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of IL-4Ra signalling on Foxp3
T regulatory cells in listeriosis
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Introduction: Forkhead box P3 (Foxp3) T regulatory cells are critical for

maintaining self-tolerance, immune homeostasis, and regulating the

immune system.

Methods: We investigated interleukin-4 receptor alpha (IL-4Ra) signalling on T

regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes)

infection using a mouse model on a BALB/c background, specifically with IL-

4Ra knockdown in Tregs (Foxp3creIL-4Ra−/lox).

Results: We showed an impairment of Treg responses, along with a decreased

bacterial burden and diminished tissue pathology in the liver and spleen, which

translated into better survival. Mechanistically, we observed an enhancement of

the Th1 signature, characterised by increased expression of the T-bet

transcription factor and a greater number of effector T cells producing IFN-g,
IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in

Foxp3creIL-4Ra-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Ra-/lox

mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation

capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis

(activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Ra-/lox

mice displayed similar bacterial burdens, lung pathology and survival during

Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell

numbers and IFN-g, TNF and IL-17 production.
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Conclusion: Our results demonstrated that the diminished IL-4Ra signalling on

Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to

survival benefits in listeriosis but not in tuberculosis.
KEYWORDS
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Introduction

T regulatory cells (Tregs) are a subset of CD4 T cells that

uniquely express the transcription factor Forkhead box P3

(Foxp3) upon recognition of antigens by T-cell receptors. This

expression leads to the suppression of effector T-cell responses,

making Tregs pivotal in the maintenance of immune homeostasis

(1). Tregs with a reduction and/or mutation in Foxp3 lead to

various autoimmune diseases and immune dysregulation in both

mice and humans (2). The breadth of their receptors,

costimulatory molecules, and cytokine milieu affects their

functions at large. For instance, Tregs expressing CTLA-4 cause

trans-endocytosis of CD80/CD86, resulting in impaired CD28

costimulation, thus impeding T-cell responses (3). Tregs delay T-

cell priming by hindering antigen presentation through direct

interaction with peptide-MHC complex (pMHC) and by

removing this complex from the surface of the antigen-

presenting cells (4). Tregs also modulate anti-inflammatory

responses through the secretion of interleukin (IL)-10 and

tumor growth factor beta (TGF-b) (5, 6).
The cytokine milieu of Th1 (interferon (IFN)-g and IL-12) or

Th2 (IL-4) responses modulates Treg cell development and

function (7–9). IL-4 signals through the IL-4 receptor alpha (IL-

4Ra), which is associated with archetypal type 2 immunity. IL-4Ra
is expressed on both innate and adaptive immune cells, including

Tregs, where it controls Foxp3 expression (10, 11) and promotes

reprogramming toward the Th2 phenotype via the IL-4Ra-STAT6
axis (12), suggesting that IL-4Ra plays a restrictive role in

Treg functions.

Listeria monocytogenes (L. monocytogenes), a gram-positive

bacteria, is the causative agent of listeriosis. It is a foodborne

intracellular pathogen that infects a wide range of cells, including

neutrophils and macrophages, which are required for host

protection (13, 14). In the 1980s, a series of outbreaks occurred in

Europe and the USA (15–17), with more recent cases reported in

South Africa (2017–2018) (18). Despite the availability of effective

antibiotics, the mortality rate remains at 30% (19). During

pregnancy, Tregs expand to maintain maternal tolerance to the

foetus; however, this expansion is associated with greater

susceptibility to L. monocytogenes (20). In Mycobacterium

tuberculosis (M. tuberculosis) infection, Tregs expand, which

delays host protective effector T-cell responses and facilitates the

establishment of early infection in the lungs (21, 22).
02
Here, we demonstrated that the deletion of IL-4Ra signalling

on Tregs resulted in decreased Foxp3 Tregs and increased survival

rates of mice in listeriosis. These observations were accompanied

by decreased tissue bacterial loads and liver pathology,

attributable to enhanced CD8 T-cell immune responses and

cytotoxic functions. In contrast, IL-4Ra-deficient Tregs did not

affect the outcome of tuberculosis, despite increased CD4 T-cell

responses, reflecting the differential roles of IL-4Ra signalling in

Tregs during bacterial infections.
Methods

Mice

Deletion of the Il4ra gene in Foxp3-expressing cells

(Foxp3creIL-4Ra−/lox) was generated and characterized in BALB/c

background mice, as previously described (23). Mice were housed in

the specific pathogen-free (SPF) animal facility of the Faculty of

Health Sciences, University of Cape Town. All mice used in the

experiments were aged 8–12 weeks and sex-matched.
Listeria monocytogenes and
Mycobacterium tuberculosis infections

L. monocytogenes (virulent EGD-e strain) was cultured and

maintained as previously described (24). Foxp3creIL-4Ra−/lox and

littermate controls were infected via intraperitoneal injection with

200 µl of phosphate buffered saline (PBS) using an insulin syringe

containing 2 × 105 colony forming unit (CFU) of L. monocytogenes

for survival studies, and with 2 × 104 for time course experiments.

M. tuberculosis H37Rv was grown in Middlebrook 7H9 broth

and passaged in mice to maintain virulence. The mice were infected

via aerosol inhalation, mimicking the natural route of

M. tuberculosis infection, as previously described (25). A total of

2 × 106/ml of live bacteria was suspended in 6 ml of PBS solution to

obtain a low dose of 100 CFU/lung using a glass-col nebulising

aerosol inhalation system. The infection dose was confirmed by

plating lung homogenates from three to five mice on 7H10

Middlebrook plates 24 h after infection.
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Determination of bacterial burdens

For L. monocytogenes andM. tuberculosis infections, bacterial loads

were determined at various time points. Organs were collected

aseptically and homogenised in PBS containing 0.05% Tween 80.

Homogenates were serially diluted 10-fold in PBS, and 100 µl was

plated on tryptic soy agar plates for L. monocytogenes and on 7H10

agar plates for M. tuberculosis. Plates were incubated at 37°C for 24 h

for L. monocytogenes, and for 21 days for M. tuberculosis for

colony counting.
Tissue histopathology

Consistent lobes of the spleen or liver were collected from

L. monocytogenes-infected animals, while lungs were collected from

M. tuberculosis-infected animals. The sections were fixed with 4%

formalin and rehydrated with xylol and alcohol during preparation

of slides. Three different cuts (2–3 µm) were obtained from each

mouse for hemotoxylin and eosin (H&E) staining to observe

pathological changes, immune cell infiltration, and lesion sizes.

Images were acquired using a Nikon Eclipse 90i Microscope.

