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ELISA-R: an R-based method for
robust ELISA data analysis
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1Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins,
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Enzyme-linked immunosorbent assay (ELISA) is a technique to detect the

presence of an antigen or antibody in a sample. ELISA is a simple and cost-

effective method that has been used for evaluating vaccine efficacy by detecting

the presence of antibodies against viral/bacterial antigens and diagnosis of

disease stages. Traditional ELISA data analysis utilizes a standard curve of

known analyte, and the concentration of the unknown sample is determined

by comparing its observed optical density against the standard curve. However,

in the case of vaccine research for complicated bacteria such as Mycobacterium

tuberculosis (Mtb), there is no prior information regarding the antigen against

which high-affinity antibodies are generated and therefore plotting a standard

curve is not feasible. Consequently, the analysis of ELISA data in this instance is

based on a comparison between vaccinated and unvaccinated groups. However,

to the best of our knowledge, no robust data analysis method exists for “non-

standard curve” ELISA. In this paper, we provide a straightforward R-based ELISA

data analysis method with open access that incorporates end-point titer

determination and curve-fitting models. Our modified method allows for direct

measurement data input from the instrument, cleaning and arranging the dataset

in the required format, and preparing the final report with calculations while

leaving the raw data file unchanged. As an illustration of our method, we provide

an example from our published data in which we successfully used our method

to compare anti-Mtb antibodies in vaccinated vs non-vaccinated mice.
KEYWORDS

ELISA, Mycobacterium tuberculosis, Mycobacterium leprae, antibodies, data analysis,
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1 Introduction

Enzyme-linked Immunosorbent assay (ELISA) has been widely used over the years as a

serodiagnostic tool in infectious diseases, including tuberculosis (TB) and leprosy (1–12).

After getting infected with a pathogen, our immune system starts producing antibodies to

fight the infection. ELISA has been used to detect the presence of these antibodies for either
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diagnostic purposes or for evaluating vaccine efficacy (13). When

assessing vaccine efficacy, ELISA can provide us with precise

information regarding whether the candidate vaccine is inducing

potent antibody responses, the number of antibodies produced in

vaccinated and non-vaccinated groups, the specific antigen targeted

by the antibodies, and the type of antibody isotype generated. ELISA

is a cost-effective and efficient method for the initial evaluation of

vaccine effectiveness, particularly in human subjects (14, 15).

TB, caused by Mycobacterium tuberculosis (Mtb), continues to

be a significant global health challenge. The current vaccine, Bacille

Calmette-Guerin (BCG), shows variable efficacy, necessitating

better vaccination strategies (16, 17). ELISA is a powerful tool for

measuring immune responses, particularly antibodies or cytokines

in the blood, which are essential for determining the efficacy of a

vaccine or comprehending the various stages of TB (9, 18–20). In

our study, we explored how mucosal exposure to non-tuberculous

mycobacterium (NTM) affects B cell-mediated immunity and the

efficacy of BCG vaccination against pulmonary TB, leveraging

ELISA to quantify these immune responses (21). NTMs are

mycobacterium that do not cause TB but are ubiquitous in the

environment (22–26). Therefore, most populations in the low-

middle income countries and even high-income countries are

exposed to NTMs almost daily. However, how continuous NTM

exposure affect the immune response to Mtb is largely unknown.

Previous research has highlighted the potential of NTMs to

modulate immune responses to TB due to shared antigens with

Mtb and BCG (27–30). Studies using ELISA have shown mixed

results: some report that NTM exposure can mask BCG-induced

protection, while others suggest enhanced protection. While the

role of NTMs in modulating BCG efficacy has been studied, the

exact mechanisms, remain unclear. Therefore, there is a need for

comprehensive studies. Here we used ELISA to measure the specific

antibody responses induced by NTMs against Mtb. In our study, we

investigated howmucosal exposure to NTMs affects B cell-mediated

immunity and enhances the protective efficacy of BCG vaccination

against pulmonary TB. We hypothesized that NTM exposure

increases B cell influx and anti-Mtb antibody production in the

lungs (due to ~85% genetic similarity between NTM and Mtb),

leading to reduced bacterial burden and improved protection, as

measured by ELISA. This study developed a mouse model

mimicking human BCG vaccination followed by continuous

NTM exposure via drinking water. Mice were divided into four

groups: BCG only, NTM only, BCG plus low-dose NTM, and BCG

plus high-dose NTM. After BCG vaccination and NTM exposure,

mice were challenged with Mtb. ELISA was used to quantify anti-

Mtb IgG and IgA antibodies in serum and bronchoalveolar lavage

fluid (BALF). This data has been employed to develop our ELISA-R

method and to quantify the anti-Mtb immune response in mice that

were exposed to NTM versus those that were not.

