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The three programs that make up the ImmuneMechanisms of Protection Against

Mycobacterium tuberculosis Centers (IMPAc-TB) had to prioritize and select

strains to be leveraged for this work. The CASCADE team based at Seattle

Children’s Research Institute are leveraging M.tb H37Rv, M.tb CDC1551, and

M.tb SA161. The HI-IMPACT team based at Harvard T.H. Chan School of Public

Health, Boston, have selected M.tb Erdman as well as a novel clinical isolate

recently characterized during a longitudinal study in Peru. The PHOENIX team

also based at Seattle Children’s Research Institute have selected M.tb HN878 and

M.tb Erdman as their isolates of choice. Here, we describe original source

isolation, genomic references, key virulence characteristics, and relevant tools

that make these isolates attractive for use. The global context for M.tb lineage 2

and 4 selection is reviewed including what is known about their relative

abundance and acquisition of drug resistance. Host–pathogen interactions

seem driven by genomic differences on each side, and these play an important

role in pathogenesis and immunity. The few M.tb strains chosen for this work do

not reflect the vast genomic diversity within this species. They do, however,

provide specific virulence, pathology, and growth kinetics of interest to the

consortium. The strains selected should not be considered as “representative” of

the growing available array of M.tb isolates, but rather tools that are being used to

address key outstanding questions in the field.
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1 Introduction

Across each of the Immune Mechanisms of Protection Against

Mycobacterium tuberculosis Centers (IMPAc-TB), there are

mechanistic questions of special focus. The CASCADE team at

Seattle Children’s Research Institute are examining the stages of

infection through detailed interrogation of pulmonary pathology

and natural or vaccine-induced protection across this continuum in

mice, non-human primates, and human studies. The HI-IMPACT

team based at Harvard T.H. Chan School of Public Health, Boston,

are leveraging key immune correlates of protection from their

seminal intravenous (IV) bacillus Calmette–Guérin (BCG)

vaccination strategy in rhesus macaques (1, 2) and comparing

those with human cohort responses with computational modeling

to better design vaccines against tuberculosis (TB). The PHOENIX

team based at Seattle Children’s Research Institute are focused on a

cross-species analysis of candidate vaccine-induced immunity and

efficacy for prevention of disease or infection in preclinical mouse,

guinea pig, and non-human primates as well as a human aerosol

challenge model using BCG as a representative mycobacteria.

While these centers are focused on discrete but complementary

work, each are using modeling, escalating from in vitro or in silico

through in vivo preclinical and first-in-man experimental medicine

studies. In the TB research field, we challenge in vitro or in vivo

models with “representative” isolates ofMycobacterium tuberculosis

(M.tb) that fit some categorical aspect of what we would like to

examine or that provide continuity with previous work to continue

a specific story. Recent data are challenging the use of

“representative” to define our M.tb isolates of choice and instead

suggest there is an underrepresentation of the breadth of biological

diversity that exists in M.tb (3–5). Indeed, even preclinical drug

therapy studies have demonstrated significant differences in in vivo

sensitivity between M.tb strains (6). Next-generation tools and use

of big data pipelines may allow us to better profile huge arrays of

M.tb isolates or lineages in the near future, as groups within this

consortium are already leveraging artificial intelligence and systems

biology for complex data and predictive modeling.

In the absence of current or established tools that allow us to

readily select challenge isolates spanning a vast array of M.tb

lineages, it was necessary for each of the IMPAc-TB consortiums

to choose the few they would study across their programs. The six

strains used in the CASCADE (SCRI), HI-IMPACT (Harvard), or

PHOENIX (SCRI) centers are described here (Table 1). We

outline the source of each isolate, reference the sequenced

genome if available, include specific tools in that background,

give a summary of models using that strain, and provide seminal
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aspects of the isolate including virulence or kinetics if known and

key historical work using that isolate. These basic features helped

define the selection of isolates for specific consortium endpoints.
2 Materials and methods