Analysis and visualization of alveolar air spaces were determined

using the Nikon NIS element software.
Immune response in tissue homogenates

Concentrations of the various cytokine and chemokines (IL-1a, IL-
1b, IL-4, IL-6, IL-10, IL-12p40, IL-12p70, IL-17, IL-23, IFN-g, IFN-b,
TGF-b, tumor necrosis factor (TNF), granulocyte-macrophage colony-

stimulating factor (GM-CSF), macrophage colony-stimulating factor

(M-CSF), C-C motif ligand 2 (CCL2), C-C motif ligand 3 (CCL3), C-

X-C motif ligand 1 (CXCL1), C-X-C motif ligand 2 (CXCL2), C-X-C

motif ligand 5 (CXCL5), and C-X-C motif ligand 10 (CXCL10)) were

determined in tissue homogenates or culture supernatants using ELISA

along with nitrite concentrations by Griess assay, as determined

previously (25).
Isolation and stimulation of mediastinal
lymph node cells

The mediastinal lymph node was harvested from mice,

mechanically digested using syringe plungers, and passed through

70 µm and then 40 µm strainers to prepare single-cell suspensions.

Cells were centrifuged at 1,200 rpm for 10 min at 4°C. Single cells

were resuspended in 2–5 ml of complete Dulbecco’s modified

Eagle’s medium (DMEM, Gibco, NY, USA) supplemented with

10% FCS, and viable cells were counted with Trypan Blue (0.4%). A

total of 2 × 106 cells were seeded in 100 µl of media and left

unstimulated or stimulated with H37Rv lysate (10 µg/ml), or

phorbol-12-myristate-13-acetate (PMA) (50ng/ml)/ionomycin

(250 ng/ml) with monensin (200 mM) for 8 h.
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Flow cytometry

Single-cell suspensions were prepared as previously described (25).

Briefly, 1 × 106 cells from liver and spleen tissues for L. monocytogenes,

as well as lung and lymph node tissues forM. tuberculosis, were stained

with rat anti-mouse IL-4Ra (BD Biosciences, NJ, USA) along with other

markers to determine the populations of the following cell types:

dendritic cells (CD11b+CD11c+MHCII+), spleen macrophages

(CD11b+CD11c-Ly6C−), liver macrophages (CD11blowF4/80+), lung

alveaolar macrophages (CD64+MerTK+SiglecF+CD11c+), neutrophils

(Ly6G+CD11b+), eosinophils (SiglecF+CD11b+CD64−), CD4 T cells

(CD19−CD3+CD4+CD8−), CD8 T cells (CD19−CD3+CD4−CD8+),

CD4/CD8 Naïve (CD62L+CD44−), memory (CD62L+CD44+), and

effector (CD62L+CD44+). All antibodies were purchased from

BioLegend, San Diego, USA unless otherwise stated. The staining was

performed using an antibodymix (50 ml) containing rat serum (2%) and

FcgR blocking antibody (10 µg/ml) in PBS supplemented with 1% BSA

and 0.1% NaN3.

Cytokines were assessed by intracellular cytokine staining (ICS)

as previously described (23), using antibodies including anti-IL-2-

FITC, IFN-g-A700, IL-4-PE, IL-17-PerCP Cy5.5, and IL-10-FITC.

Intranuclear staining was performed similarly to ICS with

eBioscience, San Diego, USA Foxp3/transcription factor staining

buffer, utilizing antibodies such as anti-Foxp3-APC, Ki-67-PE, Bcl-

2-FITC, Caspase3-PE, GranzymeB-BV421, and GATA3-PerCP

Cy5.5. The acquisition was achieved using the LSRFortessa™.

The gating strategy is presented in Supplementary Figures S1–S4.

All generated data from the Fortessa were analysed using Flowjo

software (FlowJo v10.0.7).
Real-time PCR

Total RNA was extracted from splenocytes and hepatocytes

following L. monocytogenes infection using the Qiagen RNeasy Mini

Kit, in accordance with the manufacturer’s protocol. RNA quality was

determined using NanoDrop 2000. cDNA was synthesized through

reverse transcription using first-stranded cDNA Synthesis Kit (Roche,

Basel, Switzerland), employing random hexamer primer and anchored

oligo dT primers. Quantitative real-time PCR was performed using

LightCycler® 480 SYBR Green I Master Mix in LightCycler®

480 II (Roche). Hprt served as the housekeeping gene for

absolute quantifications.
Publicly available human TB
transcriptomics datasets

Transcriptional signatures of il4ra and foxp3 were analyzed from

prospective cohorts of active TB cases and Quantiferon-positive latent

TB (LTBI) cases in the publicly available whole blood gene expression

dataset (GSE19442) from South Africa (26). Transcriptional profiles in

the whole blood of participants with tuberculosis undergoing treatment

were plotted and analyzed from another publicly available South

African cohort dataset (GSE40553) (27).
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Statistics

Data were analysed using GraphPad Prism software (v6.0 GraphPad

Software, La Jolla, CA, USA). The statistical tests employed were either

Student’s t-test (two-tailed with unequal variance) or one-way ANOVA

with Dunnett’s post-hoc test when comparing more than two groups. A

*p value of less than 0.05 was considered significant, depicting **p < 0.01,

***p < 0.001 and ****p < 0.0001.
Results

IL-4Ra and Foxp3 mRNA expression
changes differentially in early and late
L. monocytogenes infection in mice

To determine whether L. monocytogenes infection regulates the

expression of IL-4Ra and Foxp3, we assessed mRNA expression in the

spleen over the course of 10 days in BALB/c mice infected with a

sublethal dose 2 × 104 CFU of L. monocytogenes intraperitoneally. At 5,

7, and 10 days after infection, Il4ra mRNA transcript levels were
Frontiers in Immunology 04
gradually decreased in the spleen (Figure 1A), suggesting that

L. monocytogenes infection downregulates Il4ra expression. Foxp3

transcript levels also decreased significantly on days 2 and 5

(Figure 1B). Foxp3 expression was restored on day 10, although the

levels were similar to those observed on day 7; greater variation in the

data resulted in no significant difference on day 10 (Figure 1B). The

increase in Foxp3 expression at this later stage is expected, as mice

typically recover from L. monocytogenes infection by day 10 (28). Given

the differences in IL-4Ra transcript levels, we investigated the biological

role of the receptor in vivo using mice that lack IL-4Ra specifically on

Foxp3 Tregs (Foxp3creIL-4Ra−/lox). These mice were intraperitoneally

infected with 2 × 104 L. monocytogenes and euthanized 3 and 7 days

postinfection. We found a significant reduction in IL-4Ra surface

protein levels in both the spleen and liver of Foxp3creIL-4Ra−/lox mice

compared to littermate controls at 3 and 7 days postinfection (dpi)

(Figures 1C-E), with IL-4Ra−/− mice used as additional controls.

