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Introduction: Interleukin-18 (IL-18), a pro-inflammatory cytokine belonging to

the IL-1 Family, is a key mediator ofautoinflammatory diseases associated with

the development of macrophage activation syndrome (MAS).High levels of IL-18

correlate with MAS and COVID-19 severity and mortality, particularly in COVID-

19patients with MAS. As an inflammation inducer, IL-18 binds its receptor IL-1

Receptor 5 (IL-1R5), leadingto the recruitment of the co-receptor, IL-1 Receptor

7 (IL-1R7). This heterotrimeric complex subsequentlyinitiates downstream

signaling, resulting in local and systemic inflammation.

Methods: We reported earlier the development of a novel humanized

monoclonal anti-human IL-1R7 antibody whichspecifically blocks the activity

of human IL-18 and its inflammatory signaling in human cell and wholeblood

cultures. In the current study, we further explored the strategy of blocking IL-1R7

inhyperinflammation in vivo using animal models.

Results: We first identified an anti-mouse IL-1R7 antibody that significantly

suppressed mouse IL-18 andlipopolysaccharide (LPS)-induced IFNg production

in mouse splenocyte and peritoneal cell cultures. Whenapplied in vivo, the

antibody reduced Propionibacterium acnes and LPS-induced liver injury and

protectedmice from tissue and systemic hyperinflammation. Importantly, anti-

IL-1R7 significantly inhibited plasma,liver cell and spleen cell IFNg production.

Also, anti-IL-1R7 downregulated plasma TNFa, IL-6, IL-1b,MIP-2 production and

the production of the liver enzyme ALT. In parallel, anti-IL-1R7 suppressed

LPSinducedinflammatory cell infiltration in lungs and inhibited the subsequent

IFNg production andinflammation in mice when assessed using an acute lung

injury model.
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Discussion: Altogether, our data suggest that blocking IL-1R7 represents a

potential therapeutic strategy to specificallymodulate IL-18-mediated

hyperinflammation, warranting further investigation of its clinical application

intreating IL-18-mediated diseases, including MAS and COVID-19.
KEYWORDS

IL-1 receptor 7 (IL-1R7), interleukin-18 (IL-18), blockade, mouse, inflammation, IFNg,
macrophage activation syndrome (MAS), therapeutic
Introduction
Discovered as an IFNg-inducing factor, interleukin-18 (IL-18)

belongs to the IL-1 family of cytokines (1–3). Similar to IL-1b, IL-18
is first synthesized as an intracellular inactive precursor and

released as an active (mature) cytokine by caspase-1 cleavage (4,

5). IL-1 Receptor 5 (IL-1R5, also called IL-18 receptor alpha chain)

is the ligand binding chain for mature IL-18, although this binding

is of low affinity. In cells that express the co-receptor, termed IL-1

Receptor 7 (IL-1R7, also known as IL-18 receptor beta chain), IL-18

forms a high affinity complex with IL-1R5 and IL-1R7 to initiate the

subsequent downstream inflammatory signaling (1, 6). IL-18

binding protein (IL-18BP), a natural inhibitor for IL-18, keeps the

activity of IL-18 at bay in healthy conditions by providing a

competing high affinity binding site for IL-18 (7).

In pathological conditions like macrophage activation

syndrome (MAS), COVID-19 and inflammatory bowel diseases

(IBD), IL-18 is upregulated and plays an important role in the

disease development (1, 5, 8–13). There has been emerging interest

to develop inhibitors for IL-18 to treat IL-18-mediated

hyperinflammation and diseases. Former studies have examined

the concepts of blocking IL-18 with the natural inhibitor IL-18BP,

or antibodies against its receptor IL-1R5. However, because of the

high affinity of IL-18BP for IL-18, IL-18BP also binds IL-37, an anti-

inflammatory cytokine whose tertiary structure is closely related to

IL-18 (1, 14, 15). Thus, use of IL-18BP to block the activity of IL-18

has the disadvantage of binding to IL-37 and reducing the anti-

inflammatory function of IL-37 in disease. In fact, several studies

have reported inflammatory diseases associated with low IL-37 (16–

18), whereas the anti-inflammatory properties of IL-18BP are lost at

high doses (19). IL-1R5, the receptor and ligand-binding chain for

IL-18, also serves as a receptor for IL-37 (5, 20, 21). Hence,

antibodies against IL-1R5 would concurrently block endogenous

IL-37 and its anti-inflammatory functions. Indeed, some data has

revealed that blocking IL-1R5 with antibodies or using IL-18BP

exacerbates inflammation (22, 23). Therefore, it is important to

develop alternative strategies in IL-18 blockage.

In an earlier study (6), we explored the strategy of targeting IL-

18 signaling with antibodies against IL-1R7 (anti-IL-1R7), the sole

accessory chain for IL-1R5 and co-receptor for IL-18 signaling (24).
02
We found that a humanized monoclonal anti-IL-1R7 antibody to

human IL-1R7 (anti-hIL-1R7) suppressed IL-18-mediated pro-

inflammatory signaling and subsequent cytokine production in

primary human cell cultures (6). To further investigate the

application of anti-IL-1R7 in clinical trials to treat diseases

associated with IL-18-mediated hyperinflammation, it is essential

to evaluate the concept in vivo using mouse models. In the present

study, we screened antibodies to mouse IL-1R7 and developed a

monoclonal antibody to mouse IL-1R7 (anti-mIL-1R7) for in vivo

mouse models with hyperinflammation. We found that the anti-

mIL-1R7 inhibited IL-18-induced IFNg production in mouse spleen

and peritoneal cells and protected mice from Propionibacterium

acnes (P. acnes) and lipopolysaccharide (LPS)-induced liver injury

and systemic inflammation. In addition, the anti-mIL-1R7

attenuated LPS-induced acute lung inflammation in mice.

Together, data from both human cell studies (6) and in vivo

mouse model studies demonstrate that blocking IL-1R7 could be

a promising therapeutic strategy to specifically modulate IL-18

signaling and IL-18-related inflammatory diseases. This warrants

further investigation of the clinical potential of anti-IL-1R7 for

treating patients with MAS, MAS-like clinical manifestations of

COVID-19, and other IL-18-mediated inflammatory diseases.
Results

Identification of an effective anti-mouse
IL-1R7 antibody

Previously, we generated an anti-hIL-1R7 antibody specific for

human IL-1R7 with promising therapeutic potential in clinical

studies (6). This antibody does not cross-react with mouse IL-1R7

(mIL-1R7) and thus does not affect mouse IL-12/IL-18 (mIL-12/IL-

18)- or LPS- induced IFNg in mouse splenocyte cultures

(Supplementary Figure 1). IL-12 increases the expression of IL-1R5

and IL-1R7 and plays a synergistic role in IL-18-induced IFNg
production in cells (6, 25–27). Therefore, we used the combination

of IL-12/IL-18 for IFNg production which is directly imposed by IL-

18, and LPS for IFNg production that is mediated by IL-18 (6, 28, 29).