ELISA data analysis is as critical as conducting the assay itself.

The correct data analysis ensures the accuracy, reliability, and

interpretability of results. In the case of well-characterized viruses

or known analytes, data analysis is generally uncomplicated and

adheres to the standard curve method (31). In the standard curve
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method, the known antigen or antibody is plotted against varying

concentrations of known antibody/antigen. The concentration of

the unknown analyte is subsequently determined by comparing the

observed value of the unknown analyte against this standard

curve (Figure 1).

On the contrary, vaccine research, particularly that involving

complex microorganisms like Mtb having 4000 genes coding for

~4000 proteins, typically entails examining the existence of

antibodies directed against unidentified vaccine antigens.

Consequently, the generation of a standard curve is not possible

due to the lack of information regarding the antigen and antibody

type. Antibody quantification is accomplished for this type of

ELISA through the utilization of serial dilution of the samples

and a non-standard curve method. As a result, the analysis of ELISA

data in this instance is based on a comparison between vaccinated

and unvaccinated groups. However, to the best of our knowledge,

no robust data analysis method exists for “non-standard

curve” ELISA.

The three common methods that have been used previously for

ELISA data analysis without a standard curve are:
1. Fitting a sigmoid model curve: With this method, the

sigmoidal curve is fit for each sample, and then estimated

key parameters are compared to the points of maximum

growth (PMG) (Figure 2A). When a sample has a higher

concentration of protein to be measured, all dilutions of this

sample have higher absorbance; the sigmoidal curve shifts

towards a more diluted end (32, 33). While this method has

high sensitivity and specificity, it requires complex

algorithms and computational resources, needs sufficient
FIGURE 1

A depiction of the standard curve method of analyzing ELISA data. A
standard curve is generated by plotting different concentrations of
known antigens against the optical density (O.D.) of each
concentration. The O.D. of the unknown antigen is then measured.
The concentration of the unknown antigen is then determined by
matching the O.D. of the unknown antigen with the O.D. of the
known antigen and finding its respective concentration.
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data points for reliable curve fitting and low concentration

samples may not yield accurate parameter estimates.

2. Area under the curve (AUC) method: AUC is defined as the

definite integral between the two points in a curve (34–36).

AUC for ELISA is calculated by estimating the parameters

in a curve and then integrating the curve from the lowest

concentration to the highest dilution (Figure 2B). AUC

method offers the advantage of providing a comprehensive

measure of the overall antibody response across all

dilutions, making it useful for assessing the total

immunogenicity in a sample. Its calculation is relatively

simple compared to fitting a sigmoidal curve, involving

straightforward integration of the absorbance data, which

reduces computational demands. However, the AUC

method has significant drawbacks. It cannot determine

the endpoint titer, the maximum dilution at which the

antibody remains detectable, thereby missing critical

quantitative information. Additionally, the accuracy of

the AUC is highly dependent on the correct estimation of

curve parameters, which can be influenced by noise and

variability in the data, potentially leading to less

reliable results.

3. Endpoint titer (ET) method: The ET method in ELISA relies

on selecting a cutoff absorbance level above the noise

background (Figure 2C) (37, 38). The ET method in ELISA

is advantageous due to its simplicity and ease of

implementation. It quickly identifies the presence of

antibodies by determining the highest dilution at which the

antibody is still detectable, making it suitable for high-

throughput screening. This method does not require

complex computational tools or advanced expertise,

allowing for rapid and straightforward analysis. However,

the ET method produces discrete, less precise data, as

dilutions are limited to specific values, potentially

overlooking subtle differences in antibody concentrations.