Moreover, we confirmed cell-specific deletion of the receptor on

Foxp3 Tregs in both organs during the course of infection, as

expected, though levels did not reach those found in IL-4Ra null

mice. This is due to the limitations of the Cre-lox system, where the

specificity of Cre expression depends on the fidelity of promoters,
FIGURE 1

Listeria infection decreases mRNA expression of IL4ra and Foxp3 in the spleen. Mice were infected via an intraperitoneal route with 2 × 104 CFU of
L. monocytogenes. At the indicated days, mice were euthanized to measure (A) Il4ra (B) Foxp3 mRNA levels, normalized to the Hprt housekeeping gene
in the spleen. Single-cell suspension from the liver and spleen was analysed by flow cytometry to determine IL-4Ra expression on Foxp3 Tregs.
(C) Histogram representation of IL-4Ra−/− (grey shaded), Foxp3creIL-4Ra−/lox (solid line), and IL-4Ra−/lox (dashed line) tissues, along with IL-4Ra geometric
mean fluorescence intensity (GMFI) quantification in the spleen and liver at (D) 3 and (E) 7 dpi. Foxp3 expression on CD4+ T cells is represented as GMFI
values at (F) 3 and (G) 7 dpi. Data are represented as mean ± SEM, representative of two independent experiments with (A, B) n = 3 mice/time point and
(C–G) n = 5–7 animals, analysed using a two-tailed unpaired Student’s t-test (*p < 0.05; **p < 0.01; ***p < 0.001).
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which may result in partial gene deletion (see gating strategy

Supplementary Figure S1). The characterisation of Foxp3creIL-

4Ra−/lox mice had been previously published by our laboratory (23).

During L. monocytogenes infection, the expression of Foxp3 is

significantly decreased in CD4 T cells in the spleen, but not the liver,

which could be due to the fewer Foxp3 cells in the liver at 3 and 7 dpi

(Figures 1F, G). These results suggest that Foxp3 expression in CD4

T cells is decreased in the absence of IL-4Ra signalling during

L. monocytogenes infection.
Foxp3creIL-4Ra−/lox mice showed
enhanced survival during
L. monocytogenes infection

Given the reduced expression of Foxp3 in Tregs during

L. monocytogenes infection (Figure 1), we investigated the effect of

IL-4Ra deletion on Foxp3 Treg cells in relation to host survival and

bacterial burden. Mice were infected intraperitoneally with a lethal dose
Frontiers in Immunology 05
(LD50) of L. monocytogenes (2 × 105 CFU/mouse). Foxp3creIL-4Ra−/lox

mice showed enhanced survival in comparison to control littermates

during L. monocytogenes infection (Figure 2A). To better understand

this survival benefit, we infected Foxp3creIL-4Ra−/lox mice with a

sublethal dose of L. monocytogenes (2 × 104 CFU/mouse) for time-

kinetic experiments. At 3 and 7 dpi time points, mice displayed a

significant reduction in the listerial burden in the spleen (Figure 2B),

while liver burdens remained unaffected (Figure 2C). We performed

hematoxylin and eosin staining (H&E) to evaluate the histopathology

of the spleen and liver. At 3 and 7 dpi, Foxp3creIL-4Ra−/lox mice

displayed smaller lesion size, as indicated by the atrophic white splenic

pulp (Figure 2D), and decreased lesion size in the liver (Figure 2E)

compared to littermate control IL-4Ra−/lox animals. This was further

confirmed following the quantification of the lesion sizes in both the

spleen and liver, although the liver had exhibited similar bacterial

burdens (Figures 2F, G). This suggests that the deletion of IL-4Ra on T

regulatory cells resulted in decreased splenic burdens, reduced cellular

infiltration into the tissues, and consequently smaller lesion sizes

during L. monocytogenes infection.
FIGURE 2

Foxp3creIL-4Ra−/lox mice showed increased survival and decreased tissue burdens and pathology. (A) Survival of Foxp3creIL-4Ra−/lox and littermate control
animals over 15 days following infection with 2 × 105 CFU of L. monocytogenes. (B) Spleen and (C) liver bacterial burden was determined at 3 and 7 days
postinfection. At 3 and 7dpi, spleen and liver tissues were formalin-fixed and stained with H&E for histopathological analysis. Representative sections of the
(D) spleen and (E) liver with arrows showing white pulp atrophy and circles indicating cellular infiltration. Three 30-µm apart cuts per tissue were analysed
(scalebar = 100 µm; magnification, × 200). (F, G) Quantification of splenic atrophic areas and liver lesion size. Data are represented as mean ± SEM of (A) 8–
10 mice/group, analysed using Mantel–Cox test (p = 0.0123), and (B–G) 10–15 mice/group from pooled data across three independent experiments,
analysed using a two-tailed unpaired Student’s t-test (*p < 0.05; ***p < 0.0001).
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Increased proinflammatory cytokines
in Foxp3creIL-4Ra−/lox mice during
L. monocytogenes infection

We next assessed whether the humoral immune response was

differentially affected in Foxp3creIL-4Ra−/lox mice during

L. monocytogenes infection. At 3 dpi, serum analysis revealed a

decrease in IL-1a (Figure 3A) and IL-1b (Figure 3B), along with an

increase in the regulatory cytokine TGF-b (Figure 3E). At 7 dpi, we

found a significant increase in IL-1b (Figure 3B), IL-12p70

(Figure 3C), IFN-g (Figure 3D), and TGF-b (Figure 3E) in

Foxp3creIL-4Ra-/lox mice, while TNF levels remained unchanged

(Figure 3F). We then analysed the cytokine response in liver

homogenates. At 3 dpi, there was a significant decrease in IL-6

(Figure 3G). In contrast, at 7 dpi, there was a significant increase in

TNF, IL-10, and IL-4, suggesting a dampening effect in the absence of

IL-4Ra on Foxp3 Tregs; however, there were no differences in IL-17,

IFN-g, TGF-b, IL-12p40, and IL-6 (Figure 3H). The similar listerial

burden in the liver may account for no major changes or the shift in

inflammatory–regulatory cytokine landscape balance in the immune

response. We next examined the spleen cytokine profile following
Frontiers in Immunology 06
restimulation with either heat-killed L. monocytogenes (HKLM) or

anti-CD3 or left unstimulated. At 3 dpi, there were no major

differences in the production of IFN-g, IL-10, and TNF (Figures 3I-

K). However, at 7 dpi, there was a significant increase in IFN-g and
IL-10 following anti-CD3 stimulation (Figures 3L-N). The modest

increase in IFN-g may contribute to the decreased bacterial burdens,

as IFN-g plays a crucial role in the clearance of L. monocytogenes (29).