2.1 M.tb genome sequencing

2.1.1 Genomic DNA extraction
In order to obtain high-quality genomic DNA (gDNA) from

M.tb cultures of all of the isolates except the g2g clinical isolate

described above, we followed the methodology described

previously (7). In summary, mycobacterial cultures (M.tb

SA161, H37Rv, CDC1551, Erdman, and HN878) were grown to

an optical density 600 nm (O.D. 600) of 1.5. Subsequently, the

cultures were harvested by centrifugation, washed in PBS, and

dissolved in TE buffer. To lyse the mycobacteria, the bacterial

suspension was subjected to 80°C for 20 min. After allowing the

tubes to cool to room temperature, lysozyme solution (100 mg/ml)

was added to each tube, followed by incubation at 37°C for 3 h

with intermittent mixing. Next, a mixture of SDS (10%) and

proteinase K (20 mg/ml) was added to each tube in an 88:12

ratio. The tubes were then incubated at 65°C for 2 h. Following

this incubation period, 100 µl of 5 M NaCl was added to each tube

and incubated at 65°C for an additional 10 min. Subsequently, an

80 µl aliquot of 10% cetyl trimethyl ammonium bromide (CTAB)

solution (Sigma-Aldrich, St. Louis, MO) was added, mixed

thoroughly, and incubated at 65°C for another 10 min. The

DNA was then extracted first with an equal volume of phenol/

chloroform/isoamyl alcohol (25:24:1 v/v/v) and then with

chloroform/isoamyl alcohol (24:1 v/v). The DNA was

precipitated by adding 0.6 volumes of ice-cold isopropanol. The

precipitated DNA was pelleted by centrifugation at 10,000 rpm

and 4°C for 15 min. The resulting DNA pellets were washed with

cold 75% ethanol and dried using a SpeedVac for 5 min. Finally,

the genomic DNA was resuspended in 50 µl of sterile distilled

water. The quality of the gDNA was assessed using a NanoDrop

spectrophotometer (Thermo Scientific, Wilmington, DE).
2.1.2 Library production
Starting with a minimum of 750 ng of DNA, samples are

sheared in a 96-well format using a Covaris LE220 focused

ultrasonicator targeting 380-bp inserts. This insert size improves

overall library performance and allows the longer sequencing read

lengths on Illumina sequencing platforms (150 bp) to be efficiently

used without producing a significant number of overlapping reads.

The resulting sheared DNA was cleaned with Agencourt AMPure

XP beads to remove sample impurities prior to library

construction. Shearing was followed by size selection performed

using the KAPA Hyper Prep kit (KR0961 v1.14). End-repair, A-

tailing, and ligation are performed as directed. Two final AMPure

cleanups are performed after ligation to remove excess adapter

dimers from the library. All library construction steps are

automated on the Perkin Elmer Janus platform. Library yield
TABLE 1 M.tb isolates being used across the three IMPAc-TB consortiums.

Program Lineage 2 Lineage 4

CASCADE SA161 H37Rv, CDC1551

HI-IMPACT Clinical Peru Isolate Erdman

PHOENIX HN878 Erdman
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was quantified using Quant-IT dsDNA High Sensitivity kit

(Invitrogen Q33120). Libraries were validated in triplicate using

the Bio-Rad CFX384 Real-Time System and KAPA Library

Quantification Kit (KK4824).

2.1.3 Whole-genome sequencing
Massively parallel sequencing-by-synthesis with fluorescently

labeled, reversibly terminating nucleotides was carried out using the

Illumina NovaSeq 6000 platform (RTA 3.1.5) and was performed at the

University of Washington Center for Rare Disease Research (UW-

CRDR). Barcoded genome libraries were pooled with liquid handling

robotics prior to loading. Raw sequence reads with an average read

length of 150 bp were assembled against the sequence of the reference

strain M.tb H37Rv (NCBI accession number: NC_018143.2) using

SPADES v3.15.4 (8). Whole-genome sequences were deposited into

GenBank BioProject: PRJNA1051793, as described with specific

accession numbers stated.
2.2 In vivo mouse challenge and
survival studies

In all studies, mice were housed in the Seattle Children’s Research

Institute (SCRI) biosafety level 3 (BSL-3) animal facility under

pathogen-free conditions and were handled in accordance with

approved protocols from the SCRI Institutional Animal Care and

Use Committee (IACUC). All methods were carried out in accordance

with animal welfare guidelines and regulations. For survival studies,

breeding pairs of C57BL/6 bg/bg (beige) mice were originally

purchased through Jackson Laboratories. In-house bred male beige

mice were used for experiments at 4–6 weeks of age and had not been

previously used for breeding purposes. Mice were maintained at four

animals per cage. Mice were challenged with a low-dose aerosol (target

25–100 CFU per mouse upon infection) of either M.tb SA161 or M.tb

HN878 using a Glas-Col whole-body aerosol infection chamber.