Additionally, the method is susceptible to background

variability across different samples and wells, which can
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introduce bias and affect the accuracy of the cutoff

determination. The lack of detailed quantitative information

about antibody concentrations further limits its utility in

comprehensive immunological studies.
Here, we have developed a comprehensive R-based ELISA

method (ELISA-R) by integrating the fitting of a sigmoid model

with the endpoint titer method to leverage the strengths of both

approaches. The sigmoid model fitting provides high sensitivity

and specificity by accurately modeling the concentration-

absorbance relationship across a range of dilutions, allowing for

precise quantification of protein levels. Meanwhile, the endpoint

titer method offers simplicity and rapid identification of the

highest dilution at which antibodies are still detectable, providing

a clear and easily interpretable measure. Our ELISA-R method

begins with the direct input of measurement data (O.D. values and

sample information) from the instrument, ensuring a seamless

transition from raw data to analysis. The data is then cleaned

and arranged into the “tidy” format, preparing it for subsequent

analysis steps. The sigmoid model fitting is applied to generate a

detailed absorbance-concentration curve, extracting key parameters

that represent the sample’s response. Simultaneously, the endpoint

titer is determined by identifying the dilution level where the

absorbance exceeds a predefined cutoff, indicating the presence

of antibodies.

By combining these two methods, ELISA-R generates a single,

specific value for each sample that reflects both the detailed

quantitative information from the curve fitting and the practical,

easily comparable endpoint titer. This dual approach enhances the

robustness and reliability of the analysis, allowing for meaningful

comparisons across different samples and groups. Additionally,

ELISA-R ensures that the raw data file remains unchanged,

preserving data integrity while producing a comprehensive final

report with all necessary calculations and visualizations. This

integrated method offers an accessible, efficient, and reproducible

solution for ELISA data analysis, supporting a wide range of

immunological research applications.
FIGURE 2

Illustration of curve-fitting, an area under the curve (AUC), and endpoint titer (ET) methods: Using data from Dutt et al., 2022, we have analyzed data
using already established methods. (A) the previous curve-fitting method that calculates the point of maximum growth, (B) the AUC method that
calculates the total area covered by each sample at different dilutions, and (C) the ET method that takes into consideration the least dilution at which
the curve starts above the background.
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2 Methods

2.1 Data used for ELISA-R data analysis
method development

For the ELISA-R development, we used our published data from

Cell Reports (21). In this data, ELISA was performed to evaluate the

presence of anti-Mtb IgA antibodies in the bronchoalveolar fluid

(BALF) and serum of BCG vaccinated and BCG vaccinated-and

non-tuberculous mycobacteria (NTM) exposed mice at 120 days

post-Mtb infection. A detailed ELISA method has been

described in the paper. But briefly, high binding 96‐half‐well

microplates (Corning Life Sciences, cat#3690) were coated with

100 ng of Mtb HN878 lysate (BEI, cat# NR-14824) prepared in

PBS and incubated overnight at 4°C. The next day, plates were

washed five times with 180 μL of wash buffer (PBS + 0.05% Tween‐

20), and non‐specific interactions were blocked using 180 μL of

blocking buffer (PBS + 0.05% Tween‐20 + 2% BSA + 2%

normal goat serum [Jackson ImmunoResearch Inc., cat#005-000-

121 West Grove, PA, USA]). After 2 hours, plates were washed, and

different dilutions of serum and BAL prepared in blocking buffer

(1:50, 1:100, 1:200, 1:400, 1:800, 1:1600, 1:3200, 1:6400, 1:12800, and

1:25600) were added to the wells and incubated for one hour. Plates

were then washed and incubated for 1 hour with horseradish

peroxidase (HRP)‐conjugated anti‐mouse IgA secondary

antibodies (Southern Biotech, cat# 1040-05) prepared in the

blocking buffer. The colorimetric substrate was developed with

the addition of 100 μl of TMB substrate (Thermo Fisher

Scientific, Rockford, cat# ENN301), and the reaction was stopped

by adding 50 μl of 1 M sulphuric acid. Absorbance was measured at

450 nm using a BioTek Synergy 2 plate reader (BioTek Instruments

Inc., Winooski, VT, USA).
2.2 Creating a function for curve
fitting model

To develop a more robust way of ELISA data analysis, we

created a curve-fitting model function using the nlsLM function of

the minpack.lm R package (39). nlsLM function from the

minpack.lm package, is a powerful technique for fitting non-

linear models to data. This approach is especially advantageous

for ELISA data analysis, where the relationship between dilution

and absorbance often follows a non-linear pattern. The nlsLM

function in R is used for non-linear least squares fitting, a process

that minimizes the sum of the squares of the residuals (the

differences between observed and predicted values). This function

is an enhancement of the traditional Levenberg-Marquardt

algorithm, designed for more robust performance, particularly

with complex, non-linear data (27). In the early 1960s, the

Levenberg-Marquardt algorithm was developed to solve nonlinear

least squares problems. Least squares problems arise in the context

offitting a parameterized mathematical model to a set of data points
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by minimizing an objective expressed as the sum of the squares of

the errors between the model function and a set of data points. By

minimizing the sum of squared residuals, non-linear models fitted

using nlsLM will provide a better fit to the data, leading to more

accurate predictions and inferences.