Altogether, IL-4Ra signalling on Foxp3 Tregs modulates the immune

response in mice during L. monocytogenes infection.
Absence of IL-4Ra signalling on Foxp3
alters immune cell populations early after
L. monocytogenes infection

To understand which immune cell subsets were involved in the

augmented infiltration, cell populations were analysed in the liver

and spleen. There was a significant increase in the total cell number

harvested from the Foxp3creIL-4Ra−/lox mice compared to

littermate controls in the spleen at 3 and 7 dpi (Figure 4A);

however, cell numbers were unaffected in the liver (Figure 4B).
FIGURE 3

Foxp3creIL-4Ra−/lox mice showed increased proinflammatory cytokines in sera and spleen. Cytokine concentrations were measured in the serum, liver, and
supernatants of restimulated splenocytes by ELISA. (A) IL-1a, (B) IL-1b, (C) IL-12p70, (D) IFN-g, (E) TGF-b, and (F) TNF in serum; (G, H) cytokines in liver
homogenates at 3 and 7 dpi. Spleen cells were restimulated with a-CD3 and heat-killed L. monocytogenes (HKLM) or left unstimulated for 72 h to
determine (I) IFN-g, (J) IL-10, and (K) TNF in the supernatants by ELISA at 3 dpi, and (L) IFN-g, (M) IL-10, and (N) IL-6 at 7 dpi. Data are representative of
mean ± SEM from two individual experiments and analysed using a two-tailed unpaired Student’s t-test (*p < 0.05; **p < 0.01).
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Additionally, there was a significant increase in macrophages in the

spleen of Foxp3creIL-4Ra−/lox mice at 7 dpi (Figure 4C), while

macrophages were decreased in the liver at both time points

(Figure 4D). The number of dendritic cells (DCs) in the spleen

also increased at both 3 and 7 dpi in the Foxp3creIL-4Ra−/lox mice

(Figure 4E), but no differences were observed in the liver

(Figure 4F). There was an increase in neutrophils early at 3 dpi in

the spleen (Figure 4G) and a decrease in the liver at 7 dpi in the

Foxp3creIL-4Ra−/lox mice (Figure 4H). Neutrophils are known to

control L. monocytogenes during the early stages of infection, which

could explain the decreased splenic burden in the Foxp3creIL-4Ra−/

lox mice (30). We also evaluated T cells, given their important role in

L. monocytogenes infection (31–33). T-cell populations in the liver

and spleen were investigated at both 3 and 7 dpi. CD4 T-cell

numbers in the spleen and liver were similar for both organs

(Figures 4I, J). However, a significant increase in the CD8 T-cell

population was observed in the spleen (Figure 4K), but not in the

liver (Figure 4L). Thus, IL-4Ra signalling on Foxp3 influences

myeloid populations and CD8 T cells to a greater extent in the

spleen during L. monocytogenes infection in mice.
Foxp3creIL-4Ra−/lox mice showed
enhanced T-cell-mediated
effector phenotype during
L. monocytogenes infection

CD8 T cells are crucial for the clearance of L. monocytogenes

(34, 35). Their increased numbers in Foxp3creIL-4Ra−/lox mice are
Frontiers in Immunology 07
quite notable, prompting further analysis of these cells to

understand the secretion of other intracellular cytokines and

granzyme B, which are produced mainly by CD8 cytotoxic

T cells. We sought to elucidate the underlying mechanisms

behind the enhanced phenotype in the spleen at 7 dpi. To this

end, we infected mice with 2 × 104 low-dose CFUs of

L. monocytogenes and euthanized at 7 dpi. Considering that CD8

cytotoxic T cell is one of the predominant cellular populations

responsible for killing L. monocytogenes (36), we restimulated

spleen cells with HKLM, PMA/ionomycin, or left unstimulated to

perform intracellular cytokine staining for IFN-g, IL-2, TNF, and
granzyme B in both CD4 and CD8 T cells. In unstimulated cells,

there was a significant increase in the production of IFN-g and IL-2

by CD4 T cells in Foxp3creIL-4Ra−/lox mice (Figure 5A), but not in

CD8 T cells (Figure 5B). Stimulation with HKLM also led to

increase in IL-2 but not in IFN-g and TNF in both the CD4

(Figure 5A) and CD8 T cells (Figure 5B). As expected,

stimulation with PMA/ionomycin led to a significant increase in

the production of IFN-g, IL-2, and TNF levels when compared to

unstimulated cells in both CD4 (Figure 5A) and CD8 (Figure 5B) T

cells of Foxp3creIL-4Ra−/lox mice.

We next assessed whether CD4 and CD8 T cells had an

augmented effector phenotype. Foxp3creIL-4Ra−/lox mice showed

significantly higher CD4 T-cell (Figures 5C, D) but not CD8 T-cell

(Figures 5E, F) effector/effector memory phenotypes

(CD44highCD62Llow) compared to littermate controls at 7 dpi,

which may induce IFN-g production, a key Th1 response

cytokine. Granzyme B is an important L. monocytogenes host-

killing protease produced by cytotoxic cells, thus we assessed
FIGURE 4

Foxp3creIL-4Ra−/lox mice showed increased myeloid cell populations and CD8 T cells in the spleen during L. monocytogenes infection. Single-cell
suspension of the spleen and liver was subjected to surface staining to determine myeloid and lymphoid populations using BD Fortessa at 3 and 7
dpi. Total cell numbers in the (A) spleen and (B) liver. (C, D) Macrophage, (E, F) Dendritic cell, (G, H) Neutrophil, (I, J) CD4 T cells, and (K, L) CD8
T-cell numbers are depicted. Data are represented as mean ± SEM of n = 6–8 mice from two independent experiments and analysed using two-
tailed unpaired Student’s t-test (*p < 0.05; **p < 0.01).
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whether the deletion of IL-4Ra signalling in Tregs affected the

ability of T cells to produce granzyme B. Granzyme B is essential for

killing of L. monocytogenes (37) and is produced largely by CD8 T

cells, although activated CD4 T cells can also produce it (38). We

observed a significant increase in the production of granzyme B in

both CD4 (Figure 5G) and CD8 (Figure 5H) T cells of Foxp3creIL-

4Ra−/lox mice. Collectively, these data suggest that the deletion of

IL-4Ra signalling on Foxp3 cells leads to augmented cytotoxic

granzyme B production and an effector T-cell phenotype that

promotes the production of IFN-g and IL-2 cytokines.
The deletion of IL-4Ra on Foxp3 Tregs
enhanced T-bet expression in T cells

To delineate the effector phenotype function, we assessed the

expression of transcription factor T-bet in T helper and cytotoxic

T cells. The T-bet expression is known to regulate the Th1 phenotype

and the production of cytokines such as IFN-g, IL-2, and TNF (39).