Bacterial burden was evaluated at 24 h and 4 weeks post challenge as

previously described (9). Survival was monitored in 10 mice per group

followingM.tb infection. Animals with greater than 20% weight loss, or

moribund condition, were euthanized. For ultra-low dose aerosol

(targets 1–3 CFU per mouse upon infection) studies, female C57BL/

6mice purchased from Jackson Laboratories (age 8–27 weeks old) were

challenged with either M.tb Erdman or M.tb H37Rv also using a Glas-

Col whole-body aerosol infection chamber. Pulmonary bacterial

burden was evaluated 35–42 days post challenge.
2.3 Statistical analysis

For ex vivo plating of organ homogenate to enumerate bacterial

CFU in a single organ and timepoint (24 h, 4 weeks, or 6 weeks post-

challenge), we used a two-tailed unpaired Student’s t test to compare

between M.tb challenge strains. For probability of survival, cohorts

were compared using the log-rank Mantel–Cox test. All statistical

analysis was performed using GraphPad Prism version 10.2.2.
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3 Results

3.1 M.tb isolates

As the consortium matures, we are reflecting on opportunities to

cross-validate or harmonize so the discrete but complimentary data

being generated can have the largest impact for the TB pathogenesis,

immunology, and vaccine communities. Interestingly, and without

prior discussions, each of the programs focused their M.tb isolates

across two modern lineages, 2 and 4. Lineage 2 is notable in its

expanding global distribution, “hypervirulence,” correlations with

relapse, and enriched acquisition of antibiotic drug resistance (10–

16). In vitro, lineage 2 Beijing isolates persist and grow normally

within macrophages compared with other lineages that are relatively

more inhibited once they are intracellular (17). These features make

lineage 2 high-priority in preclinical studies for evaluation of disease

progression and efficacy of vaccine candidates. M.tb isolates SA161

and HN878 and the clinical isolate from Peru are lineage 2 isolates

represented in the IMPAc-TB consortiums. Lineage 4, the Euro-

American lineage, is also well distributed globally and can be

associated with unique features of disease pathology and treatment

failure in humans (18–21). M.tb H37Rv, Erdman, and CDC1551 are

each lineage 4 isolates being leveraged by one or more of the IMPAc-

TB programs. Each isolates’ key features and rationale for selection

are described below.
3.2 M.tb HN878 (lineage 2)

M.tb HN878, a W-Beijing lineage isolate, was sourced by the

PHOENIX consortium directly from BEI Resources (NR-13647).

This clinical isolate was derived from a patient sample in Houston,

Texas, in a 1990s outbreak and has been well studied since (22) with

the parental genome sequence available on GenBank:

ADNF01000000.1. Many other M.tb-derived materials including

M.tb HN878 whole-cell lysate (NR-14824), derived lipid fraction

(NR-14839), and genomic DNA (NR-14867) are available within

the BEI Resources Repository. Defined as hypervirulent (23), M.tb

HN878 induces a waning host T helper 1 (Th1) response and rapid

expansion of regulatory T cells in chronic preclinical settings (22),

as well as progressive pulmonary pathology and morbidity in

C57BL/6 mice (24, 25). Interestingly, this isolate can acquire large

genetic duplications with serial in vitro passage dramatically

reducing virulence in vivo (25, 26). For the PHOENIX

consortium, we generated a large batch single passage culture in

2019 to avoid the duplication issue and ensure continuity across

studies, and we confirmed virulence of our stock culture in mouse

survival studies (25). The single passage PHOENIX batch of M.tb

HN878 was sequenced, and that genome can be found at

GenBank: SAMN38797941.

The M.tb HN878 strain has been evaluated extensively in vitro

as well as in preclinical mouse and guinea pig models of aerosol

challenge. This includes recent examinations of single-cell

preparations and of the influence of detergents on the
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mycobacterial cell wall and their impacts on interactions with

innate immune cells (27). In vivo, M.tb HN878 induces more

granulomatous-like structures in preclinical models that better

reflect human pathology than other well-used isolates (22, 23, 28).