Hence, we used the following equation for curve fitting sigmoid

model:

f (x) = (a − d)=(1 + (log _ dilution=c) b))  +  d (1)

Where,

a = maximum absorbance;

d = minimum absorbance;

c = point of maximum growth; and

b = slope at c.

This method takes into account the minimum and maximum

absorbance values, the point of maximum growth, and the slope of

the curve. This comprehensive approach ensures that all critical

aspects of the data are considered.
2.3 Applying the values obtained from the
curve-fitting model function as an input
for the endpoint titer function

The traditional ET method, despite its widespread use in

vaccinology for measuring antibody levels, has notable limitations

that restrict its comprehensiveness. The method’s reliance on twofold

serial dilutions, while generally adequate for distinguishing markedly

different responses, may lack sensitivity in detecting subtle yet

significant variations in antibody levels. Furthermore, the

reproducibility and standardization of ET can be problematic due

to variability in protocols and interpretation across different

laboratories. Therefore, we created the function for endpoint titer

(ET) evaluation. Our ET function is not based on the traditional

minimum background for each sample but rather takes into account

the minimum andmaximum absorbance of each sample, the shape of

the curve, and the slope of the curve. The input values for these

parameters are taken from the output of the curve-fitting model.

ET = c ∗ (((a − d)=(0:2 − d)) − 1)(1=b) (2)

Traditional endpoint titer calculations often rely on a fixed

threshold, which may not be optimal for all samples. By using the

fitted parameters from the curve, this method provides a more

accurate and sample-specific endpoint titer.
2.4 Statistical analysis

Statistical significance between the two groups was determined

using unpaired t-tests (p < 0.05) using the ggpubr package. If there

are more than two groups, then Analysis of Variance (ANOVA)

was applied. All codes have been generated and plotted using R

(Version 4.1).
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3 Results

3.1 Create the curve-fitting model using
the NTM dataset

Using the NTM datasets, we first applied the approach of fitting

a sigmoid model to each mouse in the Saline, BCG, NTM, and BCG

+NTM groups. For this, we read the data obtained from Dutt et al.,

2022 (21) (also provided in Supplementary Table 1) in R and

reformatted the data to follow the principles of tidy data (40). We

converted the dilutions to log base 2 to simplify the values and

converted the data to a dataframe. We then applied the curve fitting

model equation to each mouse in the group and evaluated the values

for maximum absorbance, the slope at c, the point of maximum

growth, and minimum absorbance (the values of the coefficients a,

b, c, and d, respectively, in Equation 1. This function then results in

a sigmoid curve of absorbance versus dilution (log2) for each mouse

(Figure 3) and the values for a, b, c, and d for each mouse

(Supplementary Table 1). We will then use the values of a, b, c,

and d as input for the endpoint titer function.
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3.2 Applying the curve-fitting model values
to the endpoint titer function

Traditionally, ET has been calculated using O.D.50, which is the

reciprocal of the highest sample dilution that gives a reading at O.D.

of 50% of that sample. However, it does not take into account the

minimum and maximum absorbance of each sample, the shape of

the curve, and the slope of the curve. In our method, we are taking

these important factors into account by combining the curve-fitting

model with the ET function. We applied the values of a, b, c, and d

to the above-mentioned ET equation and obtained the ET value of

each mouse (Supplementary Table 2). We employed both the

traditional Endpoint Titration (ET) method and the advanced

ELISA-R method to analyze our data, as shown in Figures 4A, B,

respectively. The comparison reveals significant differences between

these two approaches. Using the traditional ET method, the

endpoint titer values, analyzed with O.D.50, ranged from 0 to

1200 dilutions. These values failed to accurately represent

antibody strength and titer. Conversely, the ELISA-R method

demonstrated superior performance by pinpointing the highest
FIGURE 3

Curves generated for each mouse using a modified curve fitting model. After applying the curve-fitting model to our Dutt et al., 2022 dataset, our
model generated the curves against dilution versus absorbance for each mouse. These curves then allow our modified curve fitting model to identify
the average maximum absorbance, minimum absorbance, background, and slope of the curve based on each sample to enter into our method.
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dilution at which the antibody effectively binds to the antigen.

