2), non-classical

monocytes (CD14, CD16, CD11C, CD163), plasma cells (CD19,

JCHAIN, CD27), Schwann cells (MPZ, NCAM), T cells (CD3D,

CD8A), and vascular smooth muscle cells (CD36, CA4, ACKR1)

(Figure 7A). We evaluated the proportion of each cell subtype within

each sample (Figure 7B), revealing that lymphocytes, particularly T
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and B cells, were prevalent in most DN samples. To investigate the

correlation of our previously developed GScore model with all cell

subsets, we employed the AUCell algorithm to map the GScore of

each cell type. Results indicated that neutrophils and non-classical

monocytes exhibited the highest GScores (Figure 7C). We then

quantified the strength and frequency of cell communications

across all subtypes (Figure 7D), noting significant interaction

strength and quantity for neutrophils and non-classical monocytes.

These findings suggest that neutrophils and non-classical monocytes

may play pivotal roles in glycolysis abnormalities associated with DN.

Interactions between non-classical monocytes and neutrophils with

other cell subsets were predominantly mediated through LGALS9-

CD45, MIF-(CD74+CD44), and MIF-(CD74+CXCR4) pathways

(Figures 7E, F). These results indicate specific common signaling

pathways involved in the progression of DN, which have been

partially explored in other systemic diseases (35–37); however, they

remain understudied in the context of DN and warrant

further investigation.
3.8 Prediction of potential
therapeutic molecules

We identified potential therapeutic agents for the treatment and

management of DN using the 12 diagnostic signatures from the

cMAP database (https://clue.io/) (29). Based on the relevance scores

of each agent relative to the diagnostic signatures (Supplementary

Table 5), we selected four agents with significantly negative scores

that may inhibit DN progression: esmolol (Figure 8A), estradiol

(Figure 8B), ganciclovir (Figure 8C), and felbamate (Figure 8D).

The 3D structural examples of these small molecules were sourced

from PubChem (https://pubchem.ncbi.nlm.nih.gov/) (30). Research

indicates that estradiol reduces the synthesis of angiotensin II and

endothelin, thereby inhibiting renal vasoconstriction and alleviating

renal inflammatory responses (38). Additionally, estradiol

modulates vascular permeability by upregulating nitric oxide

synthase and vascular endothelial growth factor expression, which

may be beneficial in treating and preventing female diabetic

nephropathy (39). However, further clinical trials are necessary to

establish its specific efficacy, safety, and practicality across

diverse populations.
3.9 Expression level of diagnostic
signatures at the vitro level

To evaluate the diagnostic value of the 12 signatures, we

established a high glucose-induced HK-2 cell line, as detailed in

the Methods section. Cell viability exceeded 80% at baseline, with

a glucose concentration of 17.5 mM designated as the control

group and 45 mM as the experimental group. Real-time

polymerase chain reaction (RT-qPCR) was conducted after 48
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hours of culture. The RT-qPCR results indicated that the mRNA

expression levels of ELF3, LCN2, and CD163 were significantly

reduced in high glucose group compared to the control group,

while CYBB, FCN1, PROM1, GPR65, LTF, S100A4, SOX4,

TGFB1, and TNFAIP8 showed increased express ion
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(Figures 9A–L). According to the coefficients in GScore and

previous single-cell analysis results, we further evaluated the

expression of the key marker CD163 by Western blotting (WB).

WB results demonstrated that CD163 expression was lower in the

high glucose group (Figures 9M, N).
FIGURE 6

Risk stratification and biological characteristics analysis. (A) Distribution of risk scores and all samples. (B) Heatmap showing the expressions of the 12
diagnostic signatures. (C) Heatmap showing the differentially expressed genes between high-risk group and low-risk group. (D) The GO functional
enrichment of differential high-risk group and low-risk group. (E) The KEGG functional enrichment of differential genes. (F) The GSEA analysis of
differential expression genes. (G) Correlation between infiltrated immune cells and GScore. GO, gene ontology; BP, biological process; CC, cellular
component; MF, molecular function; KEGG, Kyoto encyclopedia of genes and genomes; GSEA, gene set enrichment analysis.
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4 Discussion

Diabetic nephropathy (DN) is a chronic kidney disease

resulting from diabetes mellitus (DM) and increasingly

constitutes the primary cause of end-stage renal disease among

the elderly in numerous countries (40). Diagnosis of DN typically

occurs in patients with confirmed diabetes after excluding other

primary or secondary glomerular diseases and systemic conditions.