To identify potent anti-mIL-1R7 antibodies for mouse model studies,

we screened a large number of antibody clones for mouse IL-1R7-
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427100
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1427100
binding and mouse IL-18 (mIL-18)-blocking functions. Several

potential candidates were identified (Supplementary Figure 2). We

tested the binding of the antibody candidates to recombinant mIL-

1R7 in an ELISA-based assay in vitro (Supplementary Figure 2A) and

to cell surface-expressed mIL-1R7 using mIL-1R7-transfected

HEK293 cells (Supplementary Figure 2B). As shown in the Figures,

the candidates bound mIL-1R7 effectively in both assays. These

antibodies were mouse IgG2a and expressed with the LALA

sequence to prevent the triggering of FcgRs (6, 30, 31). These

antibodies were developed to target mIL-1R7 and thus to inhibit

assembling of the mouse IL-18/IL-1R5/IL-1R7 ternary complex and

the subsequent pro-inflammatory signaling of mIL-18. Therefore, we

first assessed the effects of the antibody candidates on mIL-12/IL-18-

induced IFNg release in mouse splenocyte cultures. As expected, the

antibody candidates effectively inhibited mIL-12/IL-18-induced IFNg
(Supplementary Figure 2C Left). Since anti-hIL-1R7 antibodies were

found to work effectively to inhibit LPS-induced IFNg in human cell

cultures (6), we also characterized the function of the anti-mIL-1R7

antibody candidates on LPS-induced IFNg release in mouse

splenocytes. As depicted in Supplementary Figure 2C Right, one of

the antibody candidates (Batch B) showed a consistent inhibition on

mIL-12/IL-18- or LPS- induced IFNg. Based on its mIL-1R7 binding

efficacy (Supplementary Figures 2A, B Middle) and the significant

suppression on mIL-12/IL-18- or LPS- induced IFNg release

(Supplementary Figure 2C), the Batch B was selected as the

optimal candidate for expansion. It was further investigated as the

anti-mIL-1R7 antibody (anti-mIL-1R7), in comparison to a mouse
Frontiers in Immunology 03
IgG2a isotype control antibody (Isotype as the abbreviation) for the

following in vitro and in vivo studies. The efficacy of the purified anti-

mIL-1R7 on mIL-12/IL-18- or LPS- induced IFNg release was

compared to IL-18BP in mouse splenocyte cultures (Figure 1A).

Though its suppression on IL-12/IL-18-induced IFNg was less potent
than IL-18BP, anti-mIL-1R7 inhibited LPS-induced IFNg robustly

with an efficacy comparable to IL-18BP.
Effects of anti-mIL-1R7 on IL-37-mediated
anti-inflammatory function

We next assessed the effects of anti-mIL-1R7 on inflammatory

responses in thioglycolate-elicited mouse peritoneal cells from

wildtype (WT) C57BL/6j mice. As shown in Figure 1B, anti-mIL-

1R7 pretreatment significantly suppressed LPS-induced IFNg from
these peritoneal cells compared to the isotype control-pretreated

cells (~ 70% reduction). Anti-mIL-1R7 also reduced LPS-induced

IL-1b release by around 40% (Figure 1B) and TNFa by around 20%

(Supplementary Figure 3). We next compared LPS-induced

inflammatory responses between cells from WT mice and

transgenic mice overexpressing human IL-37 (IL-37-Tg). As

reported earlier (32), cells from IL-37-Tg mice are more resistant

to LPS-induced inflammation than cells fromWTmice (Figure 1B).

IL-37 overexpression exerted similar magnitudes of inhibition on

LPS-induced IFNg and IL-1b in anti-mIL-1R7- or its isotype

control- pretreated cells from the IL-37-Tg mice (Figure 1B),
BA

FIGURE 1

Anti-mIL-1R7 monoclonal antibody inhibits IL-18-mediated IFNg production without affecting the anti-inflammatory function of IL-37. (A) Anti-mIL-
1R7 monoclonal antibody down-regulates IL-12/IL-18- or LPS- stimulated IFNg production in mouse splenocyte cultures. Primary mouse
splenocytes were pre-treated with or without 5mg/mL anti-mIL-1R7 or its isotype control or 1mg/mL IL-18BP for 30 minutes before IL-12/IL-18- or
LPS stimulation (as depicted in the procedure diagram). Please see Methods section for details. Mean ± SD of IFNg production in the cells. N=3 for
all conditions. **p < 0.01, ***p < 0.001 compared with IL-12/IL-18 or LPS alone-treated cells. #p < 0.05, ###p < 0.001 compared with the isotype
control-pretreated cells. (B) Effects of the anti-mIL-1R7 on the anti-inflammatory function of IL-37 in LPS-stimulated mouse peritoneal cells.
Thioglycolate-elicited peritoneal cells from WT or IL-37-Tg mice were pre-treated with or without anti-mIL-1R7 before LPS treatment (as depicted
in the procedure diagram). Mean ± SD Percent change of LPS-induced cytokine production (LPS-induced cytokine production in WT cells was set as
100%). N=3 for all conditions. **p < 0.01, ***p < 0.001 compared with isotype-pretreated WT cells. ###p < 0.001 compared with isotype-pretreated
cells from IL-37-Tg mice. $ p < 0.05 compared with anti-mIL-1R7-pretreated WT cells.
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demonstrating that anti-mIL-1R7 has no interference on the anti-

inflammatory function of IL-37 in cells.
Anti-mIL-1R7 protects mice from P. acnes
and LPS-induced systemic inflammation

IL-18 was initially identified as an IFNg-inducing factor and

purified and cloned from the livers of mice treated with the

bacterium P. acnes and subsequently challenged with LPS to

induce inflammatory responses and toxic shock (2, 33).