This includes induction of a blood-based TB transcriptional

signature in C3HeB/FeJ mice by M.tb HN878 infection, whereas

similar studies using less virulent M.tb H37Rv to infect C57BL/6

mice did not result in production of this human-derived biomarker

of TB disease (29). Recent evidence suggests that while aerosol

infection with a high dose of M.tb HN878 does induce bone-

marrow-derived myelopoiesis, there is a concomitant reduction in

trained innate immune responses in a mouse model (30). A key

feature which led to the selection of this strain is that the high

virulence of M.tb HN878 may be due to the preferential recruitment

of pathology-inducing neutrophils and relatively damped adaptive

responses (29). Despite the observed virulence and immune

skewing from clinical M.tb HN878 isolate infection, prophylactic

vaccination with BCG provides protection from bacterial burden

and pulmonary pathology and enhances survival in several

preclinical models (31–33). M.tb HN878 was selected by the

PHOENIX consortium due to its well profiled virulence discussed

above and its membership in lineage 2, which has high global

prevalence. This M.tb isolate serves as a suitable strain to evaluate

vaccine-specific efficacy in both prevention of infection (POI) and

prevention of disease (POD) contexts, key components of the

PHOENIX goals for the program. To our knowledge, this will

also be the first time M.tb HN878 is used as a challenge strain in

nonhuman primates.
3.3 M.tb SA161 (lineage 2)

M.tb SA161 is also a W-Beijing-type Lineage 2 isolate (34).

SA161 is derived from a cluster of cases in Arkansas and was

originally sourced by the CASCADE team from Dr. Ian Orme at

Colorado State University (34). The M.tb SA161 being used by the

Urdahl Lab in the CASCADE program was sequenced, and the

genome sequence is deposited at GenBank: SAMN38797942.

Like M.tb HN878, SA161 is a highly virulent W-Beijing strain of

M.tb (35). Historical data suggest that lineage 2 Beijing isolates may

associate with TB infections in persons living with human

immunodeficiency virus (PLWHIV) (35). As such, M.tb SA161 has

been evaluated in several models with seminal features of HIV

infection including mice transgenic for HIV transcription protein

Tat (35). M.tb SA161 is frequently paired with highly susceptible

mouse strains like C3HeB/FeJ to model high frequencies of

pulmonary pathology and use survival as primary endpoints (32,

35). Despite the highly virulent M.tb—highly susceptible mouse

strain pairing—prophylactic vaccination with BCG still affords

protection from bacterial burden and pathology in both mouse and

guinea pig infections at intermediate timepoints (32, 36). At later

timepoints post challenge, W-Beijing strains M.tb HN878 and M.tb

SA161 upregulate regulatory T-cell responses and the early protection

wanes as mice succumb to high bacterial burden (> 6 Log10 CFU)
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and pathology in a more resistant C57BL/6 mouse strain (31), which

was a key feature for its selection in this consortium.

At the start of the IMPAc-TB contract, the PHOENIX and

CASCADE consortiums performed a head-to-head virulence

survival study of M.tb SA161 and M.tb HN878 to both compare

their relative virulence as lineage 2 members as well as infer any

similarities or differences worth noting for future comparisons

across programs. In this study, male Beige mice were challenged

with a low-dose aerosol (25–100 CFU) of either lineage 2 isolate.

Beige mice were used in this study because they are highly

susceptible to mycobacterial infections and offered a compressed

survival timeline (<200 days) for this exploratory head-to-head

study. In addition, both in human epidemiology and in mouse

preclinical studies, males are more sensitive to TB disease [well

reviewed here (37)], which also afforded an accelerated assessment

between M.tb isolates. Samples were collected 24 h post challenge to

confirm deposition in lungs, and for HN878, we observed 23, 67,

and 52 CFU per mouse (averaging 47 CFU) and 14, 31, and 59 CFU

were observed for SA161 challenge (average 35 CFU; n=3 per

group). At 4 weeks post challenge, lung and spleen bacterial

burden were evaluated (n=6–7) with no significant difference in

either site between the two challenge strains at this timepoint

observed (Figures 1A, B). A cohort of mice (n=10 each) was

followed for morbidity endpoints resulting in probability of

survival over time (Figure 1C). The median survival for mice

challenged with M.tb HN878 was 165 days, whereas the median

survival for M.tb SA161 infected mice was 119.5 days.