Remarkably, the absence of IL-4Ra signalling on Foxp3 T regulatory

cells resulted in a significant increase in the percentage of T-bet

expression in both CD4 (Figures 6A, B) and CD8 (Figures 6C, D) T
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cells following L. monocytogenes infection at 7 dpi. The T-bet

transcription factor is known to promote the growth and

differentiation of the Th1 subset while concomitantly blocking the

other subsets (40, 41). However, the increase in T-bet expression did

not come at the expense of GATA3 expression (Figures 6E, F), which

remained unaffected in Foxp3creIL-4Ra−/lox mice. These results suggest

a shift toward a Th1 phenotype in the absence of IL-4Ra expression on

Foxp3 T regulatory cells during L. monocytogenes infection.
The absence of IL-4Ra on Foxp3 Tregs
enhanced CD8 T-cell proliferation
and survival

It has been reported that infection with L. monocytogenes causes

the destruction of the white pulp by apoptosis in vivo (42). To

understand the augmented histopathological destruction of white

splenic pulp in the Foxp3creIL-4Ra−/lox at 7 dpi, we investigated

activated caspase 3 expression, a marker of apoptosis, along with

anti-apoptotic B-cell lymphoma-2 (Bcl-2) expression, which inhibits

apoptosis (43). Therefore, we evaluated the deletion of IL-4Ra deletion

on Tregs and its effect on the apoptosis and survival of CD8 T cells. The
FIGURE 5

Enhanced splenic CD4 T-cell effector function in Foxp3creIL-4Ra−/lox mice during L. monocytogenes infection. Single-cell suspensions were prepared from
spleens of 7-day infected mice, and 2 million cells were seeded in media, PMA/ionomycin, and heat-killed L. monocytogenes stimulation for 6 h, followed
by monensin blockage to perform intracellular cytokine staining in (A) CD4 and (B) CD8 T cells. (C, D) Representative flow plots and percentages of effector
T-cell population pregated on CD4 T cells. (E, F) Representative flow plots and percentages of effector T-cell population pregated on CD8 T cells. Granzyme
B expression in (G) CD4 and (H) CD8 T cells are shown. Data are represented as mean ± SEM of n = 6–8 mice/time point across two independent
experiments, analysed using a two-tailed unpaired Student’s t-test (*p <0.05; **p <0.01; ***p < 0.001; ****p < 0.0001).
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presence of Bcl-2 and Ki-67 markers indicates cell proliferation and

nuclear protein activity during cell division. We investigated CD8 T-

cell proliferation and observed a significant increase in Ki-67

(Figures 6G, H) and BCL-2 (Figure 6K), along with a corresponding

decrease in caspase 3 (Figure 6M) in Foxp3creIL-4Ra−/lox mice.

However, no differences in CD4 T cells expressing Ki-67 (Figure 6I),

BCL-2 (Figure 6J), and caspase 3 (Figure 6L) were observed. A smaller

population of CD8 memory T cells implies that fewer T cells are long-

lived and capable of providing protection during subsequent infections

(44). These results suggest that in the absence of IL-4Ra on Foxp3

Tregs, CD8 T cells expand, experience decreased apoptosis, and exhibit

better survival.
IL-4Ra transcript levels increased in active
TB and reverted back after the completion
of treatment

We then asked whether IL-4Ra expression was influenced by

M. tuberculosis infection in active TB and TB therapy cohorts. We
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extracted IL-4Ra and Foxp3 gene expression from the publicly

available dataset (26) to understand the dynamics during the course

of the disease in humans. The mRNA expression of the Il4ra gene

significantly increased in the whole blood of active TB patients

(aTB) compared to latently infected TB controls in the South

African cohort (Figure 7A). In contrast, the increase in foxp3

mRNA expression was significant yet moderate (Figure 7B).

Interestingly, the increased expression of Il4ra in active TB

patients reverted back to baseline levels upon the completion of

anti-TB therapy (Figure 7C), while foxp3 expression remained

unaffected (Supplementary Figure S5A). This shows that IL-4Ra
and Foxp3 T cells may play a role in the pathogenesis of human TB.
Foxp3creIL-4Ra−/lox mice displayed similar
lung bacterial loads, pathology, and
survival during M. tuberculosis infection

To elucidate the role of IL-4Ra signalling on Foxp3 Treg cells,

mice were infected withM. tuberculosis H37Rv at a low dose of 100
FIGURE 6

Splenic CD8 T cells expand and express higher Tbet in Foxp3creIL-4Ra−/lox mice duirng L. monocytogenes infection. A single-cell suspension of
splenocytes was stained for intranuclear transcription factors T-bet and GATA-3 from mice euthanized at 7 dpi. Representative flow plots and
frequencies of T-bet+ in (A, B) CD4 and (C, D) CD8 T-cell populations. (E, F) Representative flow plots and frequencies of GATA-3+ CD4 T cells. (G, H)
Representative flow plots and frequencies of Ki-67+ CD8 and (I) Ki-67+CD4 T cells. (J, K) BCL-2+ CD4 and CD8 T cells and (L, M) Caspase 3+ CD4 and
CD8 T cells are shown. Grey bars represent IL-4Ra−/lox mice, and white bars represent Foxp3creIL-4Ra−/lox mice. Data are represented as mean ± SEM of
n = 6–8 mice/time point from two independent experiments, analysed using a two-tailed unpaired Student’s t-test (*p <0.05; **p <0.01).
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CFU/mouse by aerosol inhalation. Surprisingly, in contrast to

L. monocytogenes, we found no survival benefit in these mice after

65 weeks of infection (Figure 7D). Consistently, Foxp3creIL-4Ra−/

lox mice displayed similar mycobacterial burdens in the lungs and

spleen (Figure 7E, F) and lung pathology and lesion size when

compared to control animals at both 3 and 18 weeks postinfection

(Figures 7G, H). This suggests that the deletion of IL-4Ra signalling

on Foxp3 T regulatory cells has no effect on the outcome of M.

tuberculosis infection.
Foxp3creIL-4Ra−/lox mice influence
lung immune responses during
M. tuberculosis infection