Therefore, we utilized this classic P. acnes and LPS treatment

model (P. acnes/LPS) to assess the in vivo effects of anti-mIL-1R7

on IL-18-mediated inflammation and liver injury. Mice were

challenged with P. acnes/LPS with or without the pretreatment of

anti-mIL-1R7 (anti-IL-1R7 group), its anti-mouse IgG isotype

control (isotype group) or saline (saline group) (Figure 2A). As

shown in Figures 2B, C, P. acnes/LPS-treatment induced high levels

of plasma ALT and MIP2 in mice whereas anti-IL-1R7-

pretreatment down-regulated plasma ALT and MIP2 levels in

comparison to saline or isotype control-pretreated groups. This is

consistent with earlier reports on the correlation of ALT and MIP2

with the severity of liver damage (34, 35). We further assessed the

plasma levels of proinflammatory cytokines IFNg, TNFa, IL-1b and

IL-6. As shown in Figure 2D, anti-IL-1R7 pretreatment markedly

suppressed plasma IFNg in comparison to pretreatments with saline

or isotype control antibody. In addition, plasma TNFa, IL-1b and

IL-6 were also lower in anti-IL-1R7-pretreated group than in saline

or isotype control-pretreated groups (Figures 2E–G), indicating a

general ameliorating effect of anti-IL-1R7 on inflammation in vivo
Frontiers in Immunology 04
in the P. acnes/LPS-challenged mice. No significant changes were

observed in the temperature or blood white blood cell (WBC)

counts among the anti-IL-1R7- or saline- or isotype control-

pretreated groups (Supplementary Figures 4A–E). No difference

was detected in plasma IL-18 levels among the three pretreated

groups as well (Supplementary Figures 4F).
Anti-mIL-1R7 protects mice from P. acnes
and LPS- induced liver injury
and inflammation

In addition to the ALT and MIP2 measurements, we further

investigated the liver injury and inflammation of the P. acnes/LPS-

challenged mice in more detail. H&E-stained liver slices from the

mice above were evaluated blindly using an established score

criteria (36). As shown in Figure 3A, anti-IL-1R7 pretreatment

protected mice from P. acnes/LPS-induced liver tissue injury. The

anti-IL-1R7 pretreated group showed less total liver injury score

than the isotype control-pretreated group, with less reactive changes

and reduced true abscess development (Figures 3B–D). Mice

pretreated with anti-IL-1R7 also presented restrained peri-portal

inflammation (Figure 3E). In addition, reduced cell injury and

migrating polymorphonuclear leukocytes (PMNs) were observed

in the anti-IL-1R7-pretreated mice than isotype control- or saline-

pretreated mice, although these differences did not achieve

statistical significance (Supplementary Figures 5A, B).

Moreover, we assessed liver cell inflammation using ex vivo cell

cultures (Figure 4A). Consistently, primary liver cells collected from

anti-IL-1R7-pretreated P. acnes/LPS-challenged mice secrete
B C

D E F G

A

FIGURE 2

Anti-IL-1R7 pretreatment protects mice from P. acnes/LPS-induced systemic hyperinflammation. (A) Procedure diagram for the P. acnes/LPS model.
(B) Plasma ALT levels, (C) Plasma MIP-2 levels, (D) Plasma IFNg levels, (E) Plasma TNFa levels, (F) Plasma IL-1b levels, (G) Plasma IL-6 levels of the
mice. Mean ± SD of plasma cytokines in mice challenged with P. acnes/LPS in the presence of anti-mIL-1R7 (anti-IL-1R7 group) or its isotype
control (isotype group), or saline (saline group) for pretreatment, or in mice challenged with PBS and pretreated with saline (Unstimulated group).
N ranges between 5 to 16. ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05 for comparisons as indicated.
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significantly less IFNg than liver cells collected from either saline- or

isotype control- pretreated mice (Figure 4B). Besides IFNg protein
expression, anti-IL-1R7 pretreatment also downregulated liver

tissue IFNg gene expression (Figure 4C). No significant difference

was found in liver WBC counts among the pretreated groups

(Supplementary Figures 4G–J).
Anti-mIL-1R7 suppressed P. acnes and
LPS-induced mouse spleen
cell inflammation

Considering the important role of IL-18 on lymphocyte

activation (37), we further examined the effect of anti-IL-1R7

pretreatment on spleen cell inflammation in mice challenged with

P. acnes/LPS. Similar to the ex vivo liver cell culture above, primary

spleen cells from either anti-IL-1R7- or saline- or isotype control-

pretreated mice were collected for culture (Figure 4D). As presented

in Figure 4E, spleen cells from anti-IL-1R7-pretreated mice released

substantially less IFNg than spleen cells from saline- or isotype

control- pretreated mice. In addition, cells from anti-IL-1R7-

pretreated mice also secrete less TNFa and IL-1b than cells from

isotype control-pretreated mice (Figures 4F, G). A reduction in IL-6

production was also observed in the same cells but the results did

not reach statistical significance (Figure 4H). Similarly, less IL-6 was

detected in peritoneal fluid lavage from anti-IL-1R7-pretreated

mice than saline- or isotype control- pretreated mice (Figure 4I).

No significant difference was observed in spleen or peritoneal total

WBC counts among the groups (Supplementary Figures 4K, L). As
Frontiers in Immunology 05
a summary, our findings from the P. acnes/LPS model are depicted

in Figure 5.
Anti-mIL-1R7 treatment reduces LPS-
induced lung neutrophilia and protects
mice from acute lung injury (ALI)

Elevated IL-18 and IFNg levels were found in COVID-19

patients recently and their levels are known to be correlated to

various lung diseases including ALI and acute respiratory distress

syndrome (ARDS) (8, 38–40). Therefore, in addition to the P. acnes/

LPS-induced liver injury and systemic inflammation model, we

evaluated the influence of IL-18/IL-1R7 blockage by anti-IL-1R7 in

a standardized mouse model of LPS-induced ALI (Figure 6A).