In this comparative study, we observed a different survival

profile in a Beige mouse background between M.tb HN878 and

M.tb SA161 low-dose aerosol challenges, despite relatively

equivalent bacterial burden at 4 week post challenge in both the

lung and spleen. Interestingly, M.tb SA161 induces an earlier

initiation of morbidity (day 88 to 151, 63 days of group decline)

but the overall group mortality is more heterogeneous over time

when compared with M.tb HN878 (day 144 to 172, 28 days of group

decline), which seems to have a relatively delayed but more uniform

morbidity of the total group. To our knowledge, this is the first

report in male Beige mice for either M.tb isolate with these

endpoints. This different pattern of morbidity between isolates in

highly sensitive Beige mice mirrors that observed in the literature in

more resistant C57BL/6 mice (31); however, the data reported here

are less virulent in Beige mice comparatively by survival presumably

due to the lower challenge dose at infection. In the context of the

PHOENIX program where differences between vaccine groups are

being evaluated, M.tb HN878 is a preferred isolate, but if, in

contrast, interest is in the mechanism of disease progression and

host variability in progressions to disease, then M.tb SA161 is a

more reasonable strain to select. In the context of the CASCADE

program, M.tb SA161 has been the primary isolate used to

characterize pathological and immunological disease outcomes

following vaccination due to its ability to generate large necrotic

granulomas in the C3HeB/FeJ background. These profiles and

specific endpoints of interest are well tailored to the overall

objectives of the PHOENIX and CASCADE programs.
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3.4 Clinical Peru isolate (lineage 2)

A distinct clinical isolate was recently discovered after the

initiation of the IMPAc-TB program during a genome-to-genome

(G2G) study conducted in Lima, Peru (38) (manuscript accepted,

pending publication, SRA accession codes referenced there). This

G2G study was designed to identify the genetic interaction between

host genetic background and M.tb genetic background. The

researchers discovered a single host variant (located in a non-

coding region of the FLOT1 gene) that was associated with infection

by a particular M.tb strain they called g2g-L2. They found the g2g-

L2 strain locally emerged in Peru around 60 years ago but has since

undergone rapid expansion. In a 2010 cohort, the g2g-L2 strain

accounted for 6.6% of all M.tb strains circulating in Lima, Peru, but

by 2020, the prevalence had almost doubled (12.6%). Additionally,

it was shown that 87% of the g2g-L2 strains were in genomic

clusters, whereas the clustering rates for the neighboring L2 clades

were only 18% to 28%. These data indicate that the g2g-L2 strain
Frontiers in Immunology 05
has increased transmissibility in the local population. While the

g2g-L2 strain can transmit successfully in Lima, Peru, it was not

found elsewhere in the world. The authors also showed that g2g-L2

strains have a distinctive redox state compared with their nearest

neighbor strains, manifested as a more oxidative cell state and

resistance to reductive stress. The authors narrowed down a

mutation (Thr2Asn) in trxB2 that was specific to the g2g-L2

strain, and they found that this trxB2 mutation can lead to

higher activity of thioredoxin reductase and a significant shift in

the NAD+/NADH ratio toward the oxidized state.

The authors delved into the underlying interaction between

Mtb strains (g2g-L2 vs. nearest-neighbor strains, termed non-g2g-

L2) and host immune cells with differing genetic backgrounds

(FLOT1, AT vs. TT). RNA-seq analysis was employed to profile

the innate immune response to M.tb infection, with the expression

of 20 infection-responsive genes used to gauge the “infection score,”

where higher expression indicated a stronger response. The study

revealed that overall, AT host cells exhibited an elevated infection
FIGURE 1

Survival of mice challenged with Beijing isolates of M.tb. Male Beige mice were challenged with a low-dose aerosol of either M.tb HN878 (open
black circles) or M.tb SA161 (open red squares). At 4 weeks post-challenge, (A) lung and (B) spleen bacterial burden were evaluated in n=6-7. Two-
tailed unpaired Student’s t test found no significant differences between lung (p = 0.4997) or spleen (p = 0.3365) groups. Mean Log10 CFU for lung =
7.1 HN878 and 6.9 for SA161. Mean Log10 CFU for spleen = 4.2 HN878 and 4.0 for SA161 (C) Cohorts of = 10 mice per challenge (M.tb HN878 =
black line or M.tb SA161 = red line) isolate were followed over time with weekly or more frequent weighing as a measure of morbidity due to
infection. When mice reached 20% weight loss, they were considered moribund and humanely euthanized. Asterisks represent significance
(p < 0.0001) between the groups using a Log-rank Mantel–Cox test comparing survival curves. Data representative of one experiment.
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response compared with TT host cells. However, within the AT host