We investigated whether the absence of IL-4Ra on Foxp3 Treg

cells influenced the lung cytokine profile in tissue homogenates at 3 and
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18 weeks post-infection (wpi). We found a significant decrease in nitric

oxide (NO) (Figure 7I) and IL-10 production (Figure 7J) in Foxp3creIL-

4Ra−/lox mice. IL-23 has been shown to contribute to the initiation of

Th17 responses. While no differences in IL-17 production have been

observed during BCG vaccination, IL-17 can contribute to pathological

inflammation in the chronic stages of TB (45). We found a slight

increase in IL-23 (stimulate IL-17 production) in the Foxp3creIL-4Ra−/

lox mice at both time points (Figure 7K). GM-CSF production was

significantly reduced in Foxp3creIL-4Ra−/lox mice (Figure 7L). While

GM-CSF signalling is activated duringM. tuberculosis infection, a study

has shown that neutralising GM-CSF had no effect on the bacterial

burden, however, a lack of GM-CSF led to increased granuloma

formation in mice models (46). There was an increase in CXCL5, a

neutrophil-activating chemokine, at 3 wpi in Foxp3creIL-4Ra−/lox mice

(Figure 7M). Furthermore, no differences were observed in the levels of

IL-1a, IL-4, IL-6, IL-12p40, IL-17, IFN-g TNF, TGF-b, and GCSF

(Supplementary Figure S5B-J), as well as the chemokines CXCL1,
FIGURE 7

Foxp3creIL-4Ra−/lox mice exhibited comparable TB disease outcomes to littermate controls. (A) Il4ra expression and (B) Foxp3 expression in active
TB and latent TB individuals. (C) Il4ra expression in a longitudinal cohort until the completion of anti-TB treatment, using whole blood data from a
publicly available dataset. Control littermates (IL-4Ra−/lox) and Foxp3cre IL-4Ra−/lox mice were infected by aerosol with 100 CFU/mouse of M.
tuberculosis H37Rv. (D) Mortality after 65 weeks postinfection (n = 9–10 mice/group). (E, F) The bacterial burden in the lungs and spleen at 3 and 18
weeks postinfection (n = 5–6 mice/group) and (G, H) Representative image of H&E histopathology staining and quantification of alveolar spaces at
the indicated time points. Lung homogenates were analysed for the indicated cytokines by ELISA: (I) Nitrite oxide (NO), (J) IFN-g, (K) IL-10, (L) IL-23,
and (M) CXCL5. Data represented as mean ± SEM of signal intensity (a.u.) were plotted and analysed by (A, B) unpaired Student’s t-test, (C) one-way
ANOVA with Turkey’s multiple comparison test, (D) Mantel–Cox test, and (E–M) unpaired Student’s t-test. The data are representative of two
independent experiments (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001).
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CXCL2, CCL3, and CXCL10 (Supplementary Figure S5K-N) at both

time points. Overall, the absence of IL-4Ra signalling on Foxp3 Tregs

has no major impact on lung cytokine and chemokine profiles, except

for IL-23 and NO.
IL-4Ra-mediated signalling on Foxp3 Tregs
influences the immune cell populations
and effector/memory T cells in lungs
and lymph nodes in chronic
M. tuberculosis infection

To further understand whether the abrogation of IL-4Ra signalling

on Foxp3 Tregs alters the myeloid and lymphoid immune cell

populations in the lungs at 3 and 18 wpi, we performed flow

cytometry. There was a significant increase in total lung cell numbers

in Foxp3creIL-4Ra−/lox mice, suggesting increased infiltration of

immune cells at both 3 and 18 wpi (Figures 8A, E). Interestingly,

this infiltration did not affect the myeloid (macrophages, dendritic cells,
Frontiers in Immunology 11
and neutrophils) populations (Figures 8B, F). However, both CD4 and

CD8 T cells were significantly increased at 3 wpi (Figure 8C), while

only CD4 T cells (Figure 8G) showed increased numbers at 18 wpi. We

further investigated naïve, effector, and central memory CD4 T cells in

the Foxp3creIL-4Ra −/lox mice and found no difference in CD4 effector

T cells at 3 wpi (Figure 8D). However, there was a significant increase

in CD4 effector T cells (Figure 8H) at 18 wpi. Furthermore, we found a

significant increase in the effector/effector memory phenotype

(CD44highCD62Llow) compared to controls (Figures 8I, J).

Given that lymphoid cells are enriched in the draining lymph

nodes, we then investigated the impact of IL-4Ra signalling on

Foxp3 Treg on the immune cell populations in the mediastinal

lymph nodes at 3 and 18 wpi using flow cytometry. We observed a

significant increase in total cell numbers in Foxp3creIL-4Ra−/lox

mice, suggesting increased infiltration of immune cells into the

lymph nodes at 3 wpi (Supplementary Figure S6A), but not at 18

wpi (Supplementary Figure S6D) during M. tuberculosis infection.

Additionally, there was a significant increase in both CD4 and CD8

T-cell populations at both early and late infection (Supplementary
FIGURE 8

Increased T effector cells in the lungs during acute and chronic M. tuberculosis infection in Foxp3creIL-4Ra−/lox mice. Lung single-cell suspensions
were prepared to determine myeloid and lymphoid populations at 3 and 18 weeks postinfection. (A, E) Total lung cell numbers; (B, F) Myeloid
populations (alveolar macrophages, dendritic cells, neutrophils, and eosinophils); (C, G) CD4 and CD8 T cells; (D, H) CD4 T effector, naïve, and
central cell numbers; (I) Representative flow plot of CD4 T effector, naïve, and central memory cells; and (J) Percentage of effector CD4 T cells.
Data are represented as mean ± SEM of n = 5–6 mice/time, representative of two independent experiments, and analysed using the unpaired
Student’s t-test (*p < 0.05; **p < 0.01).
frontiersin.org

https://doi.org/10.3389/fimmu.2024.1427055
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chia et al. 10.3389/fimmu.2024.1427055
Figure S5B, E). We also investigated whether the deletion of IL-4Ra
on Treg affected naïve, effector, and central memory CD4 T cells in

the Foxp3creIL-4Ra−/lox mice. Similar to the lungs, no significant

differences were found in CD4 effector T cells in the Foxp3creIL-

4Ra−/lox mice (Figure 8C) at 3 wpi. However, at 18 wpi, a significant

increase in the central and effector CD4 T-cell memory in the

Foxp3creIL-4Ra−/lox mice was observed (Supplementary Figure

S6F). We also assessed whether these cells had augmented effector

phenotype in the Foxp3creIL-4Ra−/lox mice at 18 wpi. Similar to the

lungs, Foxp3creIL-4Ra−/lox mice had significantly higher effector/

effector memory phenotype (CD44highCD62Llow) compared to

littermate controls in the lymph nodes (Supplementary Figures

S6G, H). Altogether, these results suggest that the absence of IL-

4Ra signalling on Tregs increases CD4 and CD8 T-cell recruitment,

as well as effector T cells, in the lungs and lymph nodes during M.