Intranasal application of LPS induced strong infiltration of

leukocytes and especially neutrophils into the lungs associated

with increased secretion of proinflammatory cytokines and

chemokines (Figure 6, Supplementary Figure 6). Anti-IL-1R7-

treatment significantly lowered total leukocytes and neutrophil

counts in the bronchoalveolar lavage (BAL) fluid and suppressed

LPS-induced lung inflammation as compared to either saline- or

isotype control- treated groups (Figures 6B–E). Alike in the P. acnes/

LPS model, IFNg production was significantly reduced by anti-IL-

1R7-treatment (Figure 6F). In addition, BAL levels of

proinflammatory mediators, especially MIP-1b, MIP-2, TNFa, IL-
1b and IL-6 were also lower after anti-IL-1R7-treatment

(Figures 6G–K). A summary of our findings with the potential

functional mechanism in the ALI model are summarized in Figure 7.
B C D E

A

FIGURE 3

Anti-IL-1R7 pretreatment protects mice from P. acnes/LPS-induced liver injury and inflammation. (A) Representative images of the H&E-stained
mouse liver tissue slices. The mice were challenged with P. acnes/LPS in the presence of saline (saline group), or anti-mIL-1R7 (anti-IL-1R7 group) or
its isotype control (isotype group) for pretreatment. Yellow arrows: apoptotic cells; Blue arrows: ductal reaction/hyperplasia; Red circle: larger
inflammatory cell foci; Green arrows: PMNs in central vein. (B-E) Results of liver injury assessment. Total injury score (B), score of reactive changes
(C), score of total abscesses (D) and score of peri-portal inflammation (E) of liver injury and inflammation assessed from the H&E-stained liver tissue
slices. Mean ± SD of the liver injury scores of the mice. N=5 for all conditions. ∗∗p < 0.01, and ∗p < 0.05 for comparisons as indicated.
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Discussion

In conclusion, our data from the present study showed that

anti-mIL-1R7, an antibody against mIL-1R7 (the co-receptor of IL-

18), significantly inhibited IL-12/IL-18- or LPS- stimulated IFNg
production in mouse spleen cells and peritoneal cells, protected

mice from P. acnes/LPS- induced liver injury and systemic

inflammation, and prevented mice from LPS-induced acute lung

injury and inflammation. To our knowledge, this is the first time an

anti-IL-1R7 antibody has been examined in vivo for suppression

of hyperinflammation.

Inflammation is the normal response to infection and injury.

However, when allowed to continue unchecked, inflammation can

result in severe diseases with high mortality including MAS and

MAS-associated COVID-19. IL-18 is known to play an important

role in the hyperinflammation and disease development (8, 10, 41–
Frontiers in Immunology 06
46). Known as secondary hemophagocytic lymphohistocytosis

(sHLH), MAS is characterized by a lethal hyper-inflammatory

state with liver dysfunction, pancytopenia, increased D-dimer and

ferritin, and coagulopathy (5). A severe IL-18/IL-18BP imbalance

was observed in MAS patients where the plasma concentrations of

IL-18 were 20–30 times higher than in patients with rheumatic

arthritis (44, 47–50). Markedly increased plasma IL-18 levels are

also present in patients with systemic juvenile idiopathic arthritis

(sJIA) or systemic inflammatory adult-onset Still’s disease (AOSD),

which are at high risk of developing life-threatening MAS (43, 48,

50–52). Anakinra, a natural antagonist for the IL-1 Receptor, is

effective in treating patients with sJIA or AOSD who develop MAS

(5, 53, 54), with a mechanism involving a reduction in the

processing of precursor IL-18 into an active cytokine (55). IL-

18BP, the natural inhibitor of IL-18, also demonstrated beneficiary

outcomes with early signs of clinical and laboratory marker efficacy
B C

D E F

G H I

A

FIGURE 4

Anti-IL-1R7 suppressed P. acnes/LPS-induced liver and spleen cell inflammation. (A, B) IFNg secretion in the ex vivo mouse liver cell cultures as
depicted in (A). Primary liver cells from the indicated mouse groups were cultured for two days before the supernatant were collected for cytokine
measurement. (C) P. acnes/LPS-induced liver IFNg mRNA synthesis in mice pretreated with anti-IL-1R7 or its isotype control or saline. Mean ± SD of
P. acnes/LPS-induced IFNg steady-state mRNA synthesis in fresh liver tissue samples. (D-H) Assessment of P. acnes/LPS-induced spleen cell
inflammation in the mice. Primary splenocytes from the indicated mouse groups were cultured as described in (D). IFNg (E), TNFa (F), IL-1b (G) and
IL-6 (H) levels in the supernatant. Mean ± SD of the cytokine levels were shown. (I) IL-6 level in peritoneal fluid lavages from mouse groups as
indicated. Mean ± SD of P. acnes/LPS challenge-induced IL-6 in the peritoneal fluid lavage. N ranges between 5 to 16. ∗∗∗p < 0.001, ∗∗p < 0.01, and
∗p < 0.05 for comparisons as indicated.
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427100
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2024.1427100
FIGURE 5

A schematic diagram summarizing the regulation and protective mechanisms of anti-IL-1R7 on the P. acnes/LPS-induced liver injury and systemic
inflammation. Intraperitoneal injection of P. acnes/LPS induces IL-18-mediated liver injury and systemic inflammation in mice. Anti-IL-1R7
suppresses IL-18-induced IFNg and other cytokine production such as TNFa, IL-1b and IL-6 by blocking the interaction of IL-18 with its receptors IL-
1R5/IL-1R7. This subsequently dampens liver inflammation and injury, and protects mice from systemic inflammation. The diagram was created with
BioRender contents.
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FIGURE 6

Anti-IL-1R7 protects mice from LPS-induced lung inflammation. (A) Treatment protocol for the LPS-induced lung inflammation model. (B, C) Total
leukocytes (B) and the different inflammatory cell counts (C) in the BAL fluid collected from mice challenged with or without intranasal LPS, in the presence
of anti-IL-1R7 or its isotype control or saline for treatments. (D) Representative images of the H&E-stained lung tissue slices. (E) Statistic analysis of the lung
inflammation score of the H&E-stained lung tissue slices. (F) IFNg, (G) MIP-1b, (H) MIP-2, (I) TNFa, (J) IL-1b and (K) IL-6 levels in the BAL fluids. Mean ± SD
of the cytokine levels were shown. N ranges between 7 to 12. ∗∗∗p < 0.001, ∗∗p < 0.01, and ∗p < 0.05, for comparisons as indicated.
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in treating patients with refractory AOSD and sJIA (56, 57). Similar

to MAS, patients with a gain-of-function mutation in NLRC4 (58)

or deficiency in X-linked inhibitor of apoptosis (XIAP) (41) also

experience a life-threatening hyper-inflammatory state with high

levels of free IL-18. Treatment of these patients with IL-18BP

alleviates the inflammatory state (5). In children with the NLRC4

mutation, IL-18BP also ameliorated the severe life-threatening

colitis in clinical studies (58). In parallel, blocking of IL-12, IL-18

or its downstream effector IFNg can down-regulate the severity of

experimental IBD in mice (59–61). Neutralization of IL-18 with IL-

18BP or anti-IL-18 antibodies demonstrated efficacy in dextran

sodium sulfate (DSS)- or trinitrobenzoic sulphonic acid (TNSB)-

induced models of IBD, and reduces intestinal IFNg and TNFa,
further proving the concept of IL-18 as a pivotal mediator in

experimental colitis (60, 62, 63). Altogether, these findings suggest

that IL-18 neutralization can contribute to the resolution of the

hyper-inflammatory state in disease.