cells, g2g-L2 infection blunted this response relative to non-g2g-L2

infection. Specifically, FLOT1-AT cells exhibited increased

expression of genes associated with type 1 and type 2 interferon

pro-inflammatory signaling, MHC-I antigen processing and

presentation, IL-1B signaling, cytosolic DNA sensing, and zinc

homeostasis. The authors posited that FLOT1-AT donors mount

a robust transcriptional response to infection, potentially due to

increased sensitivity in inducing innate responses. However, this

response was skewed toward interferon following non-g2g-L2

infection, contrasting with IL-1B dominant responses observed

after g2g-L2 infection. As the most recently isolated M.tb within

the consortium, this g2g strain helps ground the clinical relevance of

findings back to human epidemiologic data, a feature unique to the

HI-IMPACT program.
3.5 M.tb Erdman (lineage 4)

M.tb Erdman K01 was sourced by the PHOENIX consortium

directly from BEI Resources (NR-15404). This original clinical isolate

was derived from human sputum at the Mayo Clinic in 1945 and is

noted to be highly virulent (39). A low passage culture of M.tb

Erdman was generated by the Coler Lab in the PHOENIX program.

The stock material was sequenced and the assembled genome

deposited at GenBank: SAMN38797939. A notable feature of M.tb

Erdman was the development of a barcoded library (BEI Resources

NR-50781) where each bacterium contains a unique and trackable

sequence, enabling the profiling of a single cells’ longitudinal fate in

vivo. This library has been leveraged in non-human primate models

coupled with pathology and imaging to interrogate individual lesion-

level disease progression and infection dynamics (40).

M.tb Erdman has been extensively used for aerosol challenge

with diversity outbred mice to identify critical gene loci (41–44),

innate cell influx, pulmonary necrosis (45), and age-related

influences (46) that correlate with a spectrum of disease in this

model. In mice, prophylactic BCG vaccination provides protection

from early pulmonary and peripheral bacterial burden after

challenge with M.tb Erdman (33). Studies in cynomolgus

macaques infected with M.tb Erdman identified peripheral blood

transcriptional changes occurring early (<6 months) post infection

(47), which share similarities with human risk signatures predicting

advancement to active TB disease. The similarities in risk signatures

between M.tb Erdman-infected macaques and humans highlights

the usefulness of this model to predict vaccine outcomes in humans.
3.6 M.tb H37Rv (lineage 4)

M.tb H37 was isolated from a human lung sample at the

Trudeau Laboratory in 1905. M.tb H37Rv was derived from this

isolate after selection for rough colony morphology and virulence in

1934 (48) and is one of the most widely used strains of M.tb

available. Despite researchers identifying notable polymorphisms

between M.tb H37Rv isolates maintained in different laboratories

(49), the M.tb H37Rv genome is commonly used as the base
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reference. Indeed, antigens included in high-priority clinical

vaccine candidates are sourced from the H37Rv genome,

including ID93 (50), M72 (51), GamTBvac (52), and H107e (53).

The M.tb H37Rv being leveraged by the CASCADE consortium was

a gift from the lab of Dr. Joel Ernst. This isolate was derived from

ATCC TMC 102 (catalog #27294), and the genome was partially

sequenced and published in 1998. Despite this isolate serving as the

de facto M.tb genome reference, the full genome sequence was only

recently completed, comprising over 6,000 novel base pair regions,

using a new paradigm of assembly called Bact-Builder (54). The

CASCADE program M.tb H37Rv strain has been serially passaged

through mice and has maintained virulence properties compared

with other lab-adapted strains, perhaps through retention of the

virulence factor PDIM, which is rapidly lost upon in vitro passage

(55). The CASCADE M.tb H37Rv isolate was sequenced, and that

assembled genome can be found at GenBank: SAMN38797937.