tuberculosis infection.
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IL-4Ra-mediated signalling on Foxp3
Tregs influences cytokine-producing CD4
T cells in lymph nodes during chronic
M. tuberculosis infection

Given that we found no major differences in the lung cytokine

and chemokine profiles (Figure 7; Supplementary Figure S5), we

stimulated lymph node cells from 18-week M. tuberculosis-

infected mice ex vivo to assess CD4 and CD8 T-cell-specific

cytokines by intracellular cytokine staining. Cells were left

unstimulated or stimulated with M. tuberculosis cell lysate

(H37Rv) or PMA/ionomycin, followed by monensin secretion

blockade. Foxp3creIL-4Ra−/lox mice showed no differences in

IFN-g, IL-2, IL-17, and TNF cytokine secretion in unstimulated

CD4 (Figure 9A) and IFN-g, IL-2, IL-17, and IL-10 in CD8 T cells

(Figure 9B). However, IL-4 and IL-10 Th2 cytokine-secreting
FIGURE 9

Increased CD4 T cells producing cytokines in the mediastinal lymph node of Foxp3creIL-4Ra−/lox mice during M. tuberculosis infection. A single-cell
suspension of total mediastinal lymph nodes was prepared, and 2 million cells were then seeded to determine the frequency of the indicated
cytokine production with heat-killed M. tuberculosis and PMA/ionomycin stimulation for 6 h, followed by monensin blockage to perform
intracellular cytokine staining. (A) CD4 and (B) CD8 T-cell responses in unstimulated, heat-killed M. tuberculosis (H37Rv) and PMA/ionomycin
stimulations. (C) Representative intracellular cytokine staining plots from H37Rv M. tuberculosis lysate and PMA/ionomycin-stimulated CD4 T cells.
Data are represented as mean ± SEM of n = 5–6 mice/time, representative of two independent experiments, and analysed using the unpaired
Student’s t-test (*p < 0.05; **p < 0.01).
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unstimulated CD4 T cells and TNF and IL-4 secreting CD8 T cells

had higher percentages in the Foxp3creIL-4Ra−/lox group. As

expected, with H37Rv lysate stimulation, CD4 T cells produced

significantly higher levels of IFN-g, IL-17, and TNF in Foxp3creIL-

4Ra−/lox mice (Figure 9A), whereas IL-10-secreting CD4 and CD8

T cells decreased irrespective of groups (Figures 9A, B) and

reduced IL-4-secreting CD8 T cells (Figure 9B). Importantly,

CD4 T cells from the Foxp3creIL-4Ra−/lox group showed higher

Th1/Th17 cytokine secretion upon H37Rv lysate or PMA/

ionomycin stimulation (Figures 9A–C). Overall, these results

suggest that the absence of IL-4Ra signalling on Tregs augments

cytokine-producing CD4 T cells in the mediastinal lymph nodes

during M. tuberculosis infection.
Discussion

Foxp3 Tregs inhibit the activation and expansion of CD8

T cells, and their depletion leads to the expansion of CD8 T cells

in L. monocytogenes infection (47). However, the role of IL-4Ra on

Foxp3 Treg cells in L. monocytogenes infection has not been

investigated. We found that IL-4Ra signalling is essential for

maintaining Tregs and its loss leads to an increase in CD8 T cells

in Foxp3creIL-4Ra−/lox mice. The quality of Foxp3 T cells is affected

by signals from antigen and cytokine production (48). Remarkably,

the depletion of Foxp3 Tregs resulted in host protection in

L. monocytogenes and Salmonella enterica infections (20, 49, 50).

Indeed, the quality of Foxp3 Tregs was decreased in Foxp3creIL-

4Ra−/lox mice, signifying that IL-4Ra is required to maintain the

stability, and probably the function, of Tregs in L. monocytogenes

infection. The decrease of Foxp3 Tregs tilts the immune balance

toward an effector Th1 phenotype, which is fundamental for

L. monocytogenes clearance (51). Remarkably, a decrease in the

expression of Foxp3 in the spleen was observed, which was not

affected by the loss of IL-4Ra at a steady state. A multigene and fate-

reporter system demonstrated that the shift from Foxp3 Tregs to

exFoxp3 (Th2) is IL-4-dependent during Heligmosomoides

polygyrus infection and allergy (52). Foxp3 instability has been

shown to transiently polarize Foxp3 T cells into Th2 (exFoxp3

T cells), which then proliferate and produce inflammatory cytokines

in tissues (53). Consistently, the loss of IL-4Ra on Foxp3, which led

to increased T-bet expression, suggests an enhanced Th1 response

in Foxp3creIl-4Ra−/lox mice. In addition, we demonstrated that the

lack of Treg stability was due to the loss of IL-4Ra, which resulted in
a significant increase in effector T cells increased during

L. monocytogenes infection, thereby asserting the imbalance

observed in earlier studies. The Foxp3 regulatory T-cell

population is also known to impede the priming of effector

T cells (47, 54–56). This interplay is fundamental, as the ratio of

Tregs to effector immune cells is critical to shaping the host

response (57).

Tregs reduce the CD4 T-cell-dependent cytotoxic CD8 T-cell

response to L. monocytogenes, impeding the body’s ability to control

infection (58). In mice, transient ablation of Foxp3 Treg causes

increased CD8 T cells , enhancing protection against

L. monocytogenes (20). CD8 T cells play a very crucial role in
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L. monocytogenes infection (19, 31, 34, 35, 59), exerting effector

fuctions such as secreting granzyme B and perforin (51). IFN-g, as
an effector cytokine, provides protective effects that extend beyond the

direct action of granzyme B (60). We found that targeting IL-4Ra led

to higher secretion of granzyme B and increased IFN-g levels in the

serum. The increase in IFN-g further correlated with T-bet expression

(with no change in GATA3) in CD8 T cells of Foxp3creIL-4Ra−/lox

mice. Moreover, these cells showed increased proliferation (Ki-67),

enhanced survival (Bcl2), and a concomitant decrease in apoptosis

(caspase 3) in Foxp3creIL-4Ra−/lox mice. However, the latter is in

contrast with a study indicating that exogenous treatment of Tregs

with IL-4 has an anti-apoptotic effect (61). Increased IFN-g levels have
been shown to correlate with the clearance of L. monocytogenes in the

spleen and peritoneal cavity, with early release from NK cells followed

by T cells (29, 62, 63). Foxp3creIL-4Ra−/lox mice showed no differences

at earlier stages, but showed a significant increase in IFN-g production
by T cells at later time points when stimulated ex vivo. IL-2 controls the

expression of transcription factors, thereby contributing to Th1 cell

development (64), while also playing a critical role in maintaining

Tregs, facilitating T-cell differentiation, and controlling cytokine

secretion (65–67). Consistent with this, IL-2 levels were increased

concomitantly with IFN-g upon stimulations in the Foxp3creIL-4Ra−/

lox mice during L. monocytogenes infection, correlating with effector

and Th1 cytokines with conspicuous T-bet expression.