As discussed earlier in detail (6), in any IL-18-related

pathological condition, the outcome of blocking IL-18 correlates

with the concentration of free, active IL-18, the surface level of IL-

1R5, the presence of IL-1R7 and IL-18BP (1). In diseases with

hyperinflammation, such as MAS, large quantities of free IL-18 are

produced to bind IL-1R5 and less IL-1R5 becomes available for the

anti-inflammatory IL-37. On the other hand, if the concentration of

IL-18BP increases and exceeds the need to bind IL-18, IL-37 can

bind to the excess IL-18BP and is not available for promoting its

anti-inflammatory portfolio (14, 21, 32, 64). This concept fits well

with a recent finding from a Dutch study where 300 patients at high

risk for a cardiovascular event had high levels of IL-18BP (64). In

that study, biomarkers of risk such as CRP correlated with the level

of IL-18BP. The concept also explains the association of low IL-37

levels with inflammatory diseases and the diminished anti-

inflammatory properties of IL-18BP at high doses (16–19). In

addition, we observed in a parallel study that high doses of IL-

18BP treatment increase inflammatory eosinophil infiltration into

the lungs of ovalbumin (OVA)- sensitized mice, indicating a

potential risk of high-dose IL-18BP in asthma development

(Supplementary Figure 7). In contrast, as the sole accessory chain

for IL-1R5 (24), IL-1R7 is essential for the recruitment and

activation of IRAK for IL-18-induced signaling and function (65–

68). Unlike IL-18BP, which directly binds to IL-18, anti-IL-1R7

targets the IL-18 co-receptor IL-1R7. Although recombinant IL-

18BP is much more potent in inhibiting IL-18-induced IFNg
(Figure 1, Supplementary Figure 1) (6), anti-IL-1R7 can be a

better strategy. Recombinant IL-18BP is so potent that even at 1

mg/mL, it completely abolished IL-18-induced IFNg in cell culture.

However, considering the important role of IFNg in host defense

against opportunistic infections (most importantly Mycobacterium

tuberculosis) (69–71), a basal level is needed to maintain a healthy

balance. Anti-IL-1R7 is ideal with which IL-18-induced IFNg level
is dampened but not completely abolished (Figure 1) (6). In

addition, our data proved that anti-IL-1R7 does not inhibit the

anti-inflammatory function of IL-37. This is another advantage we

seek in anti-IL-1R7. It is noteworthy that our data showed that both

anti-IL-1R7 and overexpression of IL-37 independently reduced the

production of IFNg induced by LPS (70% reduction by anti-IL-1R7
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and 65% reduction by overexpression of IL-37). The combined use

of anti-IL-1R7 and IL-37 overexpression further decreased IFNg
production (~ 90% reduction), indicating a synergistic effect. This

synergistic effect could result from the combined inhibitory effects

from anti-IL-1R7 and IL-37, either independently or dependently.

This mechanism is worthy of further investigation.

In this study, we selected P. acnes/LPS-induced liver injury and

systemic hyperinflammation as the primary model to evaluate the

function of anti-IL-1R7 in vivo as it is the classic model where mIL-

18 was originally discovered as the IFNg-inducing factor and a

robust production of IFNg was observed (2, 33, 72). In line with the

original discovery, we detected large amounts of IFNg in the plasma,

as well as in the ex vivo liver and spleen cell cultures from mice

challenged with P. acnes/LPS. High levels of other proinflammatory

cytokines such as TNFa, IL-1b and IL-6 were also observed in the

plasma, indicating a systemic hyperinflammation in this model. We

also detected significant liver injury and inflammation in the P.

acnes/LPS-challenged mice (liver tissue pathology and elevated

plasma ALT and MIP2). Anti-IL-1R7 pretreatment remarkedly

suppressed plasma IFNg and other inflammatory cytokines,

confirming the important role of IL-18 in mediating the systemic

inflammation and the efficacy of anti-IL-1R7 strategy in suppressing

IL-18-induced hyperinflammation. Anti-IL-1R7 pretreatment also

reduced IFNg production from liver and spleen cells and

ameliorated P. acnes/LPS-induced liver damage and spleen cell

inflammation, further demonstrating the protective properties of

anti-IL-1R7 in IL-18-mediated local and systemic inflammation

(Figure 5). Our study utilized a mixture of cells from the liver or

spleen because different cells are involved in the IL-18-IFNg-
inflammation cascade (5). IL-18 is secreted by macrophages or

dendritic cells (IL-18 producers) in response to LPS or other

inflammatory insults (5, 8). The secreted IL-18 can then activate

IL-18 effector cells, including T lymphocytes and natural killer (NK)

cells, which express both the IL-18 receptor and co-receptor (IL-

1R5 and IL-1R7). The IL-18 effector cells thus produce IFNg, which
can further stimulate and interact with other immune cells such as

macrophages and neutrophils to amplify the inflammatory cascade

(Figures 5, 7). Anti-IL-1R7, which targets IL-1R7 on the cell surface

of IL-18 effector cells, inhibits IL-18 activation in the cells to impede

the subsequent IL-18-IFNg-inflammation cascade. In the P. acnes/

LPS model, P. acnes was first applied to prime the immune system

leading to the formation of granuloma consisting of infiltrated

mononuclear cells/Kupffer cells in hepatic lobules (73) and the

subsequent LPS injection activates the macrophages to initiate a

series of inflammatory response leading to liver injury and a

hyperinflammatory condition. In this model, the mice were only

challenged with LPS for 3 hours (h). Some report indicated that

prolonged P. acnes/LPS challenge may induce mouse mortality (74).

In a preliminary study, we monitored the P. acnes/LPS-challenged

mice for 48 h. However, no significant lethality was found, although

the mice were very sick during the first 24 h after LPS injection. This

may be explained by the difference in P. acnes/LPS tolerance

between the mouse strains used. However, it is noteworthy that in

comparison to the isotype control-pretreated mice, the mice

pretreated with anti-IL-1R7 in general showed less weight loss

and temperature drop in response to LPS (Supplementary
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Figure 8), suggesting a protective effect by anti-IL-1R7 pretreatment

in general.