This diagnosis relies on abnormalities in the urinary albumin-to-
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creatinine ratio or urinary albumin excretion rate, alongside

estimated glomerular filtration rate criteria (11). However, early-

stage DN often presents with varying degrees of renal function

decline before fulfilling these diagnostic criteria. While various

pharmacological treatments are available for most DN patients,

including kidney transplantation for those at end-stage, long-term

management remains inadequate, with many patients needing

continuous medication or regular dialysis. Early diagnosis and

intervention can significantly enhance patient outcomes.
FIGURE 7

GScore characteristics in the single-cell transcriptome. (A) The t-SNE plot shows sample composition, tissue sources, and cell subtypes. (B) Stacked
bar chart displaying the cell subtypes proportion of each sample. (C) The distribution of the GScore in all cell subtypes. (D) The circle plot and
heatmap showing the cell communication weights and numbers of all cell subtypes. (E) The receptor-ligand communication weights in
non-classical monocytes. (F) The receptor-ligand communication weights in neutrophils. t-SNE, t-Distributed Stochastic Neighbor Embedding.
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Currently, clinical biomarkers are insufficient to facilitate early

diagnosis or predict DN progression and prognosis. Thus,

developing novel diagnostic biomarkers and identifying potential

therapeutic targets are essential. Glycolysis is the metabolic pathway

through which cells convert glucose into energy. In diabetic

nephropathy (DN), abnormal activation or regulation of

glycolysis can lead to renal damage and exacerbate disease

progression. Research indicates that key glycolysis enzymes, such

as pyruvate kinase M2, are significantly upregulated in DN,

promoting macrophage-mediated inflammatory responses and the

release of pro-inflammatory factors like TNF-a and IL-1b (41).

Additionally, dysfunctional kidney cells undergo metabolic

reprogramming, actively engaging in aerobic glycolysis. The

resulting intermediates contribute to oxidative stress and fibrosis,

further aggravating kidney injury (42). These findings suggest that

GRGs may serve as potential diagnostic markers for DN. However,

the underlying biological mechanisms of GRGs remain poorly

understood, necessitating further investigation into their

diagnostic efficacy and impact on disease progression. In this

study, we conducted a comprehensive analysis of bulk

transcriptome data from diabetic nephropathy (DN) and normal

kidney tissues. We identified 296 DEGs between DN and control

samples and performed functional and pathway enrichment

analyses. Utilizing a large training dataset, we selected twelve

GRGs—CD163, CYBB, ELF3, FCN1, PROM1, GPR65, LCN2,

LTF, S100A4, SOX4, TGFB1, TNFAIP8— through 108

combinations of ten machine learning algorithms, including

stepglm. We subsequently developed a scoring system, termed

GScore, using the algorithm combination SVM + Enet (a = 0.6),
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which yielded the highest combined AUC value. The model was

validated on three independent external datasets, confirming its

robust predictive performance and stability.

Previous studies have partially illuminated the roles of some of

these GRGs in DN progression. Specifically, CD163, a membrane

receptor primarily expressed on monocytes and M2 macrophages,

showed a significant positive correlation with glomerular filtration

rate, contrasting early clinical features of DN characterized by

glomerular ultrafiltration (43). More and preclinical studies are

needed to explore whether it can be used as an early diagnostic

signature. In our cellular experiments, CD163 expression was found

to be reduced in DN models. Additionally, restoring CD163+ M2

macrophages in STZ-induced DN rats improved renal function,

suggesting that targeting CD163 may represent a promising

therapeutic strategy for managing long-term complications of type

2 DM (44). The activation of TGF-b/Smad3 signaling in DN patients

promotes the secretion of ELF3-containing urinary exosomes from

podocytes, correlating closely with glomerular filtration rate decline

(45). This positions urinary exosomal ELF3 protein levels as potential

non-invasive biomarkers for early podocyte injury in DN. The

expression level of PROM1 shows dynamic changes during DN

progression. Meanwhile, PROM1 expression exhibits dynamic

changes throughout DN progression; it increases in proximal renal

tubular cells as DN advances, indicating a protective role that reflects

the ongoing processes of renal tissue injury and repair, although its

molecular mechanisms remain unexplored (46). TNFAIP8, a less-

studied regulator of nuclear immune homeostasis, demonstrated

significantly elevated expression in DN cell lines. Its expression

correlates directly with mesangial cell proliferation, potentially
FIGURE 8

3D structures of potential therapeutic small molecule agents. (A) The 3D structure of esmolol. (B) The 3D structure of ganciclovir. (C) The 3D
structure of felbamate. (D) The 3D structure of extradiol.
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mediated by NADPH oxidase pathways. Deeper molecular

investigations are needed to elucidate the mechanisms linking

TNFAIP8 to diabetic kidney injury (47). Similarly, SOX4 has been

shown to induce mesangial cell proliferation and fibrotic phenotypes

via the LncRNA SNHG14/miR-30e-5p/SOX4 axis (48). Additionally,

we observed significant upregulation of FCN1, GPR65, S100A4, and

TGFBI in DN cell lines, although high-quality studies investigating

their molecular mechanisms in DN progression are limited (49). It is
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worth highlighting that most current published studies have some

oversight. Most of them only consider AUCs when selecting models,

but ignore the importance of 95% Cis, especially when the AUCs of

several models are similar. Choosing features for modeling also

requires careful consideration. Selecting too many features may

lead to overfitting. Too few features may result in low specificity.