The splenic myeloid cells in the marginal zone of the red pulp

increase protection (59, 68), but the T-zone of the white pulp is

where effector T cells cross-talk with dendritic cells (69, 70).

The depletion of white pulp indicated a critical role of myeloid

cell interactions with effector CD8 T cells during L. monocytogenes

infection (71). In Foxp3creIL-4Ra−/lox mice, reduced destruction of

white pulp suggests improved control during L. monocytogenes

infection. This outcome may be partially a result of the increase in

neutrophils, dendritic cells, and inflammatory macrophages early

after infection in the spleen. This finding is consistent with reports

showing that early control of L. monocytogenes is mediated by the

neutrophils and macrophages (30, 72, 73). Our findings revealed

that IL-4Ra signalling on Tregs plays a tissue-destructive role

during L. monocytogenes infection.

On the other hand, Foxp3creIL-4Ra−/lox mice displayed similar

bacterial loads and lung pathology during both acute and chronic

M. tuberculosis infection, suggesting a varying role of IL-4Ra
signalling. However, Foxp3creIL-4Ra−/lox mice showed increased

numbers of both CD4 and CD8 T-cells, suggesting a shift the T-cell

balance. Moreover, CD4 but not CD8 T cells from Foxp3creIL-

4Ra−/lox mice produced increased levels of IFN-g, TNF, and IL-17,

indicating the ability of IL-4Ra signalling on Tregs to modulate

CD4 T-cell immune responses during M. tuberculosis infection.

This finding is consistent with previous observations that while

CD8 T cells are required, they are not as indispensable as CD4 T

cells in M. tuberculosis infection (74). Given that the Foxp3creIL-

4Ra−/lox mice showed a larger proportion of functional M.

tuberculosis-specific CD4 T cells with no changes in bacterial

burden and lung pathology, it is plausible that there may be a

potential compensation of IL-4Ra signalling by other immune cells.

Our research revealed no discernible variations in T-cell-specific

cytokines across the groups in the CD4 and CD8 T cells of the
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draining lymph nodes. The fact that T-cell-specific cytokines were

not measured in the lungs limits the study. However, our

laboratory’s work using the same Foxp3creIL-4Ra−/lox mice in an

allergic asthma model revealed that the profiles of CD4 T cells

producing IL-17 and IL-10 in both the lymph nodes and lungs were

similar (75). This work also showed that Tregs capacity to reduce

type 2 cytokine production in IL-C2a- and IL-33-mediated

inflammation was inhibited by IL-4Ra signalling in an IL-10-

dependent way. Previously, we showed the importance of IL-4Ra
signalling on other immune cells, such as B cells, which increased

host protection in chronic TB (25). In contrast, IL-4Ra signalling

on macrophages/neutrophils resulted in marginal susceptibility to

TB (76).

Overall, we provide a new perspective on the Treg-specific

function of IL-4Ra signalling in listeriosis, highligting the

importance of the stability and quality of Foxp3 Tregs. The absence

of IL-4 signalling in the Treg population led to the production of

increased proinflammatory cytokines, including IFN-g, which are

essential for L. monocytogenes clearance. InM. tuberculosis infection,

while the CD4 T effector cytokines were altered in the absence of IL-

4Ra on Tregs in the lymph nodes, this did not affect the outcome of

TB disease in mice. Together, we reveal an unappreciated biological

function of IL-4Ra signalling in regulating the differential roles of

Tregs in listeriosis and tuberculosis.
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SUPPLEMENTARY FIGURE 1

Gating strategy for the identification of IL-4Ra expression and Foxp3 cells in

the liver and spleen of the mice.

SUPPLEMENTARY FIGURE 2

Gating strategy activation and memory cell populations and intracellular
cytokine staining. (A) Gating strategy representing the identification of

memory and activation status of lymphoid cell population in the liver and
spleen of the mice. (B) Gating strategy shows intracellular cytokine

assay staining.

SUPPLEMENTARY FIGURE 3

Gating strategy Lymphoid and Myeloid cell populations in the indicated
tissues. (A) Gating strategy representing the identification of lymphoid cell

population in the liver, spleen and lung of the mice. (B) Gating strategy shows
myeloid cell populations in the liver.
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SUPPLEMENTARY FIGURE 4

Gating strategy Myeloid cell populations. (A) Gating strategy representing the
identification of myeloid cell populations in the spleen. (B) Gating strategy

shows myeloid cell populations in the lungs.

SUPPLEMENTARY FIGURE 5

Cytokine/chemokine profile in the lungs of Mtb-infected Foxp3creIL-4Ra-/lox

mice. (A) Foxp3 expression profile during treatment in the South African

cohort. (B) IL-1a, (C) IL-4, (D) IL-6, (E) lL-12p40, (F) IL-17, (G) TNF, (H) TGF-b,
(I) GM-CSF, (J) G-CSF, (K) CXCL1, (L) CXCL2, (M) CXCL10 and (N) CCL3

measured by ELISA. Data represented as mean± SEM of n= 5-6 mice/group

from two independent experiments and analysed using unpaired, student
t-test.

SUPPLEMENTARY FIGURE 6

Foxp3creIL-4Ra-/lox mice increased T effector cells in the lymph nodes during
acute and chronicMtb infection. Single cell suspensions from the mediastinal

lymph nodes were prepared to determine lymphoid populations at 3 and 18

weeks post infection. (A, D) Total lymph node cell numbers, (B, E) CD4 and
CD8 T cells (C, F) CD4 T effector, naïve and central cell numbers.

(G) Represented flow plot of CD4 T effector, naïve and central memory
cells and (H) Percentage of effector CD4 T cells. Data represented as mean±

SEM of n=5-6 mice/time representative of two independent experiments and
analysed using unpaired, student t-test. (*p <0.05, **p <0.01.
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