As an addition to the P. acnes/LPS- induced liver injury and

systemic hyperinflammation, we explored the function of anti-IL-

1R7 in LPS-induced local inflammation using the mouse model of

ALI. The effects of anti-IL-1R7 on leukocyte migration (especially

neutrophils) in response to LPS challenge, as well as the suppression

on lung inflammation suggest an important role of IL-18 in

respiratory inflammatory diseases. This is in line with the high

levels of IL-18 found to be associated with disease severity and poor

clinical outcome in COVID-19 patients (10, 12, 38, 75, 76). The

COVID-19 pandemic has brought attention to a virally induced

hyperinflammatory lung injury, sometimes evolving to ARDS, the

most severe form of acute lung injury, that is characterized by a

cytokine storm syndrome, multiple-organ failure and in most cases

leads to death (77–81). This finding also mirrors what has been

observed in MAS (82–84). In fact, MAS is present in patients with

severe COVID-19 disease status and is highlighted as a parallel with

the life-threatening COVID-19 infection because of the genetic,

clinical, histopathological, cytological and immunological

similarities (11, 45, 85–90). A significantly higher serum IL-18

level was observed in the COVID-19 patients with MAS than in

the patients without MAS (11, 85) and the elevated IL-18 level is

associated with disease severity and poor clinical outcome in

COVID-19 patients (12, 75). In addition to the high levels of IL-

18, IL-1R7 is also found to be highly expressed in cell-to-cell

communication among immune cells in COVID-19 patients and
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an elevated IFNg was also observed (38, 75, 76, 91, 92). Moreover, in

another respiratory disease SARS, caused by SARS-CoV-1 virus, IL-

18 concentration was also elevated in the patients than those in

healthy subjects, and higher levels were observed in nonsurvivors

than survivors (93, 94). Similarly, IL-18 was found to be involved in

an IFNg-related cytokine storm in the patients (93). It is important

to note that increased IL-18 levels were also found to be associated

with severe forms of asthma and chronic obstructive pulmonary

disease (COPD) and ARDS (8). Elevated IL-18 concentrations were

observed in the serum and lungs of patients with ARDS and

correlated with severity score and death (39, 95). Altogether, all

the pieces of evidence demonstrate an important role of IL-18 in

severe forms of respiratory diseases and the pertinency of anti-IL-

1R7 in treating IL-18-mediated respiratory inflammation. However,

the exact mechanism remains unknown and is worthy of

further study.

In summary, results from our studies further validated IL-1R7

as a potential therapeutic target and set the stage for a full

characterization of the potential of anti-IL-1R7 in clinical studies

of IL-18-mediated diseases such as MAS, COVID-19, IBD and

rheumatic diseases (5, 8). Patients carrying the NLRC4 mutation

with life-threatening enterocolitis could also benefit from such an

antibody specific to IL-18 inhibition (58). Further investigation on

the application of anti-IL-1R7 will not only provide new

mechanistic insights into the function of IL-18 in disease, but also

will likely identify novel therapeutic targets for treating IL-18-

mediated diseases.
FIGURE 7

A schematic diagram summarizing the ameliorating effects of anti-IL-1R7 on the LPS-induced acute lung injury. Intranasal LPS challenge in mice
induces strong infiltration of neutrophils, macrophages and lymphocytes into the lungs. The infiltrated inflammatory cells secrete many
proinflammatory cytokines and chemokines which lead to acute lung injury. Anti-IL-1R7 blocks IL-18-induced IFNg by inhibiting the interaction of
IL-18 with its receptors IL-1R5/IL-1R7, and downregulates the secretion of other associated cytokines and chemokines including TNFa, IL-1b and
IL-6, MIP-1b, MIP-2, IP-10 and MCP-1. Lym, lymphocyte; MF, macrophage; Neu, neutrophil. The diagram was created with BioRender contents.
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Material and methods

Antibodies and reagents

The anti-mouse IL-1R7 antibody was generated by

immunization of New Zealand white rabbits (Charles River

Laboratories, Wilmington, MA) with mouse recombinant IL-1R7

protein. Anti-mouse IL-1R7 antibody and non-binding isotype

control antibody were produced as mIgG2a-LALA isotype in

HEK293-FreeStyle cells from Thermo Fisher Scientific (Waltham,

MA, # R79007) and purified from the supernatant using protein-A

affini ty chromatography fo l lowed by s ize exc lus ion

chromatography (MAB Discovery GmbH, Neuried, Germany).

The antibodies have an incorporated double substitution, LALA

that significantly reduces binding to FcgRs to avoid Fc-mediated

effector functions (30, 31). The antibodies were then dissolved in the

buffer with 20 mM Histidine, 140 mM NaCl at pH 6, divided into

aliquots and stored at -80 °C before use. Lipopolysaccharide (LPS)

Escherichia coli (055:B5) was purchased from Sigma-Aldrich (St

Louis, MO, # L2880–10MG) unless otherwise specified. P. acnes

LyfoDisk (also known as P.acnes ATCC11827; formerly designated

“Corynebacterium parvum” was purchased from Microbiologics

(Cloud, MN, # 23–016-648). Mouse IL-18 and IL-12 were from Bio-

Techne (Minneapolis, MN, # 9139-IL-010 and # 419-ML-010).

Clinical grade recombinant human IL-18BP was a gift provided

by Serono pharmaceutical research institute (SPRI, Geneva, CH).

For cytokine measurements related to the liver injury model, the

corresponding ELISA DuoSet kits for mouse cytokines including

IL-1b, TNFa, IL-6, IFNg, IL-18 and MIP-2 were from Bio-Techne

(Minneapolis, MN, # DY401, # DY410, # DY406, # DY485, #

DY7625–05, # DY452). ALT measurement kit was purchased from

MedTest Dx (Canton, MI, USA, # A7526–150). For cytokine

measurements associated with the ALI model, the levels of

murine IL-1b, IL-6, IL12p70, IL-18, IFNa, IFNg, IP-10, MCP-1,

MIP-1b, MIP-2 and TNFa in BAL samples were assessed using

MSD U-Plex Assays (Meso Scale Diagnostics, Rockville, MD, USA)

according to the manufacturer´s guidelines.
Generation of thioglycollate-elicited
mouse peritoneal cells

The animal protocols were approved by University of Colorado

Animal Care and Use Committee unless otherwise specified.