Furthermore, the ELISA-R method significantly reduced sample

variability, providing more consistent and reliable results. This

highlights ELISA-R’s ability to deliver precise and meaningful

insights into antibody-antigen interactions, making it a more

robust and dependable choice for ELISA data analysis.
3.3 Testing ELISA-R with clinical human
serum samples

We developed ELISA-R using a dataset from a mouse model

that is in a highly controlled environment with fewer variables.

However, it is crucial to evaluate our method to other datasets,

especially from human settings. Therefore, we have used the ELISA

raw dataset with serial two-fold titration of the human serum from

1:100 to 1:102,400 with three antigens of Mycobacterium leprae

(rAg85B, PGL-I, and LAM). There are 50 lepromatous patient sera,

which are further divided into borderline lepromatous (BL, n = 13)

or polar lepromatous (LL, n = 37), and 20 tuberculoid sera that are

also divided into polar tuberculoid (TT, n = 10) and borderline

tuberculoid (BT, n = 10). The information about these leprosy

patient serum samples was previously published (41). The O.D.

values for each dilution are plotted to go across each serum sample

[Supplementary Tables 3 (rAg85B), 4 (PGL-I), and 5 (LAM)]. We

applied our ELISA-R method for the analysis of this dataset by

taking into consideration each patient. We first read the data stored

in Excel format in R, subtracted the baseline values of the patients

from the respective wells, and arranged the data in a tidy format.

We then applied ELISA-R to the data for antibodies against all three

antigens, namely, rAg85B, PGL-I, and LAM. In addition, we applied

the traditional ET method using O.D.50 values to compare the

difference between these two methods in human samples (with

more variability). We found that anti-Ag85B, PGL-I, and LAM

antibodies are highest in LL patients, followed by BL, BT, and TT,
Frontiers in Immunology 06
which were consistent with Spencer et al.’s published findings

(Figure 5). In our analysis of human samples as well, the ELISA-

R method consistently outperformed the traditional ET method,

delivering cleaner, more accurate data with significantly reduced

variability. This demonstrates ELISA-R’s superior reliability and

precision in detecting and quantifying our target analytes.
4 Discussion

Quantifying and assessing the presence of antibodies directed

against the bacterial or viral antigens that the vaccine targets is an

essential element of vaccine research (42–44). However, quantifying

antibodies and comparing them among different populations and

vaccination groups can be challenging and time-consuming.

Different methods are available to quantify antibodies and

compare them among samples. However, all these methods have

certain flaws that can misinterpret the data; for example, when we

directly plot graphs based on optical density (O.D.), then we are not

taking into consideration the baseline differences of each sample,

the shape of the curve of the sample, and all the dilutions into

consideration. Similarly, in the AUC method, there is a possibility

that two or three samples can have similar AUC values. However,

the antibody titers can be different. Therefore, the analysis of ELISA

data should be more focused and consider all the crucial parameters

into account, such as the background signal of each sample, O.D.

values of samples at each dilution, and the slope of the sample curve.

Here, we have created ELISA-R, a robust R programming-based

method for the analysis of ELISA data that takes into consideration

all the above-mentioned challenges of ELISA data analysis. ELISA-

R utilizes an advanced non-linear least squares curve-fitting model,

enhanced with the Levenberg-Marquardt modification, to precisely

identify critical parameters such as minimum and maximum

absorption, background, and slope for each sample. These

parameters are then used to compute accurate endpoint titer
FIGURE 4

Comparative analysis of ELISA data analysis using traditional endpoint titer using O.D.50 vs. endpoint titer calculated using ELISA-R. (A) Analysis of
BCG-NTM mouse study ELISA data using traditional endpoint titer method that used O.D.50 as a cut-off point. Data is plotted as the dilution of a
sample that produces an O.D. value equal to 50% of the maximum O.D. observed for that sample. (B) Plot for Endpoint titer calculation using ELISA-
R. In these graphs, the endpoint titer of IgA antibodies in the BALF of each mouse in the Saline, BCG, NTM, and BCG-NTM groups was compared
with each other. We found that the BALF of BCG-NTM mice has a higher titer of IgA antibodies than the BALF of mice in Saline, BCG, or NTM
groups. Statistical significance was calculated using ANOVA. *p<0.05, **p<0.005, ***p<0.0005.
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values, ensuring robust and reliable analysis. What sets ELISA-R