Like M.tb Erdman, M.tb H37Rv has been developed as a

barcoded strain, allowing for the individual tracking and

monitoring of deposited bacteria at the time of challenge and

through chronic timepoints of infection and disease (56). This is an

especially useful tool in the context of ultra-low-dose aerosol

infections where as few as one bacterium per mouse is inhaled and

monitored over time (56), better reflecting the conditions of human

challenge. In general, M.tb H37Rv laboratory isolates are notably less

virulent across models, with higher rates of survival and less necrotic

lesions in the translational guinea pig preclinical model compared

with other strains being used in this program includingM.tb Erdman,

M.tb HN878, or M.tb CDC1551 (23). Lower virulence ofM.tb H37Rv

compared with M.tb Erdman has also been observed in a New

Zealand White rabbit model of aerosol challenge by 5 weeks post

infection (57). Despite these reports, the CASCADE M.tb H37Rv

isolate has similar virulence to M.tb Erdman and is more virulent

than M.tb CDC1551, in studies by the group in C57BL/6 mice

(Figure 2 and article by some of these same authors presented in

this special issue (58), respectively). These patterns of virulence align

with prior studies using the CASCADE programs’ M.tb H37Rv in

C57BL/6 mice (56, 59). As such, the CASCADE program has used

H37Rv as the primary lineage 4 strain to draw direct comparisons

with M.tb SA161. Interestingly, in a BALB/c drug therapy model,

different isolates of M.tb H37Rv were similarly sensitive to front-line

drug treatment with rifampicin, isoniazid, and pyrazinamide as M.tb

Erdman (6). However, M.tb H37Rv has been the strain of choice to

date when assessing genetic components influencing host

susceptibility in the context of the collaborative cross mice (60–63).
3.7 M.tb CDC1551 (lineage 4)

M.tb CDC1551 is a clinical isolate collected in the mid-1990s

amid an outbreak with uncharacteristically highly positive

tuberculin skin testing rates in rural Kentucky and Tennessee

(64). The CASCADE M.tb CDC1551 isolate, originally a gift from

W.R. Bishai, was sequenced, and that assembled genome can be

found at GenBank: SAMN38797940. The BEI repository hosts

numerous M.tb CDC1551-derived materials including cell lysate

(NR-14835), polyclonal anti-sera from a guinea pig infection (NR-
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13818), genomic DNA (NR-48981), and a large assortment of

transposon mutants. Live-attenuated vaccines are gaining traction

in the TB research community, and one notable vaccine based in a

parent CD1551 background is M.tbDsigH (65).

M.tb H37Rv, M.tb Erdman, and M.tb CDC1551 contain a

frame-shift deletion in a gene cluster responsible for phenolic

glycolipid (PGL) production, resulting in a relatively reduced

virulence compared with lineage 2 isolates (including M.tb

HN878) which do not contain this deletion (66). Furthermore,

prophylactic BCG vaccination provides better protection against

these lineage 4 isolates compared with lineage 2 isolates in an

intravenous infectious challenge of pooled barcoded M.tb in a

C57BL/6 mouse model (67). Although the initial paper describing

this strain in an in vivo mouse model found that, when compared

with M.tb Erdman, M.tb CDC1551 expanded rapidly and notably

reached two logs higher lung bacterial burden by day 20 (64),

curiously, the M.tb Erdman peaked at ~104, which is ~2 logs lower

than the typical CFU load following infection with virulent M.tb

strains, such as M.tb Erdman or M.tb H37Rv. A subsequent study

found that M.tb CDC1551 was actually less virulent than several

other M.tb strains tested, including M.tb H37Rv, M.tb Erdman, and

M.tb HN878, while inducing a more hyperinflammatory immune

response (68). Consistent with the more recent study, the

CASCADE M.tb CDC1551 isolate is less virulent in C57BL/6

mice than the CASCADE M.tb H37Rv isolate, with an

approximately 1-log reduction in the peak lung bacterial burden.
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Aside from strain identity and genome sequence, there are