Thioglycollate-elicited peritoneal cells from age-matched WT and

IL-37Tg male mice were generated as previously described (96). 1

mL of 3.7% Brewer’s autoclaved thioglycollate medium was instilled

intraperitoneally in WT or IL-37Tg mice. On the 4th day after the

instillation of the thioglycollate, the mice were euthanized. 10 mL of

RPMI was introduced into the cavity and peritoneal fluid lavage was

collected for cell counts and peritoneal cell culture. The peritoneal

cells were seeded at 1x10^6/mL in RPMI culture medium (Corning,

Corning, NY, # 10–040-CV) on 24-well plate in the presence of 10%

FCS (Corning, # 35–011-CV) and 1% penicillin/streptomycin

(Corning, # 30–002-CI). The cells were pretreated with or
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without 5 mg/mL anti-mIL-1R7 for 30 minutes before they were

stimulated with 1 mg/mL LPS for 24 h at 37°C. The supernatants

were collected for cytokine measurement.
Generation of heat-inactivated P. acnes

Pellets of the P. acnes LyfoDisk were resuspended in sterile PBS

at the concentration of 50 mg/mL. The P. acnes were heat-

inactivated at 60°C in water bath for 1 h as described earlier (33, 72).
Mouse model of P. acnes and LPS-induced
tissue and systemic inflammation

Gender- and age- matched male and female mice (8-week-old)

were injected intraperitoneally (i.p.) with 0.2 mL of PBS containing

10 mg of heat-killed P. acnes on Day 1. In parallel, in another set of

gender- and age- matched mice, 0.2 mL PBS alone was injected as

vehicle control. On Day 7, the P. acnes-injected mice were treated

i.p. with either 0.2 mL saline, or 0.2 mL of 20 mg/kg isotype control

antibodies or anti-mIL-1R7 antibodies in saline. The vehicle control

mice were injected with 0.2 mL saline. On Day 8, the mice were

treated again with the same solution as on Day 7 (either 0.2 mL

saline, or 0.2 mL of 20 mg/kg isotype control antibodies or anti-

mouse IL-1R7 antibodies in saline). In 30 minutes, the P. acnes-

primed mice were further challenged intravenously (i.v.) with 1 mg
of LPS in 0.2 mL of PBS, whereas the vehicle control mice were

challenged i.v with 0.2 mL of PBS alone. The mice were euthanized

3 h after LPS injection. Blood was collected for plasma cytokine and

liver enzyme measurement. Peritoneal fluid lavage was collected for

cell counts and cytokine measurement. Liver cells and splenocytes

were collected for ex vivo cell culture. Part of the liver were collected

and fast frozen in liquid nitrogen and stored at -80°C for later use

such as mRNA analysis.
Assessment of mouse liver histopathology

For liver injury scoring, the mouse livers were collected and

fixed in 10% formalin. The livers were then embedded in paraffin,

sectioned, and stained with H&E (University of Colorado Denver

Morphology and Phenotypic Core). Histological examination was

performed and evaluated blindly as previously described using an

established score criteria (36, 97). The entire cross section of liver

was analyzed from each mouse for liver injury. Images were

captured on an Olympus BX51 microscope equipped with a 4

megapixel Macrofire digital camera (Optronics) using the

PictureFrame Application 2.3 (Optronics) (36).
Ex vivo mouse liver cell cultures

Liver was removed from each mouse challenged with P. acnes

and LPS as above. The liver tissue was weighed and cut into small
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pieces in saline with sterile utensils. The liver pieces were broken

down gently using a syringe plunger tip and the cell suspensions

were passed through a 100 mm cell strainer. The cells were gently

washed twice with saline at 1,000 rpm for 5 minutes and

resuspended in RPMI culture medium at 0.2 g/mL. 1 mL of the

liver cell suspensions were seeded per well on 12-well cell culture

plates. The cells were cultured for 48 h before the supernatant and

cell lysates were collected. Supernatants were collected by

centrifugation at 400 x g for 5 minutes and stored at -80°C for

cytokine analysis. Cells remaining in the wells were lysed in 200 ml
0.5% triton-X in water and stored at -80°C for later use such as total

protein quantification.
Mouse liver gene expression

Part of the liver was collected from each mouse and

homogenized for RNA purification using TRIzol reagent

(Invitrogen, Carlsbad, CA, # 15596018). The RNA was reverse

transcribed using High Capacity cDNA Reverse Transcription Kit

(Applied Biosystems, Waltham, MA, # 4368814) and quantitatively

measured for gene expressions using PowerSYBR Green PCR

Master Mix (Applied Biosystems, # 4367659). Mouse IFNg
mRNA synthesis was measured and mouse GAPDH was used as

the internal control. The forward primer for mouse GAPDH was: 5’

TTCAACAGCAACTCCCACTCTTCCA 3’. The reverse primer for

mouse GAPDH was: 5’ ACCCTGTTGCTGTAGCCGTATTCA 3’.

T h e f o r w a r d p r i m e r f o r m o u s e I F N g w a s : 5 ’

CAGCAACAGCAAGGCGAAAAAGG. The reverse primer for

mouse IFNg was: 5’ TTTCCGCTTCCTGAGGCTGGAT 3. The

relative ratio of the mRNA from IFNg gene to internal control

(GAPDH) was calculated as: 1/2DCt (cytokine gene minus the

internal control gene).
Mouse spleen cell culture

The spleen cell suspensions were obtained as described (96) and

passed through a 70 mm sterile cell strainer. Cells were washed with

RPMI and resuspended in RPMI supplemented with 1% P/S and

10% FCS at 1x10^7 cells/mL. For in vitro assessment of the effects of

anti-IL-1R7, cells were seeded on 96-well round-bottom plates with

or without the pretreatment of anti-IL-1R7, or its isotype control or

IL-18BP for at least 30 minutes. The cells were then stimulated with

or without IL-12/IL-18 or 1 mg/mL LPS for 24 h in a humidified

atmosphere with 5% CO2. 2 ng/mL IL-12 + 20 ng/mL IL-18 and 1 x

10 ^ 6 splenocytes per well were used for antibody clone screening

and the dose responses of the antibodies. After the optimal antibody

candidate was selected, 1 ng/mL IL-12 + 10 ng/mL IL-18 and 0.5 x

10 ^ 6 splenocytes per well were used for subsequent cell culture

studies. For P. acnes/LPS mouse model study, spleen was collected

from each mouse challenged with P. acnes/LPS as above. 1 x 10 ^ 7

cells were seeded per well on 24-well plates for 48 h in a humidified

atmosphere with 5% CO2. The supernatant was then collected for

cytokine measurement.
Frontiers in Immunology 11
Immobilized ELISA binding of anti-mIL-1R7
to mouse IL-1R7