The less well studied features in certain diseases may lead to

distortion. The application of GScore allowed for effective risk
FIGURE 9

Expression levels of the 12 diagnostic signatures in vitro. (A–L) mRNA expression of LCN2, GPR65, S100A4, ELF3, TNFAIP8, PROM1, LTF, TGFBI,
SOX4, CYBB, FCN1, CD163 by RT-qPCR. (M) The intensity ratio of CD163/b-action. (N) The WB band of CD163 in high-glucose experimental group
and control group. RT-qPCR, quantitative real-time polymerase chain reaction; WB, western blotting; NG, normal group; HG, high-glucose group. p
values were showed as: *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427626
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2024.1427626
stratification of participants in the training set, successfully

distinguishing DN patients from controls. These findings provide

valuable insights for the early screening of DN in clinical practice.

Recently, several studies have focused on developing predictive

models for diabetic nephropathy (DN). One study constructed a

signature based on four core cell death genes, achieving an AUC of

0.929. In contrast to our model, this study exclusively utilized samples

from glomeruli and did not include tubular tissue (49). Given that

most DN patients also suffer from hypertension and hyperlipidemia,

there is a notable lack of relevant differential diagnostic signatures,

underscoring the clinical significance of addressing renal function

impairment in diabetic patients, particularly those with comorbid

hypertension. In immune infiltration analysis, we observed a

significant increase in central memory CD4 T cells, dendritic cells,

monocytes, M1 and M2 macrophages, and neutrophils in patients

with DN. A similar trend was noted in the single-cell RNA transcript

profiles, indicating abnormal overactivation of myeloid cells within

the DN immune microenvironment. This imbalance between

myeloid cell and lymphocyte activation may contribute to chronic

renal tissue inflammation in DN. The abundance of M1macrophages

is associated with inflammatory responses and programmed cell

death in DN. The interaction between Notch signaling and NF-kB
signaling promotesM1macrophage polarization. HyperpolarizedM1

macrophages secrete pro-inflammatory factors such as IL-4, IL-10,

inducible nitric oxide synthase, and reactive oxygen species, which

exacerbate extracellular matrix secretion, oxidative stress, and

necroptosis in renal intrinsic cells (50). In contrast, M2

macrophages, known for their anti-inflammatory properties, play a

role in renal tissue reconstruction post-injury (51). Notably,

neutrophils and monocytes emerged as major contributors to

GScore in the DN immune microenvironment. Previous studies

have shown that neutrophils overdeposited in the glomerulus

release extracellular traps that can induce glomerular endothelial

pyroptosis (52). Monocytes, which represent a poorly differentiated

pre-myeloid cell population, may alleviate DN symptoms through

regulated differentiation. For example, the A2B adenosine receptor

antagonist MRS1754 has been shown to reduce the expression of

chemokine chemoattractants and adhesion genes in glomerular

monocytes/macrophages, leading to alterations in the M1/M2

macrophage ratio, enhanced macrophage-myofibroblast transition,

and reduced fibrosis and inflammation in DN (53). In summary, our

findings provide initial insights into the characteristics of immune cell

infiltration within the DN immune microenvironment, suggesting

that various immune cell subtypes, particularly myeloid cells, play

crucial roles in DN progression. This highlights potential avenues for

further research on therapeutic strategies. There are several

limitations that warrant acknowledgment. Although we evaluated

and validated the GScore using a substantial dataset, large-scale

prospective clinical trials are essential to further confirm its

diagnostic and predictive capabilities. Currently, available

transcriptome data for DN primarily derives from kidney tissue,

whereas blood samples, which are more accessible clinically, should

also be included. Thus, incorporating data from diverse sources is

necessary to assess the generalizability and practicality of the GScore.

Furthermore, none of the seven datasets used in this study included
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critical clinical information such as age, duration of diabetes, blood

pressure, or blood glucose levels. These indicators are vital for

determining the presence of DN risk factors. Future studies should

aim to integrate clinical data with transcriptional profiles to better

elucidate patients’ stratified clinical characteristics. Additionally,

careful consideration of terminology used to label sample types is

required. The external validation set GSE96804 exhibited moderate

performance, potentially influenced by the fact that control samples

were sourced from cancer patients. It is crucial to determine whether

samples from individuals with underlying conditions can be classified

as normal or control subjects based on the research context. While

this study included experimental validation in cell models to support

future investigations, further in vitro and in vivo experiments are

needed to comprehensively explore the impact of these diagnostic

signatures on DN progression. In conclusion, future research should

focus on more extensive experimental designs, rigorous sample

criteria, precise molecular investigations, and comprehensive

clinical data to systematically elucidate the biological roles of GRGs

in DN progression.
5 Conclusion

In this study, we conducted 108 combinations of machine

learning algorithms to identify 12 diagnostic signatures: CD163,

CYBB, ELF3, FCN1, PROM1, GPR65, LCN2, LTF, S100A4, SOX4,

TGFB1, TNFAIP8. The GScore model, based on these genes,

effectively stratified clinical risk and identified patients with DN.

Utilizing single-cell RNA sequencing data and online drug

databases, we predicted cell subsets that may influence the DN

microenvironment along with potential targeted therapies. Notably,

the expression levels of these signatures significantly differed in

vitro. These findings suggest that the GScore scoring model has the

potential to serve as an essential prediction and treatment decision

support system for DN.
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