apart is its exceptional time efficiency. ELISA-R seamlessly imports

data directly from Excel, subtracts the blank of each sample,

processes the data, and generates comprehensive graphs in under

15 minutes. This rapid processing time significantly enhances

productivity, allowing researchers to focus on interpreting results

rather than managing data. ELISA-R is designed with user-

friendliness in mind, making it accessible to non-R programmers.

We are also currently developing a graphical user interface to

further simplify its use, ensuring that even those with minimal

programming experience can easily navigate the software. Unlike

traditional methods that consider only one or two parameters,

ELISA-R takes into account five crucial parameters for each sample,

resulting in a more robust and comprehensive analysis.

Additionally, ELISA-R is free and open-source, making it an

invaluable tool for researchers worldwide.

We developed ELISA-R using our published well-optimized

ELISA data, as this data has been acquired using inbred mouse

strain and, therefore, has less variability. Nonetheless, we have also

applied our ELISA-R method to complicated datasets with larger

variability, such as human patient data derived from different

clinical forms of leprosy (Figure 5). ELISA-R worked successfully

for both datasets and provided the same trend as we were getting by

analyzing data manually (as confirmed by Dr. John Spencer, who

analyzed the results manually). However, ELISA-R took
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significantly less time than the manual analysis. In addition, the

results provided by our method are more robust as it takes different

variables into account. All in all, ELISA-R is a robust and faster

method of analyzing ELISA data, which is not limited to ELISA data

alone but may be widely utilized for assays that involve optical

density, dilutions, and curves, such as cytokine data.
4.1 Limitation of the ELISA-R

One significant challenge in ELISA data analysis is the potential

for batch effects, which occur when assays for different groups of

samples are conducted on different days, leading to variations in

results due to technical inconsistencies rather than true biological

differences. Factors such as changes in plate reader settings, the use of

different plates, and other technical variations can introduce batch

effects, complicating the analysis and interpretation of ELISA data.

Currently, ELISA-R does not include methods to correct for batch

effects and normalize the data, a limitation that impacts the accuracy

and reliability of our analyses. To address this, we propose

incorporating robust statistical methods for batch effect correction

and data normalization in future versions of ELISA-R. One approach

is to use mixed-effects models to account for both fixed effects (such

as biological conditions) and random effects (such as batch

variations), partitioning the variability attributable to batch
FIGURE 5

Comparison of human antibodies against Mycobacterium leprae antigens in different stages of leprosy patient cohorts. IgG antibodies against Ag85B
and LAM and IgM antibodies against PGL-I were evaluated using indirect ELISA by Spencer et al. (41). We re-analyzed this data by using our ELISA-R
for anti-Ag85B IgG, anti-PGL-I IgM and anti-LAM IgG in LL, BL, BT and TT patients. (A) Data was analyzed using the traditional ET method. (B) Data
analyzed using ELISA-R. LL, polar lepromatous; BL, borderline lepromatous; BT, borderline tuberculoid; and TT, polar tuberculoid. Statistical
significance has been calculated using ANOVA. *p<0.05, **p<0.005.
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differences and isolating the true biological signal. Another method is

the empirical Bayes approach, such as the ComBat algorithm, which

adjusts for batch effects by modeling batch-specific parameters and

harmonizing the data across batches. Additionally, normalization

techniques like quantile normalization can be used to make the

distribution of absorbance values consistent across different batches,

reducing the impact of batch-specific variations. By integrating these

methods into ELISA-R, we aim to enhance its utility, making it a

more powerful tool for ELISA data analysis, and ensuring that the

results reflect true biological differences rather than technical artifacts.

This will contribute to the reproducibility and reliability of ELISA

experiments, leading to more accurate scientific discoveries.
4.2 Future prospective

We are currently developing a graphical user interface (GUI) for

the ELISA-R method, utilizing the Shiny package in R. Our goal is

to empower every researcher to analyze their ELISA data with

greater accuracy and speed, all without the need for programming

expertise. This user-friendly tool will make advanced ELISA data

analysis accessible to all.
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