many factors that influence how M.tb can behave both in vitro and

in vivo. This includes culture conditions like the presence, absence,

or concentration of Tween which directly changes the cell wall and

some subsequent interactions with host cells (69–71) or growth

medium albumin choice. Large first stock batches are made for each

consortium where M.tb were grown in 10% OADC, 0.05% Tween,

and in the absence of C02. For enumeration for mouse infection

studies, the CASCADE program uses OD600nm of 1.0 and Phoenix

uses direct CFU plating of aliquots and both programs combine

these results with empirical titration experiments to determine

nebulizer stock dilutions to attain the infection range per mouse

desired. The Coler, Fortune, and Urdahl labs serve as distributor

partners for each consortium where large low-passage batches

(>900 1.0-ml aliquots in the case of the PHOENIX program) are

made and stocks are distributed to contract partners to reduce the

influence of strain passage on results obtained within each

consortium. Annual CFU plating by all partners is a contract

deliverable for some of the consortiums as a simple and direct

check that stocks remain viable and at or near expected CFU. The

status of specific lipids, like phthiocerol dimycocerosates (PDIMs)

on the bacterial cell envelope, which have been observed to affect

pathogenesis and virulence, is a similar factor important for

understanding and comparing M.tb strain outcomes (72). The

mouse-passaged M.tb H37Rv used by the CASCADE program

recently confirmed PDIM status (73), and M.tb Erdman was

similarly confirmed prior to DNA barcoding (40) and no

subsequent colony purification occurred. PDIM status was not a

planned screen throughout the program, although we acknowledge

that this could affect results.

While each program is using different isolates, they are

consistently from lineages 2 and 4, which provides some harmony

of interest. Importantly, each isolate suits the needs of each

consortium; for example, CASCADE is mechanistically

interrogating the diversity of the immune response including

pathology endpoints and the variability within an M.tb SA161

infection, possibly identifying key differences in disease

progression. Conversely, PHOENIX is interested in vaccine

efficacy endpoints and M.tb HN878 provides a more homologous

response and disease progression that affords resolution between

immunization strategies. The ability of HI-IMPACT to leverage a

recent clinical isolate with a direct relationship to epidemiological

data and human genetic variabilities make their work in preclinical

models highly translational and informative. However, this

collective work has excluded other lineages, including 1 and 3

which are found in Southeast Asian countries like Indonesia and the

Philippines, which are among the top eight high-TB burden

countries globally (74). Should these consortiums find critical

disparities in relative immune responses or protection from

vaccinations, it would be necessary to perform similar analyses

using lineages 1 and 3. Other ex vivo tools like the mycobacterial

growth inhibition assay (75–77), which allow for multiple challenge

isolates to be used, are also being integrated into specific programs
FIGURE 2

Comparable pulmonary bacterial burden between M.tb H37Rv and
Erdman after ultra-low-dose challenge. Female C57BL/6 mice
were challenged between 8 and 27 weeks of age with an ultra-
low-dose challenge of either M.tb Erdman or M.tb H37Rv. At 35–
42 days post-infection, lung bacterial burden was evaluated. Data
depict six different challenge experiments, denoted in the figure as
different-colored shapes, where each shape represents an
individual mouse whose CFU was over 1. Two-tailed unpaired
Student’s t test found no significant differences between the
challenged groups (p = 0.5196) where the mean CFU for M.tb
Erdman was 3.4 × 104 and for M.tb H37Rv was 4.2 × 104.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427510
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Larsen et al. 10.3389/fimmu.2024.1427510
and may help address this need for an increased breadth of M.tb

challenges to increase the scope of findings and areas of follow-up.

By identifying salient differences between strains being used

across the three programs, we aim to transparently identify what

may be common findings versus those that may be unique due to

model organism selection. It is clear from the literature that whole-

genome sequencing can reveal key genes involved in drug

resistance, adaptations to stress conditions, and virulence of M.tb

isolates (78–80). The sequences reported here aim to contribute to

those efforts and provide pathogen genomic comparators for

phenotypic outcomes across the consortium. Future work will

align the sequences reported here to parent lineage-specific

reference genomes available, clinical isolates, and an ancestral,

non-lineage-specific, M.tb complex genome (termed MTBC0)

(81). We expect that placing these isolates in the advanced

phylogeny available for M.tb, through a number of platforms

such as TB-Annotator (82) or MAGMA (83), will provide more

opportunities to further link protection or pathogenic outcomes

derived from IMPAc-TB with existing literature and clinical trends.

In addition to M.tb isolate identity, the consortium is actively

discussing challenge doses and how this directly influences

outcomes in the preclinical models being studied. Furthermore,

use of diversity outbred and collaborative cross mouse strains is an

acknowledgement that host diversity plays a significant role in TB

outcomes and may help uncover critical immune correlates

of immunity.
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