The assay was performed as previously described (6). Nunc 384-

well MaxiSorp plates were coated with recombinant mouse IL-1R7

extracellular domain (mIL-1R7-FC; MAB Discovery GmbH, at a

concentration of 0.5 µg/mL in PBS for 60 minutes at room

temperature. Plates were washed three times with wash buffer

(PBS 0.1% Tween) and blocked with PBS, 2% BSA, 0.05% Tween

for 60 minutes at room temperature. After three washes with wash

buffer, antibodies were added in ELISA buffer (PBS, 0.5% BSA,

0.05% Tween) at different concentrations and were incubated for 60

min at room temperature. Plates were washed three times with wash

buffer, followed by incubation with goat anti-mouse-F(ab)2,
peroxidase-linked secondary antibody (Invitrogen, # A24512) at a

dilution of 1:5000 in ELISA buffer for 60 minutes at room

temperature. Plates were washed six times with wash buffer

before TMB substrate solution (Invitrogen, # 501129758; 15 µl/

well) was added. After 5 minutes of incubation, stop solution (1M

HCl, 15 µl/well) was added and absorbance (450 nm/620 nm)

measured using a Tecan M1000 plate reader.
Cell binding of anti-mIL-1R7 to mouse
IL-1R7

Similarly, as described before (6), HEK-293-FreeStyle™ cells

were transfected with DNAs encoding full-length mouse IL-1R7

and using 293-Free™ Transfection Reagent (Merck, Kenilworth,

NJ, # 72181). 24 h after transfection, cells were seeded in a 96-well

round bottom plate at a cell density of 1x106 cells/mL in stain buffer

(BD, Franklin Lakes, NJ, # 554656). Anti-mIL-1R7 antibody was

added at different concentrations and incubated for 1h in the dark

at 4°C. Cells were washed once with 150 µL DPBS and incubated

with Alexa Fluor 488-conjugated goat F(ab)2 anti-mouse IgG (H

+L) (Jackson ImmunoResearch Laboratories, West Grove, PA;

#109–546-003) at a concentration of 0.8 µg/mL in stain buffer.

Cells were washed once with 150 µL DPBS and resuspended in 150

µL stain buffer containing 1:500 diluted DRAQ7 solution (Abcam,

Cambridge, UK; #ab109202; 0.3 mM). Cells were analyzed using a

BD FACSVerse flow cytometer.
Mouse models of LPS-induced ALI and
OVA-induced experimental allergic
asthma (EAA)

Female wild-type C57BL/6 mice, aged 6–8 weeks, were housed

under specific pathogen-free conditions receiving OVA-free diet

and water ad libitum. All animal studies were in accordance with

the German animal protection law and were approved by the local

animal research ethics board (V244–230826/2015 (76–11/21)). ALI

was induced by intranasal application of 10 µg LPS (Sigma-Aldrich,

# L4391) in 50 µL saline via oropharyngeal aspiration (o.A.).

Subsequent intranasal anti-mIL-1R7 antibody (200 µg in 50 µL
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saline) treatment started 1 h after LPS application and was repeated

after 24 h and 48 h. 72 h after LPS application airway

hyperresponsiveness was assessed, all animals were sacrificed by

cervical dislocation under deep anesthesia and sampling (serum,

broncho-alveolar lavage (BAL), lung tissue) was performed. EAA

was induced as described previously (98). All animals were

sacrificed by cervical dislocation under deep anesthesia. Sampling

(serum, BAL, lung tissue) was performed 24 h after the last OVA

challenge. Mice challenged with OVA aerosol received either PBS or

recombinant IL-18BP o.A. as a treatment. Animals for the negative

control group were sham sensitized to PBS and subsequently

challenged with OVA aerosol and were treated with PBS o.A.

(healthy group).

For lung histology and inflammatory scoring, the mouse lungs

were collected and inflated with phosphate buffered 4% PFA (Roth,

Karlsruhe, Germany, # P087.3) under constant pressure of 20 cm

water column for 20 minutes and fixed overnight with phosphate

buffered 4% PFA. The lungs were then embedded in paraffin,

sectioned, and stained with H&E (Sigma-Aldrich, # HT110132–

1L, 1.09249.1000). The entire cross section of lungs was analyzed

from each mouse for lung inflammation. Images were captured on

an Olympus BX51 microscope equipped with a DP25 digital camera

(Olympus) using the Cell^A (Olympus) and evaluated blindly at

200x magnifications by an experienced pathologist in order to

describe the histopathological characteristics. Semiquantitative

analysis of the inflammatory process was performed using the

following graduation: grade 0 (absent), 1 (discrete), 2 (mild), 3

(moderate) and 4 (intense).
Bronchoalveolar lavage and differential
cell count

Lungs were lavaged with 1 mL ice-cold PBS containing protease

inhibitor (Complete; Roche, Basel, Switzerland, # 11697498001) via a

tracheal cannula. Cells were counted using a Neubauer counting

chamber. Aliquots of 50 µL of lavage fluids were cytospinned

(Cytospin™; Thermo Fischer Scientific, # A78300004), stained with

Diff-Quick (Cella Vision RAL Diagnostics, Düdingen, Switzerland,

720555–0000), and cells were microscopically differentiated

according to morphologic criteria as previously described (99).
Assessment of airway
hyperresponsiveness (AHR)

Airway responsiveness to methacholine (MCh, acetyl-b-
methylcholine chloride; Sigma-Aldrich, # A2251–25g) challenge in

anesthetized and ventilated mice was invasively assessed 72 h after

LPS treatment using FinePointe RC Units (Data Science

International, St. Paul, MN, USA) by continuous measurement of

airway resistance (RI). Animals were weighed and anesthetized with

ketamine (90 mg/kg body weight; cp-pharma) and xylazine (10 mg/

kg BW; cp-pharma) and tracheotomized with a cannula. Mechanical

ventilation was previously described (100). Measurements were taken

at baseline (PBS) and in response to inhalation of increased
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concentrations of aerosolized methacholine (3.125; 6.25; 12.5; 25;

50; and 100 mg/mL). After assessment of lung function, all animals

were sacrificed by cervical dislocation under deep anesthesia.
Statistical analysis

Significance of differences was evaluated with Student’s 2-tail t

test or one-way ANOVA. For one-way ANOVA, Tukey’s post hoc

test was employed in pairwise comparison. Excel 16.85 and

GraphPad Prism 10.2.3 were used for data analysis. GraphPad

Prism 10.2.3 was used for graph preparation. The mean or mean

percent change for each measurement was calculated as indicated in

the Figure Legends. The data shown represent the Mean ± SD.
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